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Characterizing the voltage fluctuations driven by a cluster of ligand-gated channels
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In this paper we present the properties of the voltage fluctuations driven by a cluster of ligand-gated channels.
First, the second-order moment of the voltage is expressed in form of the integrated resistance and the random
force. Then the power spectrum of the voltage noise is obtained analytically, and it is proved to have the 1/ω4-
form. Its mechanism lies in that the randomness of the voltage fluctuation is weaker than channel (conductance)
noise, which can be approximately described by the Ornstein-Ulenbeck process.
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I. INTRODUCTION

The chemical synapse is the most common way of connec-
tions between neurons [1,2]. Though there are many kinds of
synapses in the cental nervous system, their operating prin-
ciples are similar. When an action potential reaches the end
points of the upstream axon, the neurotransmitters will be
released simultaneously, then these transmitters will bind to
their receptors and open the latter. So the conductances of the
postsynaptic membrane to specific ions are increased quickly,
and the membrane potential will be changed in a short time. It
is experimentally discovered that, even if the presynaptic stim-
ulus are kept constant, there is variability in the postsynaptic
response [3–5]. These phenomenon is called the synaptic vari-
ability [4]. Though the main source of the synaptic variability
may originate from the randomness of the neurotransmitter
releasing [4,5], the variability contained in the postsynaptic
response is directly influenced by the (stochastic) gating of
the synaptic-receptor channels: the fluctuation waves of the
neurotransmitter densities must influence the gating of the
channels first and then indirectly influence the postsynaptic
response. Due to the discrete nature of the channels embedded
in the membrane, there exists inevitably channel noise [6,7]
accompanying the depolarizing or repolarizing of the mem-
brane voltage.

In the past the noise components that are contained in the
membrane noise have been identified separately [8]. Though
there are several kinds of noises, such as capacitive noise
[9], Johnson noise, shot noise, and excess noise [8], it is
commonly recognized that the most significant one is chan-
nel noise [6] (or also called conductance noise since the
conductances of the membrane to specific ions are directly
determined by the gating of the channels). The roles of chan-
nel noise in several aspects of the action potential propagation
are studied theoretically [10–14]. Many works have addressed
how to correctly model channel noise in a compact form
[7,15,16]. Through these works, the performance and ef-
fects of channel noise in nervous-system functions have been
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recognized more and more clearly [4,6]. But there still does
not exist a universal theory on how to characterize channel
noise. For example, it has been experimentally discovered
that the voltage fluctuations in a cluster of K+ channels has
the 1/ω4 power spectrum [17], but there is no theoretical
explanation of the phenomenon.

In our opinion, in order to understanding channel noise, we
need to separate the process of a given area of a membrane-
channel system propagating the voltage signals into two
parts. First, we need to know the intrinsic properties of the
fluctuations of the membrane-channel system under constant
environmental conditions. Second, by treating the chemical or
the electrical pulses as the external stimuli, we need to know
the responses of the membrane-channel system to such kinds
of stimuli.

In this paper, we use the piecewise deterministic process
[18] to describe the temporal evolving of the membrane volt-
age that is driven by the stochastic gating of a cluster of
ligand-gated channels. We present the analytical expressions
for the first- and second-order moments of the voltage. In
particular, we present the analytical results for the power
spectrum of the voltage fluctuations and prove that it has the
1/ω4-form. So the voltage response is essentially different
from the current response to the conductance noise since
the voltage needs the relaxation process to its new reversal
potentials when the conductance is changed. Yet the current
is directly determined by the conductance under a clamped
voltage. We believe that it is just the relaxation process of
the voltage that makes the voltage fluctuation different from
the conductance noise, which can be approximated by the
Ornstein-Ulenbeck process.

The paper is organized as follows. In Sec. II we con-
struct the stochastic process. In Sec. III we get the analytic
expressions for the first- and second-order moments of the
voltage. In Sec. IV we get the analytic expression for the
power spectrum of the voltage fluctuation. In Sec. V we prove
that the power spectral density has the form 1/ω4. In the
last section we present our understanding of the essential
difference of the voltage noise from the conductance noise
and the significance of the voltage noise in the realistic voltage
signaling.
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II. THE MODEL THAT DESCRIBES THE VOLTAGE
FLUCTUATIONS

Almost all kinds of ligand-gated channels are embedded in
the postsynaptic membrane of their corresponding synapses.
These tiny membrane-channel systems contain several neces-
sary electric elements that constitute the resistor-capacitance
circuit, which are illustrated in the following.

