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Analytic determination of lung microgeometry with gas diffusion magnetic resonance
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Through inhalation of, e.g., hyperpolarized 3He, it is possible to acquire gas diffusion magnetic resonance
measurements that depend on the local geometry in the vast network of microscopic airways that form the
respiratory zone of the human lung. Here, we demonstrate that this can be used to determine the dimensions
(length and radius) of these airways noninvasively. Specifically, the above technique allows measurement of the
weighted time-dependent diffusion coefficient (also called the apparent diffusion coefficient), which we here
derive in analytic form using symmetries in the airway network. Agreement with experiment is found for the
full span of published hyperpolarized 3He diffusion magnetic resonance measurements (diffusion times from
milliseconds to seconds) and published invasive airway dimension measurements.
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I. INTRODUCTION

Ever since the microgeometry dependence of gas diffusion
magnetic resonance (MR) measurements on the lung was
first demonstrated experimentally [1–3], there has been great
interest in utilizing this dependence in clinical and research
applications, such as detection and investigation of emphy-
sema (see, e.g., Refs. [4–22]). However, due to the lack of a
general analytic relation relating the microgeometry and the
measured quantity, it has so far not been clear what specific
information the dependence allows one to extract. Here, we
provide this missing piece, which shows that the dependence
allows extraction of the dimensions of the respiratory-zone
airways.

The human lung has about 24 generations of airways
arranged such that each airway in a given nonlast genera-
tion (counting the trachea as the first generation) branches
into two airways in the subsequent generation [23]. The air-
ways that make up the last about nine generations all have
a central tubular region with radial openings into cavities
formed by a surrounding sleeve of alveoli [23]. These air-
ways, which together form the respiratory zone and together
account for about 95% of the lung’s airspace, have roughly the
same length [24,25], roughly the same radius measured from
the centerline to and including the alveolar sleeve [24,25],
and roughly the same sibling-to-sibling angle of about 120◦

[25]. A respiratory-zone airway that immediately succeeds a
non-respiratory-zone airway forms, together with all its de-
scendants, a so-called pulmonary acinus (see Fig. 1).

The technique of gas diffusion MR with, e.g., inhaled
hyperpolarized 3He [26] allows regional and global measure-
ment of the weighted time-dependent diffusion coefficient
(also called the apparent diffusion coefficient) with a diffusion
time in the millisecond to second range (for which the corre-
sponding characteristic free-diffusion length is on the order
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of 1 to 10 airway lengths in the respiratory zone) [6,18,19].
Deriving the above quantity in analytic form, is consequently
not possible by considering the airways as non-interconnected
infinite-length objects, as in the fixed-diffusion-time frame-
work of Refs. [4,5] see also the review Ref. [21], but
requires taking into account the airways’ finite length and
interconnections.

In this work, we derive in analytic form the lung’s weighted
time-dependent diffusion coefficient based on considering the
pulmonary acinus as the representative unit. First, we show
that this quantity splits into two parts, one that can be handled
by considering the diffusive motion of the gas molecules’
projections on the geometric graph formed by the airways’
center-line segments and one that can be handled by consider-
ing the transverse part of the gas molecules’ diffusive motion
in each airway. By using symmetries in the airway network
together with this, we get the above quantity expressed ana-
lytically in terms of the airway length and the airway radius.
Agreement with experiment is found for the full span of

1

FIG. 1. Schematic illustration of the airway branching pattern
in a pulmonary acinus. The line segments represent the center-line
segments of the airways that make up the first (labeled 1 in the
figure), second, third, and fourth of the nine generations of airways
in the pulmonary acinus.
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published hyperpolarized 3He diffusion MR measurements
and published invasive airway dimension measurements.