First, the lipid bilayer of the biological membrane is an
extremely good insulator with the thickness of its insulating
part only 2.3 (nm) [1], so it is naturally a capacitor with its
capacitance is constantly Cm = 0.01 pF/μm2 (the capacitance
of a capacitor linearly depends on its area). In the mem-
brane area, the situation is very complex. For example, there
are many junctional folds facing a single synaptic bouton in
the neuromuscular junction, and the nicotinic acetylcholine
(nACh) receptors are densely distributed in the top of these
folds [2,19]. However, in the branches of the dendrites, in
which the electric information is propagated by the local
graded potentials, we consider that at least the membrane area
of the specific branch where the synapse is localized should be
treated as a whole capacitor. We denote M to be the membrane
area and consider that it should not be less than 1 μm2. In [9]
the thermal noise of the voltage in the membrane capacitor is
calculated, according to which the standard deviation of the
voltage fluctuation has the scale of 0.6 mV when the mem-
brane area reaches 1 μm2. Since here we focus on the voltage
fluctuation caused by the stochastic gating of the channel,
which is voltage independent, we do not consider this kind
of voltage noise.

Second, we address the chemical batteries that perform the
role of the reversal potentials of the leakage VL and which of
the ionic current VCh. A living cell maintains the concentra-
tion gradients for several specific cations and anions across
the membrane (mainly Na+, K+, and Cl−) by some kinds
of pumps (for example, the Na+/K+-ATPase), which costs
the energy of ATP hydrolysis. The concentration gradients
of specific ions across the membrane produce their specific
electric potentials, so actually they are chemical batteries with
different voltages. Since different kinds of channels permeate
different kinds of ions with different permeability, the reversal
potential used in different synapses is also different. For a
neuron, it maintains a polarized resting potential and uses
the depolarized voltage pulses to carry the information. For
example, the resting potential of the postsynaptic membrane
in a neuromuscular junction, which is mainly controlled by
the K+ and the leakage, is about VL = −90 mV (chap. 9 in
[2]; see also [20]). In another respect, the nACh receptor per-
meates cations (mainly Na+ and K+) so that its corresponding
reversal potential is about Vch = 0 mV [1,20,21], and many
inhibitory synapses use negative reversal potentials.

Third, let us take the conductors. Here the conductance of
a single receptor is denoted as gCh and which of the leakage is
denoted as gL, linearly depending on the membrane area M.

These few kinds of necessary electrical components con-
stitute a tiny membrane-channel system, and the equivalent
circuit of it is plotted in Fig. 1.

Here the single channel is coarse-grained into two con-
figurations: “Open (activated)” or “Closed.” The reasons are
explained as follows. First, there are many kinds of ligand-

FIG. 1. The equivalent electric circuit of the system. Especially
note that the reversal potentials VCh of the postsynaptic currents may
be positive or negative, depending on the type of the synapse, so the
battery VCh (accordingly the current ICh) may has different directions.

gated channels in the central neural system, and the kinetic
structures of many kinds of them are far from being charac-
terized clearly. In another respect, a common property among
them lies in that their gating is independent of voltage. Sec-
ond, here the essence of the randomness will not be changed
by just substituting the different kinds of kinetic structure
of the channel. Only some specific variables, such as the
dwell time in the open state, will be influenced. Evidence
comes from the study in [17], in which a two-state model of
the potassium channel is sufficient to explain the collective
dynamics.

Let Oi denote that there are i open channels in the system
with totally N channels, so that the state space of the channel
cluster can be set as {Oi; 0 � i � N}, and the kinetic scheme
of the transition of the channel cluster can be set as follows:

O0

Nk+
�
k− O1

(N − 1)k+
�

2k− · · ·
k+
�

Nk−
ON . (1)

Here k− and k+ are the transition intensities of a single
channel (with scale ms−1), and we assume that they are
voltage-independent.

Since the conductance of a single channel is gCh, if the
state of the channel cluster is Oi, the ionic current flow
through the channels is ICh = igCh(U − VCh). Together with
the leakage that IL = gL(U − VL ), and the capacitive current
IC = Cm

dU (t )
dt , the current balance equation of the circuit obeys

the law ICh + IL + IC = 0 or, equivalently,

Cm
dU (t )

dt
=−gL(U −VL )−igCh(U − VCh) = −gi(U (t ) − Vi ).

(2)
Here the unit of time is set to be ms. The variables gi =
gL + igCh and Vi = (gLVL + igChVCh)/gi denote the integrated
conductance and the reversal potential, respectively, under the
condition that i channels are open, i = 0, 1, . . . , N .