II. THEORY AND RESULTS

Let S be the magnitude of the (gradient echo, pulsed
gradient spin echo, or pulsed gradient stimulated echo)
diffusion-sensitized MR signal from the volume of interest at
the time of the echo. Let � be the diffusion time (i.e., the
interpulse time), δ be the pulse duration, and T be the time
of the echo. Let G(t )g be the effective field gradient for the
diffusion sensitization such that g is a unit vector. We then
have

∫ T
0 G(t )dt = 0 and

S = S0〈exp(−iϕ)〉, ϕ =
∫ T

0
γ G(t )g · r(t )dt,

where S0 is the magnitude of the corresponding non-diffusion-
sensitized MR signal from the volume of interest at time T , γ

is the gyromagnetic ratio, r(t ) is the position vector of the ith
gas molecule, and 〈·〉 denotes averaging over all gas molecules
in the volume of interest. By expanding in cumulants we get
the equation ln(S/S0) = − 1

2 〈ϕ2〉 + 1
24 (〈ϕ4〉 − 3〈ϕ2〉2) + · · ·

which, by evaluating 1
2 〈ϕ2〉, gives

ln(S/S0) = −Dgb + O(b2),

where b = −γ 2
∫ T

0

∫ t
0 G(t )G(s)(t − s)dsdt (this ex-

pression for b is equal to the well-known expression
γ 2

∫ T
0 (

∫ t
0 G(s)ds)2dt as can be seen by integration by parts)

and Dg is equal to the expression we get by substituting
〈(g · (r(t ) − r(0)))2〉/2t for D(t ) in (1). Thus, Dg is
equal to the initial slope of, the ln(S0/S) versus b curve
obtained by varying the strength of G(t ) while keeping the
timing parameters of G(t ) unchanged. By further varying
the direction of the diffusion sensitization, i.e., g, over
three orthonormal directions given by g1, g2, and g3 we
get D = (Dg1

+ Dg2
+ Dg3

)/3, where D is the weighted
time-dependent diffusion coefficient

D =
∫ T

0

∫ t
0 G(t )G(s)(t − s)D(t − s)dsdt∫ T

0

∫ t
0 G(t )G(s)(t − s)dsdt

, (1)

and D(t ) is the time-dependent diffusion coefficient

D(t ) = 〈(r(t ) − r(0))2〉
6t

. (2)

To derive D in analytic form, we consider, as a represen-
tative portion of the volume of interest, a pulmonary acinus
with ν, ν = 9, complete generations and thus a total of 2ν − 1
airways. Let θ , θ = π/3, be the airway branching angle and
2θ be the airway sibling-to-sibling angle. Let L be the airway
length and R be the airway radius measured from the center-
line to and including the alveolar sleeve. Let the airways be
numbered such that airway 1 is the airway from which all the
other airways descend and if airway i has children, then air-
way i’s two children are airway 2i and airway 2i + 1. Let oi be
the position vector and xi, yi, and zi be orthogonal unit vectors
such that oi and oi + Lxi are the positions of the parent-end
end point and the non-parent-end end point, respectively, of
airway i’s center-line segment. Let lt , xt , yt , and zt be such that

r(t ) = olt + xt xlt + yt ylt + zt zlt (the t-dependence is here de-
noted using a subscript to ease the notation). By inserting this
in (2) and expanding we get terms such as 1

6t 〈−2yt ylt · x0xl0〉.
This term is equal to 1

6t

∑
i,i′ wi′iyi′ · xi, where wi′iyi′ · xi is

that part of the average that concerns the gas molecules that
are in airway i initially and in airway i′ at time t . Since a
gas molecule can only diffuse from one airway to another
by passing through the central tubular regions of these, we
have that yt is as likely to be positive as negative if lt �=
l0 and hence that wi′i = 0 if i′ �= i. Consequently we have
1
6t 〈−2yt ylt · x0xl0〉 = 0. By applying the same reasoning to the
other terms in the expansion we get

D(t ) = 1
6t 〈(olt + xt xlt − ol0 − x0xl0 )2〉
+ 1

6t 〈(yt ylt + zt zlt − y0yl0 − z0zl0 )2〉.
The first part of D(t ) can be expressed analytically by us-
ing Ref. [27] to obtain in analytic form the continuum-limit
propagator for the diffusive motion of the gas molecules’
projections on the geometric graph formed by the airways’
center-line segments. By further using the transverse part of
the cylindrical-coordinate continuum-limit propagator for par-
ticle diffusion in a nonabsorbing hollow cylinder with radius
R (see, e.g., Refs. [4,28]) to express the second part of D(t )
analytically we get after inserting the sum of the two expres-
sions in (1)

D =
∞∑

n=1

anL2 f
( − α2

nDa/L2
) +

∞∑
n=1

bnR2 f
( − β2

1nDb/R2
)
,

where αn and an are given in Appendix A, β1n is the nth root of
the derivative of the 1th-order Bessel function of the first kind,
bn = 4/(3β2

1n − 3β4
1n), Da is the diffusion coefficient for the

diffusive motion of the gas molecules’ projections on the geo-
metric graph, Db is the (independently measurable) diffusion
coefficient for the diffusive motion of the gas molecules in the
absence of confinement, and f (κ ) is equal to the expression
we get by substituting exp(κ (t − s)) for (t − s)D(t − s) in
(1). For G(t ) consisting of two rectangular pulses [i.e., being
equal to g�(0, δ, t ) − g�(�,� + δ, t ) up to translation and
signs, where �(a, b, t ) = H (t − a) − H (t − b) is the boxcar
function, H (t ) is the Heaviside step function, and g is the
strength of G(t )] we have

f (κ ) = 2κδ + 2 − 2eκ� − 2eκδ + eκ (�−δ) + eκ (�+δ)

κ2δ2(� − δ/3)
.

The sensitivity of D to changes in L and R will because of
the difference between (α2

1, α
2
2, . . . ) and (β2

11, β
2
12, . . . ) vary

differently with � (the former and latter sequence arranged
in ascending order are numerically (0.0020, 0.0042, . . . )
and (3.3900, 28.4243, . . . ), respectively). For values of �

such that Da�/L2 ∼ 1 and Db�/R2 ∼ 1 we have, for G(t )
consisting of two rectangular pulses and δ = �, that D

is approximately equal to Da
3 (1 − 257

511L
32(2

√
2−1)

35
√

π
(Da�)1/2) +

7
48

R4

Db�2 − 33
512

R6

D2
b�

3 (see Appendix B and Fig. 4) and for values

of � such that Da�/L2 
 1 and Db�/R2 
 1 we have that
the second part of D is negligible compared with the first
part. Thus, the sensitivity of D to changes in L and R goes
from moderate to high and high to low, respectively, if � is
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FIG. 2. Illustration of how the sensitivity of D to changes in
L, Da, and R varies with �. The solid, dotted, and dashed curve
shows the relative change in D caused by a 20% increase in L, Da,
and R, respectively, computed with the following parameter values
as reference: L = 0.80 mm, Da = 0.48 cm2 s−1, R = 0.35 mm, Db =
0.86 cm2 s−1, G(t ) consisting of two rectangular pulses, and δ equal
to � if � � 10 ms and equal to 10 ms otherwise.

increased from the first to the second of these two regimes,
see Fig. 2. Note, that the above approximation is linear with
respect to four expressions that together determine L, Da, R,
and Db.

To see that there is agreement with experiment, we con-
sider the full span of published hyperpolarized 3He MR
measurements on healthy adults (gas diffusion MR measure-
ments on another population or with another gas, such as
hyperpolarized 129Xe [29], that form a multi-diffusion-time
dataset are not yet available). These measurements are made
with either a gradient echo sequence with � in the range
1 ms to 5.2 ms and δ ≈ � or a pulsed gradient stimulated
echo sequence with � in the range 0.05 s to 1.54 s and δ