Now we can define a stochastic process {(X (t ),U (t )); t �
0}, where its discrete part X (t ) takes values in the set {Oi}, and
its continuous part U (t ) takes values in the interval (V0,VN ).
It is easy to see from Eq. (2) that U (t ) will never reach the
boundary {Oi} × {V0,VN }, i.e., U (t ) is confined in the inside
of the interval (V0,VN ). So the state space can be defined as
{Oi}N

i=0 × (V0,VN ), a bounded open subset of R(N+1) [22].
Let P(Oi, v, t |Oj, v0) dv denote the transition probabili-

ties, conditioned that the process starts from the point (Oj, v0)
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deterministically,

P(Oi, v, t |Oj, v0) dv = Prob{X (t ) = Oi, v � U (t ) < v + dv|X (0) = Oj,V (0) = v0}.
The master equations for the evolution of these PDFs have the form

∂

∂t
P(O0, v, t |Oj, v0) = − ∂

∂v
J (O0, v, t |Oj, v0) − Nk+P(O0, v, t |Oj, v0)

+ k−P(O1, v, t |Oj, v0),

· · ·
∂

∂t
P(Oi, v, t |Oj, v0) = − ∂

∂v
J (Oi, v, t |Oj, v0) − [(N − i)k+ + ik−]P(Oi, v, t |Oj, v0)

+ (N − i + 1)k+P(Oi−1, v, t |Oj, v0) + (i + 1)k−P(Oi+1, v, t |Oj, v0),

· · ·
∂

∂t
P(ON , v, t |Oj, v0) = − ∂

∂v
J (ON , v, t |Oj, v0) − Nk−P(ON , v, t |Oj, v0)

+ k+P(ON−1, v, t |Oj, v0) (3)

with the initial condition

P(Oi, v, 0|Oj, v0) =
{

1, (Oi, v) = (Oj, v0)

0, else
. (4)

Note that Eq. (4) is the initial condition of Eq. (3) rather than the initial distribution of the process.
Here J (Oi, v, t |Oj, v0) are probability fluxes due to the evolution of the membrane voltage, obeying the current balance

equation

J (Oi, v, t |Oj, v0) =
[

− gi

Cm
(v − Vi )

]
P(Oi, v, t |Oj, v0). (5)

Since Eqs. (2) confine U (t ) in the interval (V0,VN ), the boundary condition can be set as J (Oi,V0, t |Oj, v0) =
J (Oi,VN , t |Oj, v0) ≡ 0, i.e., the probability fluxes at the boundary are zero [22].

III. THE MOMENTS OF THE VOLTAGE

Now we need to calculate the marginal expectations of the voltage: E (U (t ), Oi|Oj, v0) = ∫ VN

V0
vP(Oi, v, t |Oj, v0) dv. First,

we multiply both sides of the master equation (3) by v and integrate v over the interval [V0,VN ] to get the following system of
equations:

∂

∂t
E (U (t ), O0|Oj, v0) = − g0

Cm
E (U (t ), O0|Oj, v0) + g0V0

Cm
P(O0, t |Oj, v0)

−Nk+E (U (t ), O0|Oj, v0) + k−E (U (t ), O1|Oj, v0),

· · ·
∂

∂t
E (U (t ), Oi|Oj, v0) = − gi

Cm
E (U (t ), Oi|Oj, v0) + giVi

Cm
P(Oi, t |Oj, v0)

− [(N − i)k+ + ik−]E (U (t ), Oi|Oj, v0) + (N − i + 1)k+

E (U (t ), Oi−1|Oj, v0) + (i + 1)k−E (U (t ), Oi+1|Oj, v0),

· · ·
∂

∂t
E (U (t ), ON |Oj, v0) = − gN

Cm
E (U (t ), ON |Oj, v0) + gNVN

Cm
P(ON , t |Oj, v0)

− Nk−E (U (t ), ON |Oj, v0) + k+E (U (t ), ON−1|Oj, v0) (6)

with the initial condition

E (U (0), Oi|Oj, v0) =
{
v0 i = j

0, else
. (7)
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Here P(Oi, t |Oj, v0) = ∫ VN

V0
P(Oi, v, t |Oj, v0) dv, satisfying the following equations, which are derived by integrating Eq. (3)

in the interval [V0,VN ]:

∂

∂t
P(O0, t |Oj, v0) = − Nk+P(O0, t |Oj, v0) + k−P(O1, t |Oj, v0),

· · ·
∂

∂t
P(Oi, t |Oj, v0) = − [(N − i)k+ + ik−]P(Oi, t |Oj, v0) + (N − i + 1)k+

P(Oi−1, t |Oj, v0) + (i + 1)k−P(Oi+1, t |Oj, v0),

· · ·
∂

∂t
P(ON , t |Oj, v0) = − Nk−P(ON , t |Oj, v0) + k+P(ON−1, t |Oj, v0) (8)

with the initial conditions

P(Oi, 0|Oj, v0) =
{

1, j = i

0, j �= i
.