roughly on the order of 1 ms. For the 3He concentrations used
in these measurements, Db has a measured value of about
0.86 cm2 s−1 (see Ref. [30] for the functional form of the
concentration dependence). The symbols in Figs. 4 and 5
show D as a function of � experimentally estimated based on
these measurements. To assess the representativeness of con-
sidering only gas diffusion restricted to within the pulmonary
acinus for the diffusion times used in these measurements,
we compute in Fig. 3 the fraction of the gas molecules in the
pulmonary acinus that have not visited its exit, as a function
of �, from which it can be seen that this fraction for all the
diffusion times used in these measurements is greater than
about 0.9. Least squares fitting the analytic form of D, with
L, Da, and R as adjustable parameters, Db = 0.86 cm2 s−1,
G(t ) consisting of two rectangular pulses, and δ equal to
� if � � 10 ms and equal to 1 ms otherwise, to the exper-
imental estimate represented by the symbols in Figs. 4 and
5 gives L = 0.80 ± 0.24 mm Da = 0.48 ± 0.12 cm2 s−1, and
R = 0.35 ± 0.04 mm. The solid curve in Figs. 4 and 5 shows
D as a function of � computed with these parameter values.

10−2 10−1 100 101
0.4

0.5

0.6

0.7

0.8

0.9

1.0

FIG. 3. Fraction of the gas molecules in the pulmonary acinus
that have not visited its exit as a function of �. Specifically, the
curve shows 1

EL

∑
i,i′

∫ L
0

∫ L
0 K̄ (x′, x, �)i′idxdx′ as a function of �

computed with L = 0.80 mm and Da = 0.48 cm2 s−1, where the inte-
grand, which can be obtained using Ref. [27], is the continuum-limit
propagator for the diffusive motion of the gas molecules’ projections
on the geometric graph formed by the airways’ center-line segments
subject to the condition that the vertex located at o1 is absorbing and
all other vertices are nonabsorbing.

The above result for L and R is consistent with the pub-
lished invasive findings. Specifically, Ref. [24] found L to be
0.871 mm (the mean of the means in columns 2 and 4 of Table
2) and R to be 0.339 mm (the mean of the means in columns
10 and 12 of Table 2) based on microscope examination of
corrosion casts of two fixed normal adult human lungs and
Ref. [25] found L to be 0.638 mm and R to be 0.375 mm
based on synchrotron-based micro-computed tomography of
osmium tetroxide stained samples of a fixed normal adult
human lung.

III. DISCUSSION AND CONCLUSION

In this work, we showed how the lung’s weighted
time-dependent diffusion coefficient depends on the lung mi-
crogeometry and how the sensitivity characteristics of the
dependence vary with the diffusion time. Hereby, we showed
how the dimensions (length and radius) of the respiratory-
zone airways can be extracted, from knowledge of the
value of the weighted time-dependent diffusion coefficient
as a function of the diffusion time. The agreement with
experiment of this was demonstrated for the full span of
published hyperpolarized 3He diffusion MR measurements
and published invasive airway dimension measurements. As
directions for future use we note the importance of ensuring
that it is indeed the initial slope of the ln(S0/S) versus b
curve that is evaluated when measuring the weighted time-
dependent diffusion coefficient. Also, the diffusion times
used should not be greater than what can ensure the rep-
resentativeness of considering only gas diffusion restricted
to within the pulmonary acinus (as assessed in terms of
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FIG. 4. D as a function of � computed and experimentally esti-
mated (� varied in the range 1 ms to 7 ms). The solid curve shows D
as a function of � computed with L = 0.80 mm, Da = 0.48 cm2 s−1,
R = 0.35 mm, Db = 0.86 cm2 s−1, G(t ) consisting of two rectangular
pulses, and δ equal to � if � � 10 ms and equal to 1 ms otherwise.
The dashed curve shows the Da�/L2 ∼ 1 and Db�/R2 ∼ 1 approx-
imation for D as a function of � computed with the same parameter
values. The symbols show D as a function of � experimentally
estimated based on the hyperpolarized 3He diffusion MR measure-
ments on healthy adults reported in Refs. (each symbol and error
bar represents the mean and standard deviation of measurements on
n healthy adults) [6] (�, n = 14), [7] (�, n = 4), [8] (�, n = 8, see
also Ref. [9]), [10] (�, n = 15, see also Ref. [11]), [12] (�, n = 8),
[13] (�, n = 11), [14] (�, n = 5), [15] (�, n = 6, see also Ref. [16]),
and [17] (♦, n = 5, the authors of [17] kindly made the raw gas
diffusion MR data available).

the fraction of the gas molecules in the pulmonary acinus
that have not visited its exit, see Fig. 3 and its caption).
Thus, this work opens the door to gas diffusion-MR-based
examination of the human lung, where extraction of the
relevant dimensions of the underlying lung microgeometry is
possible.
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APPENDIX A

In this Appendix, we show in detail how to obtain D in
analytic form. First, we use Ref. [27] to obtain in analytic form
the continuum-limit propagator for the diffusive motion of the
gas molecules’ projections on the geometric graph formed by
the airways’ center-line segments (subject to the condition that
all vertices are nonabsorbing). The resulting analytic expres-
sion is as follows: Let the edges and vertices of the geometric
graph be numbered such that edge i is the center-line segment
of airway i, the vertex located at oi is vertex φi, and the
vertex located at oi + Lxi is vertex ψi, where φi = 
i/2� + 1
and ψi = i + 1. Let � and � be the two E × V matrices
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FIG. 5. D as a function of � computed and experimentally esti-
mated (� varied in the range 0.01 s to 1.6 s). The solid curve shows D
as a function of � computed with L = 0.80 mm, Da = 0.48 cm2 s−1,
R = 0.35 mm, Db = 0.86 cm2 s−1, G(t ) consisting of two rectangular
pulses, and δ equal to � if � � 10 ms and equal to 1 ms otherwise.
The symbols show D as a function of � experimentally estimated
based on the hyperpolarized 3He diffusion MR measurements on
healthy adults reported in Refs. (each symbol and error bar represents
the mean and standard deviation of measurements on n healthy
adults) [18] (�, n = 4), [18] (�, n = 2), [19] (�, n = 10), [20]
(�, n = 17), [6] (�, n = 14), [18] (�, n = 3), and [19] (�, n = 10).

defined by

�i j = δ
i/2�+1, j, �i j = δi+1, j,

where E = 2ν − 1 is the number of edges, V = 2ν is the
number of vertices, δi j is the Kronecker delta, and 
·� is the
floor function. Let

D = ��� + ���,

A = ��� + ���.

Let R = D−1/2 (note that D is diagonal) and W = RAR. Let
V and X be real matrices of the same size as W such that
WV = V X , V �V = I, and X is diagonal with the diagonal
entries arranged in ascending order [these matrices can be
found (using standard mathematical software) since W is real
symmetric and therefore real orthogonally diagonalizable].
Let V̂ − be the first column in RV and V̂ + be the last column
in RV . Let V̂ be the matrix we get by deleting the first and the
last column from RV . Let X̂ be the matrix we get by deleting
the first and the last column as well as the first and the last row
from X . Let � be the matrix of the same size as X̂ defined by
�i j = arccos(X̂ ii )δi j (the entries of X̂ are strictly between −1
and 1). Let

� = diag(�, π, 2πI − �, 2π ),

P = [
(�Y − �Y Z) �V̂ − (�Y − �Y Z∗) �V̂ +

]
,

Q = [
(�Y − �Y Z) �V̂ − (�Y − �Y Z∗) �V̂ +

]
,

where Y = iV̂ (2I − 2X̂
2
)−1/2 and Z = X̂ + i(I − X̂

2
)1/2.