Since the closure of the state space {Oi}N
i=0 × [V0,VN ] is compact, U (t ) will never reach the boundary, and the jumping system

is irreducible with intensities independent of v, there exists a unique stationary distribution [22]; especially note that it does not
dependent on the initial distribution. Now let t −→ +∞, and we can get the equation for the marginal expectations of the
stationary distributed voltage:

N1 �〈Ui〉 = DGV �P, or, �〈Ui〉 = N−1
1 DGV �P. (9)

The vectors and matrices in this equation are defined as follows. First,

�〈Ui〉 = [E (O0,U ), . . . , E (Oi,U ), . . . , E (ON ,U )]T

is the vector of the (stationary) marginal first-order moments of U . Note that the initial condition is omitted in this expression,
since the initial-condition-independence means the uniqueness of the stationary distribution, and

�P = [P(O0), . . . , P(ON )]T

is the vector of the stationary probability distribution of the discrete element X (t ), and it is easy to see that P(Oi ) = (N
i )pi(1 −

p)N−i, where p = k+
k++k− .

Second, we set

DG = diag

[
g0

Cm
, . . . ,

gN

Cm

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0

Cm
0 · · · 0 0

. . .

· · · · · · 0 gi

Cm
0 · · · · · ·
. . .

0 0 · · · · · · 0 gN

Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

to be a diagonal matrix whose diagonal entries are gi

Cm
= gL

Cm
+ i gCh

Cm
, similarly DV = diag[V0, . . . ,Vi, . . . ,VN ], then DGV =

DGDV = diag[ g0V0

Cm
, . . . ,

giVi

Cm
, . . . ,

gNVN

Cm
].

Third, the matrix N1 = DG + Tr , in which

Tr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Nk+ −k− · · · 0 0
. . .

· · · · · · −(N − i + 1)k+ (N − i)k+ + ik− −(i + 1)k− · · · · · ·
. . .

0 0 · · · · · · −k+ Nk−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

So we can see that the matrix N1 is the tensor of the (jumping) time constants that corresponds to every state of the channel
system.

Doing a simple comparison may help us to understand the expression of �〈Ui〉 more clearly. If we adopt the conventional quasi-
equilibrium assumption, i.e., the voltage is assumed to be reaching equilibrium immediately (or is called the rapid equilibrium
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approximation; see chap. 4 in [23]) between the jumps of channel states, we just have �〈Ui〉 = DGV �P. Now we take the relaxation
processes of the voltage between every jump into consideration, which results in the emergence of the term N−1

1 .
With the same procedure, we multiply both sides of the master equation (3) by v2, and integrate v over the interval [V0,VN ]

to get

∂

∂t
E (U 2(t ), O0|Oj, v0) = − 2

g0

Cm
E (U 2(t ), O0|Oj, v0) + 2

g0V0

Cm
E (U (t ), O0|Oj, v0)

− Nk+E (U 2(t ), O0|Oj, v0) + k−E (U 2(t ), O1|Oj, v0),

· · ·
∂

∂t
E (U 2(t ), Oi|Oj, v0) = − 2

gi

Cm
E (U 2(t ), Oi|Oj, v0) + 2

giVi

Cm
E (U (t ), Oi|Oj, v0)

− [(N − i)k+ + ik−]E (U 2(t ), Oi|Oj, v0) + (N − i + 1)k+E (U 2(t ), Oi−1|Oj, v0)

+ (i + 1)k−E (U 2(t ), Oi+1|Oj, v0),

· · ·
∂

∂t
E (U 2(t ), ON |Oj, v0) = − 2

gN

Cm
E (U 2(t ), ON |Oj, v0) + 2

gNVN

Cm
E (U (t ), ON |Oj, v0)

− Nk−E (U 2(t ), ON |Oj, v0) + k+E (U 2(t ), ON−1|Oj, v0). (10)

Letting t −→ +∞, we have the relationship

N2
�〈

U 2
i

〉 = 2DGV �〈Ui〉, or, �〈
U 2

i

〉 = 2N−1
2 DGV N−1

1 DGV �P. (11)

Here the vector �〈U 2
i 〉 is the marginal second-order moments of the voltage: �〈U 2

i 〉 = [. . . , E (Oi,U 2), . . . ] and N2 = 2DG + Tr .
Note that in the latter equation, �〈Ui〉 is replaced by Eq. (9).