Throughout, i is the imaginary unit, ∗ denotes complex conju-
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gation, and I is the identity matrix whose size is determined
by the context. The continuum-limit propagator is then

K̄ (x′, x, t )i′i = 1

EL
+

∞∑
n=1

e−α2
n Dat/L2

ui′n(x′)uin(x),

where

αn = 
(n − 1)/(2E )�2π + �rnrn ,

uin(x) = 2L−1/2Re(Qirn
e−iαnx/L ),

in which rn = n − 
(n − 1)/(2E )�2E and Re(z) is the real
part of z. With the above we can express the first part
of D(t ) as

1

6t
〈(olt + xt xlt − ol0 − x0xl0 )2〉

= 1

6t

∑
i,i′

∫ L

0

∫ L

0

1

EL
K̄ (x′, x, t )i′i

× (L
∑

k

Oki′xk + x′xi′ − L
∑

k

Okixk − xxi )
2dxdx′,

where O is the E × E matrix such that Oki is equal to
1 if airway k is an ancestor of airway i and equal to 0
otherwise and thus oi = o1 + L

∑
k Okixk . The above double

sum can be divided into subsums of the form
∑

(i,i′ )∈A(m,n)
or

∑
(i,i′ )∈B(m,n,u), where (i, i′) ∈ A(m, n) if and only if air-

way i is identical, an ancestor, or a descendant of airway
i′, the former belongs to generation m, and the latter be-
longs to generation n and (i, i′) ∈ B(m, n, u) if and only if
airway i is not identical, not an ancestor, and not a descen-
dant of airway i′, the former belongs to generation m, the
latter belongs to generation n, and the lowest common an-
cestor to the former and the latter belongs to generation u.
By using this and expanding the factor (· · · )2 we get an
expression that is equal to the above and consist of terms
such as − 1

6tEL

∑
(i,i′ )∈A(m,n)

∫ L
0

∫ L
0 K̄ (x′, x, t )i′i2x′xdxdx′xi′ · xi.

Because of the symmetries in the airway network, all the
double integrals in this sum have the same value, and the sum
can thus be computed by using that∑

(i,i′ )∈A(m,n)

xi′ · xi =
∑

(i,i′ )∈A(m,n)

Ci′i, (A1)

where C is the E × E matrix Ci j = ∏m−1
k=1 x�k · x�k+1 in which

�1, . . . , �m are such that (�1, . . . , �m) is the shortest sequence
for which �1 = i, �m = j, and airway �k and airway �k+1 are
either siblings or one is the parent of the other. The equality in
(A1) follows by using that xp + xq = 2 cos(θ )xr if airway p
and airway q are siblings and children of airway r. By apply-
ing the same reasoning to the other terms in the expression, it
is seen that all the terms in the expression can be computed by
applying the substitution that assigns Ci j to xi · x j . This and
the fact that Qe−i� = P∗ gives

1

6t
〈(olt + xt xlt − ol0 − x0xl0 )2〉

= χL2

t
+ 1

t

∞∑
n=1

anL2 exp
( − α2

nDat/L2
)
, (A2)

where

χ = 1

3E

∑
i

(O�CO + CO + 1
3C)ii

− 1

3E2

∑
i,i′

(O�CO + CO + 1
4C)i′i,

an = − 1

3Eα2
n

(S�CS + 2S�CT + T�CT )rnrn

− 2

3Eα3
n

(S�CU +T�CU )rnrn −
1

3Eα4
n

(U�CU )rnrn ,

and
S = 2ORe(iP∗ − iQ),

T = 2Re(iP∗),

U = 2Re(P∗ − Q).

The O and C matrices can be computed by using that

O =
ν∑

n=1

(���)n,

F =
[

cos(θ ) ��� cos(2θ )(��� − I)
cos(2θ )(��� − I) cos(θ ) ���

]
,

C = I +
2ν∑

n=1

(Fn)11 + (Fn)12 + (Fn)21 + (Fn)22,

where the first, second, third, and fourth matrices to the
right of the summation sign in the last equation above are
the upper-left, upper-right, lower-left, and lower-right E × E
blocks of Fn, respectively. The equality in the last equation
above follows by using that the geometric graph is acyclic and
F i j = ci jδtih j (1 − δhit j ), where ti and hi are equal to φi and ψi,
respectively, if 1 � i � E and equal to ψi−E and φi−E , respec-
tively, if E < i � 2E and ci j = xi−
(i−1)/E�E · x j−
( j−1)/E�E .