Let �1 = [1, 1, . . . , 1], i.e., the vector whose components are all 1, and denoting T to be the transpose of a matrix. It is not
hard to verify that �1TTr = 0. Together with the relationship N2 = 2DG + Tr , we have the relationship �1TDG �P = 1

2
�1TN2 �P, which

means the second-order moment of the voltage has the form

〈U 2〉 = �1T �〈
U 2

i

〉 = 2�1TN−1
2 DGV �〈Ui〉. (12)

〈U 2〉 can be seen as the absolute voltage fluctuation related to the zero potential, so it is proportional to the total power used by
the membrane-channel system. A part of it is used to maintain the average potential, and another part is dissipated into heat.

Note that Eq. (12) represents only the voltage fluctuation caused by the stochastic gating of the channels. In another respect,
there are several other kinds of voltage noise that are contained in the realistic membrane noise, such as capacitive noise [9],
excess noise, and so on [8]. Since their mechanisms are different, the scaling laws for them are also different. For channel noise,
it decreases against the scale of the cluster, i.e., the number of the total channels in the synapse. In this paper, the only objective
is characterizing the channel noise. In the future, we plan to study how these different kinds of noises are combined to form the
integral membrane noise.

It may helpful to understand the form of Eq. (12) if we make an analogy between it with the fluctuation-dissipation theorem
[24], which tells us that, for an equilibrium system, its fluctuation and its dissipation are two faces that come from the same
source of randomness so that they must connected with each other. Now let us take a look at Eq. (12), note that 2N−1

2 is the
resistance of the system. In another respect, DGV are the fluxes of the system so that DGV �〈Ui〉 can be seen as the random force of
the system. Maybe the point can be seen more intuitively if we make a little change in the expression: Note that the conductance
of the system can be expressed in the form of a matrix R: R = �1TDG �P, so that we have the relation R〈U 2〉 = �1TN2PN−1

2 DGV �〈Ui〉,
where the matrix P = �P�1T.

IV. THE POWER SPECTRUM

Now let us take a look at how the power is dissipated from the perspective of the power spectrum. Let P(Oj, v0, t0; Oi, v1, t1)
denote the two-time-point joint probability density function, and we have

P(Oj, v0, t0; Oi, v1, t1) = P(Oi, v1, t1|Oj, v0, t0)P(Oj, v0, t0), (13)

where v0, v1 ∈ [V0,VN ], i, j = 0, 1, . . . , N.

The autocorrelation function of the membrane voltage E [U (0)U (t )] can be calculated as follows:

E [U (0)U (t )] =
N∑

i=0

N∑
j=0

∫ VN

V0

∫ VN

V0

v0v1P(Oj, v0, 0; Oi, v1, t ) dv1 dv0
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=
N∑

j=0

∫ VN

V0

v0

[∫ VN

V0

N∑
i=0

v1P(Oi, v1, t |Oj, v0)P(Oj, v0) dv1

]
dv0

=
N∑

j=0

∫ VN

V0

v0P(Oj, v0)

[
N∑

i=0

∫ VN

V0

v1P(Oi, v1, t |Oj, v0) dv1

]
dv0

=
N∑

j=0

∫ VN

V0

v0 p(Oj, v0)

[
N∑

i=0

E (U (t ), Oi|Oj, v0)

]
dv0. (14)

Doing the Laplace transformation on Eqs. (8), we have∫ +∞

0
e−λt ∂

∂t
P(O0, t |Oj, v0) dt = − Nk+

∫ +∞

0
e−λt P(O0, t |Oj, v0) dt + k−

∫ +∞

0
e−λt P(O1, t |Oj, v0) dt,

· · ·∫ +∞

0
e−λt ∂

∂t
P(Oi, t |Oj, v0) dt =−[(N − i)k+ + ik−]

∫ +∞

0
e−λt P(Oi, t |Oj, v0) dt+(N − i + 1)k+

∫ +∞

0
e−λt P(Oi−1, t |Oj, v0) dt

+ (i + 1)k−
∫ +∞

0
e−λt P(Oi+1, t |Oj, v0) dt,

· · ·∫ +∞

0
e−λt ∂

∂t
P(ON , t |Oj, v0) dt = − Nk−

∫ +∞

0
e−λt P(ON , t |Oj, v0) dt + k+

∫ +∞

0
e−λt P(ON−1, t |Oj, v0) dt . (15)

Rewriting it in form of matrix, we have the relationship A(λ)L �P(Oi, t |Oj, v0) = �P(Oi, t |Oj, v0), in which L �P(Oi, t |Oj, v0)
denotes the Laplace transform of the probability distribution �P(Oi, t |Oj, v0), and A(λ) = diag[λ, . . . , λ] + Tr .

Equivalently, we can write L �P(Oi, t |Oj, v0) = A−1(λ) �P(Oi, t |Oj, v0) for j = 0, 1, . . . , N.

Now we can calculate LEU (λ) := LE [U (t )U (0)], the Laplace transform of E [U (t )U (0)], as follows:

LEU (λ) = LE [U (t )U (0)] =
∫ +∞

0
e−λt E [U (t )U (0)] dt =

N∑
j=0

∫ VN

V0

v0P(Oj, v0)

[
N∑

i=0

∫ +∞

0
e−λt E (U (t ), Oi|Oj, v0) dt

]
dv0

=
N∑

j=0

∫ VN

V0

[
v0P(Oj, v0)

N∑
i=0

LE (U (t ), Oi|Oj, v0)

]
dv0. (16)

So one can see that all what we need to know are LE (U (t ), Oi|Oj, v0). By doing the Laplace transform of Eqs. (6), we can
obtain∫ +∞

0
e−λt ∂

∂t
E (U (t ), O0|Oj, v0) dt = − g0

Cm

∫ +∞

0
e−λt E (U (t ), O0|Oj, v0) dt

+ g0V0

Cm

∫ +∞

0
e−λt P(O0, t |Oj, v0) dt − Nk+

∫ +∞

0
e−λt E (U (t ), O0|Oj, v0) dt

+ k−
∫ +∞

0
e−λt E (U (t ), O1|Oj, v0) dt,

· · ·∫ +∞

0
e−λt ∂

∂t
E (U (t ), Oi|Oj, v0) dt = − gi

Cm

∫ +∞

0
e−λt E (U (t ), Oi|Oj, v0) dt

+ giVi

Cm

∫ +∞

0
e−λt P(Oi, t |Oj, v0) dt − [(N − i)k+ + ik−]

∫ +∞

0
e−λt E (U (t ), Oi|Oj, v0) dt + (N − i + 1)k+

∫ +∞

0
e−λt E (U (t ), Oi−1|Oj, v0) dt

+ (i + 1)k−
∫ +∞

0
e−λt E (U (t ), Oi+1|Oj, v0) dt,

· · ·
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∫ +∞

0
e−λt ∂

∂t
E (U (t ), ON |Oj, v0) dt = − gN

Cm

∫ +∞

0
e−λt E (U (t ), ON |Oj, v0) dt

+ gNVN

Cm

∫ +∞

0
e−λt P(ON , t |Oj, v0) dt − Nk−

∫ +∞

0
e−λt E (U (t ), ON |Oj, v0)) dt

+ k+
∫ +∞

0
e−λt E (U (t ), ON−1|Oj, v0) dt . (17)

Rewriting it in form of matrix, we have B(λ)L �E (Oi, t |Oj, v0) = �E (Oi, t |Oj, v0) + DGVL �P(Oi, t |Oj, v0), where B(λ) =
diag[λ, . . . , λ] + DG + Tr = A(λ) + DG.

So we have

L �E (Oi, t |Oj, v0) = B−1(λ)[ �E (Oi, t |Oj, v0) + DGVL �P(Oi, t |Oj, v0)], (18)

for j = 0, 1, . . . , N.

Substituting it into Eq. (16), we can get the expression for LE [U (t )U (0)]:

LEU (λ) = LE [U (t )U (0)] =
N∑

j=0

∫ VN

V0

[
v0P(Oj, v0)

N∑
i=0

LE (U (t ), Oi|Oj, v0)

]
dv0

= �1T
[
B−1(λ) �〈

U 2
i

〉 + B−1(λ)DGV A−1(λ) �〈Ui〉
]
. (19)

Finally, the power spectrum SU (ω) can be calculated based on the LEU (λ):

SU (ω) = LEU (iω) + LEU (−iω) = �1T{2[B−1(iω) + B−1(−iω)]N−1
2 DGV �〈Ui〉

+[B−1(iω)DGV A−1(iω) + B−1(−iω)DGV A−1(−iω)] �〈Ui〉}. (20)

The most distinctive property of the power spectrum lies in that it decreases with the law of 1/ω4. In other words, the voltage
fluctuations that are produced by the random gating of the channels have the 1/ω4 noise.