Using, for the second part of D(t ), the transverse part of the
cylindrical-coordinate continuum-limit propagator for particle
diffusion in a nonabsorbing hollow cylinder with radius R, i.e.,
K̄ (r′, ϕ′, r, ϕ, t )

= 1

πR2
+

∞∑
m=1

∞∑
n=1

2

πR2(1 − m2/β2
mn)Jm(βmn)2

× e−β2
mnDbt/R2

Jm(βmnr′/R)Jm(βmnr/R) cos(mϕ′ − mϕ),

where Jm(x) is the mth-order Bessel function of the first kind
and βmn is the nth root of the derivative of Jm(x) (see, e.g.,
Refs. [4,28]), we get

1

6t
〈(yt ylt + zt zlt − y0yl0 − z0zl0 )2〉

= 1

6t
〈(yt ylt + zt zlt )

2〉 + 1

6t
〈(y0yl0 + z0zl0 )2〉

− 2

6t

∑
i

∫ R

0

∫ 2π

0

∫ R

0

∫ 2π

0

1

EπR2
K̄ (r′, ϕ′, r, ϕ, t )

× (cos ϕ′yi + sin ϕ′zi ) · (cos ϕyi + sin ϕzi )

× r′2r2dϕdrdϕ′dr′

= R2

6t
+ 1

t

∞∑
n=1

bnR2 exp
(−β2

1nDbt/R2
)
, (A3)
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where bn = 4/(3β2
1n − 3β4

1n) and we used that∫ 2π

0

∫ 2π

0 cos(m(ϕ′ − ϕ)) sin(ϕ′) sin(ϕ)dϕdϕ′ = π2δ|m|1.
By inserting the sum of (A2) and (A3) in the integral

expression for D we get for G(t ) consisting of two rectangular
pulses

D =
∞∑

n=1

anL2 f
( − α2

nDa/L2) +
∞∑

n=1

bnR2 f
( − β2

1nDb/R2),
where

f (κ ) = 2κδ + 2 − 2eκ� − 2eκδ + eκ (�−δ) + eκ (�+δ)

κ2δ2(� − δ/3)
.

APPENDIX B

In this Appendix, we consider the behavior of D for values
of � such that Da�/L2 ∼ 1 and Db�/R2 ∼ 1. From the gen-
eral analytic expression for the mean squared displacement for
nonfree particle diffusion derived in Ref. [31] we get

1

6t
〈(olt + xt xlt − ol0 − x0xl0 )2〉,

� Da

3

(
1 − 4

3
√

π
ϒ

√
Dat

)
, Dat/L2 
 1, (B1)

where

ϒ = 1

EL

V∑
�=1

1

d�

(∑
i∈N�

si�xi

)2
,

in which N� = {i : φi = � ∨ ψi = �}, d� is the degree of vertex
� (i.e., the number of elements in N�), and si� = δφi� − δψi�. By
inserting the sum of (B1) and (A3) in the integral expression
for D we get for G(t ) consisting of two rectangular pulses
and δ = �

D �Da

3

(
1 − 257

511L

32(2
√

2 − 1)

35
√

π
(Da�)1/2

)
+ 7

48

R4

Db�2

− 33
512

R6

D2
b�

3
, Da�/L2 ∼ 1, Db�/R2 ∼ 1,

where it is used that
∑∞

n=1
1

β4
1n(β2

1n−1)
= 7

192 and∑∞
n=1

1
β6

1n(β2
1n−1)

= 11
1024 see, e.g., (75) and (76) in Ref. [32] [in

(76) the first parenthesis in the denominator should be raised
to the third power and not the second power as printed].
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