V. PROOF OF THE 1/ω4 POWER SPECTRUM

The denominator of SU (ω) is |A(iω)||A(−iω)||B(iω)||B(−iω)|, where |A| is the determinant of the matrix A. So the highest
order of ω (the leading term) in the denominator of SU (ω) is ω4(N+1). In another respect, the highest order of ω in the numerator
of SU (ω) is ω4N+2. In the following, what we need to do is to prove that the coefficient of the term ω4N+2 in the numerator is
zero.

Now let us separate SU (ω) into two parts, SU (ω) = I + II . For Part I we have

I = 2�1T [B∗(iω)|B(−iω)| + B∗(−iω)|B(iω)|]|A(iω)||A(−iω)|
|A(iω)||A(−iω)||B(iω)||B(−iω)| N−1

2 DGV �〈Ui〉, (21)

where B∗ denotes the adjoint matrix of the matrix B. Since we need only to pursue the first one or two terms about ω in these
matrices or determinants, we have |A(iω)||A(−iω)| ∼ (−1)N+1(iω)2(N+1). Here the symbol “∼” should be understood as “has
the first one or two leading terms,” and we have

|B(iω)| ∼ (iω)N+1 + (iω)N

(∑i=N
i=0 gi

Cm
+

i=N∑
i=1

i(k+ + k−)

)
(22)

and

B∗(iω) ∼ (iω)NI + (iω)N−1B1, (23)

where I denotes the identity matrix, and

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b00 k− · · · 0 0

Nk+ . . .

· · · · · · (N − i + 1)k+ bii (i + 1)k− · · · · · ·
. . .

0 0 · · · · · · k+ bNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

in which bii =
∑

j �=i g j

Cm
+ ∑

j �=(N−i) jk+ + ∑
j �=i jk−.
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So we have

[B∗(iω)|B(−iω)| + B∗(−iω)|B(−iω)|] ∼ (−1)N (iω)2N

{[∑i=N
i=0 gi

Cm
+

i=N∑
i=1

i(k+ + k−)

]
I − B1

}
= (−1)N (iω)2N [N2 + 2N (0)],

(24)

where

N (0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Nk+ −k− · · · 0 0

−Nk+ . . .

· · · · · · −(N − i + 1)k+ (N − i)k+ + ik− −(i + 1)k− · · · · · ·
. . .

0 0 · · · · · · −k+ Nk−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to see that �1TN (0) = 0. Thus, the leading term of the numerator of Part I has the form

I ∼ −2�1T(iω)4N+2DGV �〈Ui〉. (25)

For Part II we have

II = �1T B∗(iω)DGV A∗(iω)|B(−iω)||A(−iω)| + B∗(−iω)DGV A∗(−iω)|B(iω)||A(iω)|
|A(iω)||A(−iω)||B(iω)||B(−iω)| �〈Ui〉. (26)

It is very easy to check that |B(iω)||A(iω)| ∼ (iω)2(N+1), and the leading term of its numerator has the form

II ∼ 2�1T(iω)4N+2DGV �〈Ui〉. (27)

Now, adding Eqs. (25) and (27) together, we can find that the coefficient of the term ω4N+2 in the numerator of SU (ω) is zero.
So the highest order of ω in the numerator must start from ω4N , which means SU (ω) has the form of 1/ω4 noise.

VI. DISCUSSION

The first question is how to explain the physical means
of this form of the power spectral density. To answer this
question, we must make a comparison between the voltage
noise and the conductance noise.

When the scale of the channel cluster is large, i.e., N � 1,
it is necessary to find a compact form to describe the evolv-
ing of the voltage. There are several works concerning this
problem [7,16,17]. Based on the analysis listed above, here
we present our equations. Note that the channel system is
independent of the membrane voltage, and we can use the
central limit theorem on the fluctuation of the number of open
channels. In the stationary state, the mean number of open
channels is 〈O〉 = N p, and the fluctuation around it obeys the
following Ornstein-Ulenbeck process:

dξ (t ) = −(k+ + k−)ξ dt +
√

2k+k−

k+ + k− dBt , (28)

where Bt is the standard Brownian motion. Then the evolving
of the voltage can be expressed in the form

Cm
dU

dt
= −gL(U − VL ) − (N p +

√
Nξ (t ))gCh(U − VCh).

(29)

The fluctuation embedded in this equation cannot be char-
acterized theoretically. So we present numerical results of
its power spectrum. In Fig. 2 we plot three curves of the
power spectral density, which are calculated by three different
methods. The blue one is calculated by Eq. (21); the black one
is calculated by doing a Fourier transform to the sample path

of Eq. (2), and the red one is calculated by doing a Fourier
transform to the sample path of Eqs. (28)–(29). One can see
that these three curves are very consistent.

So why do the voltage fluctuations have the property of
1/ω4 noise? Actually what we should say is that the 1/ω4

noise reflects the nature of the piecewise deterministic tem-
poral evolving of the voltage. The fact is that the randomness
in this system is weaker than the conductance noise, whether
it is described by the diffusion process or by the jumping
process. The trajectory of U (t ) is smooth almost everywhere,
except the time points when the channel is opening or closing

10-5

100

P
o
w

e
r 

sp
e
c
tr

a
l 

d
e
n
si

ty

105

10-10

10-15

10-20

10-3 10-2 10-1 100 101 102 103

Frequency(ms-1)

Calculated though the sample 

path of the approximate process

Calculated through

formula

∝ 1/ω4

Calculated through the sample

path of the original process

FIG. 2. The three kinds of power spectra calculated from three
methods respectively. The values of other parameters are Cm =
0.01 pF/μm2 × 6 μm2, VL = −54.4 mV, VCh = 0 mV, k+ = 0.01,
k− = 1, and N = 30.
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so that the conductance is changed. Actually, this point can
be expressed more intuitively using Eqs. (28)–(29). We know
that white noise has the constant power spectrum. Being the
integral of white noise, the OU process ξ (t ) has the 1/ω2

power spectrum. Now that U (t ) is the integral of ξ (t ), it is
not surprising that it has the 1/ω4 power spectrum.

The power spectrum for the voltage fluctuation in the
system of a cluster of potassium channels is experimentally
measured in [17], in which the 1/ω4-type power spectrum is
also observed. Especially note that the transition kinetics of
the potassium channel is voltage-dependent; this fact makes us
further confident of our recognition that the 1/ω4-type noise
is an intrinsic property of the weaker noise embedded in the
voltage evolving.

Meanwhile the result tells us that the current response
to the conductance noise and the voltage response to the
conductance noise are essentially different. Under a clamped
potential, the ion current is directly determined by the con-
ductance. But, for the membrane voltage, in one respect, its
integrated reversal potential is changing with the conductance;
in another respect, it needs a relaxation precess to its new
reversal potential when the conductance is changed. If we do
not consider any other source of noise, the relaxation process
is smooth!

The second question is how significant is the voltage noise
among all of the membrane noise?

Since there are so many types of synapses, this question has
no definite answer. Briefly, in the dendrites, the scales of the
synapses are all small so that the conductance noise-induced
voltage fluctuation may be relatively more significant. How-
ever, the information in dendrites is propagated by the local

graded potentials [2], and the calculation is made in the soma
through temporal and spatial summation [21]. So the influence
of the membrane noise on the action potential initiation still
needs to be studied.

In the neuromuscular junction, the fact of many folds fac-
ing the presynaptic active zones means that the membrane
area is large and the receptors are distributed densely in the
tops of the folds [2], which means, in this case, the scale of the
synapse is relatively large. So we believe that the variability in
the miniature postsynaptic potentials or currents [5] is primary
caused by the randomness of the neurotransmitter exocytosis.

There still exists the question of how these different kinds
of noises are combined to form the integral membrane noise.
Are they additive or multiplicative, or do they obey other
complex laws? We should say that more subtle theoretical
models are needed to answer such kinds of questions.

In summary, we have constructed a mathematical model
to describe the membrane voltage fluctuation driven by a
(maybe small) cluster of ligand-gated channels. The ran-
dom gating of the channels produces the conductance noise
in one respect, and the fluctuations in the reversal poten-
tial in another respect. The voltage fluctuation is determined
by the combination of these two parts. We prove theoret-
ically that the power spectrum of the voltage fluctuation
has the 1/ω4 form, which is first observed experimen-
tally for the potassium channels. The results in this paper
may help us to separate channel noise from other noise
such as Johnson noise or the noise in neurotransmitter re-
leasing. In the next step, we may study the responses of
the membrane-channel system to the pulsative stimuli of
neurotransmitters.
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