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Persistent individual bias in a voter model with quenched disorder
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Many theoretical studies of the voter model (or variations thereupon) involve order parameters that are
population-averaged. While enlightening, such quantities may obscure important statistical features that are only
apparent on the level of the individual. In this work, we ask which factors contribute to a single voter maintaining
a long-term statistical bias for one opinion over the other in the face of social influence. To this end, a modified
version of the network voter model is proposed, which also incorporates quenched disorder in the interaction
strengths between individuals and the possibility of antagonistic relationships. We find that a sparse interaction
network and heterogeneity in interaction strengths give rise to the possibility of arbitrarily long-lived individual
biases, even when there is no population-averaged bias for one opinion over the other. This is demonstrated
by calculating the eigenvalue spectrum of the weighted network Laplacian using the theory of sparse random
matrices.
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I. INTRODUCTION

The celebrated voter model [1,2] offers a simple mathemat-
ical representation of opinion propagation. The parsimonious
nature of the voter model provides a neutral canvas to which
one can introduce more realistic features of social interactions.
By introducing additional aspects to the original voter model,
one can then observe their influence on idea propagation and
on the possibility of consensus. Many such features have been
studied including network architecture [3–5], the presence of
zealots [6] or contrarians [7,8], spontaneous change of opinion
(or “noise”) [9–11], and aging [12]. The efficacy of the voter
model in replicating real-world sociological data has also been
investigated [13,14].

Being a binary state stochastic system, the voter model
has a strong analogy with Ising-type spin systems and is
thus amenable to similar methods of statistical analysis. The
universality class [15], the coarsening process [3], statistically
conserved quantities [16,17], and finite-size scaling are all
well-understood [18,19].

Following the analogy with magnetic spin systems, a
natural extension to the voter model is the introduction of
quenched disorder. Quenched randomness is ubiquitous in
models of spin glasses where it is employed to model the
disordered couplings between spins [20–22]. In the context of
the voter model, the effect of quenched disorder in the biases
or imperturbabilities of individual voters (rather than the links
between individuals) has been studied [23–25]. Selection rates
weighted by the degrees of the nodes [26,27] have also been
considered. Conversely, the effect of quenched disorder in link
strength and the spin-glass transition have been studied in both
the majority vote [28,29] and Glauber-Ising models [30,31].

In this work, we investigate the effect that quenched disor-
der, in the form of a weighted social network, has on the voter
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model. The weights of the social links are drawn from a fixed
distribution, independently of the degrees of the nodes. We
also allow for antagonistic social links, such that individuals
are influenced to take the opposite view to some neighbors
[32,33]. The weights of the social links therefore represent the
degree of mutual respect (or disrespect if the link is antagonis-
tic) that pairs of individuals have for one another’s opinion.

The effect of a heterogeneously weighted interaction net-
work is most evident in the biases of individual voters.
Because of this, we focus primarily on the ensemble-averaged
opinions of individuals rather than the population-averaged
opinion, in contrast to many studies involving the voter model.
A microscopic view allows us to distinguish between popula-
tions where individuals switch readily from one opinion to the
other and more polarised populations where individuals are
inclined to maintain their opinion.

It is deduced that the lifetimes of the biases of individual
voters are characterized by the eigenvalues of the Laplacian
matrix of the weighted social network. Laplacian matrices
were also studied recently in the context of the Taylor model
[34]. Here, we make use of techniques which were originally
developed for the study of dilute spin systems to evaluate the
spectrum of eigenvalues of the network Laplacian. Using the
effective-medium and single-defect approximations [35,36],
we are able to produce closed-form expressions for the eigen-
value densities of a general class of sparse random matrices.
This facilitates the systematic study of how the persistence
of individual bias is affected by the various aspects of the
model.

We show that a sparse interaction network and a high
degree of heterogeneity in the interaction strengths between
individuals can give rise to long-lived biases for individual
voters. We also demonstrate that a larger population of in-
dividuals increases the possibility of persistent bias. In the
thermodynamic limit, it is possible to have arbitrarily long-
lived individual biases even in circumstances where consensus
is not reached.
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The structure of the remainder of the manuscript is as
follows: In Sec. II, we define the modified voter model
with quenched disorder and antagonistic interactions. Then
in Sec. III, we derive dynamical equations for the ensemble-
averaged single-site biases. We also demonstrate that the
relaxational dynamics of these quantities is dictated by the
network Laplacian. Next, to provide a reference point for later
results, we then take the simple example of a fully connected,
homogeneously weighted network in Sec. IV. In Sec. V, we
then give an overview of the analytical tools from the theory
of sparse random matrices which we use to evaluate the eigen-
value spectrum of the interaction network Laplacian. In Secs.
VI and VII we then examine how the structure and size of
the interaction network and the heterogeneity of the interac-
tion strengths each affect the persistence of individual biases.
Finally, we discuss the results and methods and conclude in
Sec. VIII.

II. VOTER MODEL WITH QUENCHED DISORDER

In the classic network voter model [4,13,37], “voters” in a
population are modeled as nodes on a network who each hold
a binary opinion. Individual voters are selected at a constant
rate to copy one of their neighbors. The individual to be copied
is selected from among the neighbors of the primary voter
with equal probability. If the neighbor and the primary voter
have differing opinions, then the primary voter is “persuaded”
by the neighbor and changes its opinion.

We consider a setup similar to this but with some modifi-
cations. More precisely, we imagine a set of N individuals (or
voters) indexed by i, each of which has an opinion reflected
by a binary state variable si ∈ {0, 1}. Each individual interacts
with a set of neighbors that may influence it to change its
opinion. Neighbors may be connected by “reinforcing” or
“antagonistic” links. A link (rather than a node) is chosen
at a rate proportional to its weight. If a “reinforcing” link is
chosen, then one of the adjacent nodes copies the other. If an
“antagonistic” link is chosen, then one node takes the opposite
opinion to the other.

The key differences between the model considered here
and the classic network voter model are (a) the link-centred
update procedure, (b) the weighted interaction network, and
(c) the possibility of antagonistic links. That is, the classic
voter model and the model considered here are equivalent on a
homogeneous complete graph with no antagonistic links. The
link-centred update procedure was chosen in part for analyt-
ical convenience. We verify that our results are not changed
qualitatively by using an alternative node-centred formulation
in Appendix B.

The aforementioned features of the model are encapsulated
by the rates at which individuals adopt the opposite opinion.
The rates at which a voter i with opinion 0 switches to 1 (r+

i )
and 1 to 0 (r−

i ) are given by

r+
i =

∑
k

J (r)
ik sk +

∑
k

J (a)
ik (1 − sk ),

r−
i =

∑
k

J (r)
ik (1 − sk ) +

∑
k

J (a)
ik sk, (1)

where k sums over all nodes in the network, J (r)
ik are the

coupling constants for pairs of voters which have a reinforc-
ing link and J (a)

ik are the coupling constants for voters which
have an antagonistic link. Defining the sub-network adjacency
matrix for reinforcing links Â, we have

J (r)
i j = Ai jJi j, J (a)

i j = (1 − Ai j ) Ji j . (2)

The matrices Â and Ĵ are constrained to be symmetric. The
elements of Â are each selected to be 1 with probability 1 − f
(a reinforcing link) and 0 with probability f (an antagonistic
link).

The constants Ji j are drawn from a distribution such that
they are guaranteed to be nonnegative. This ensures the pos-
itivity of the rates in Eq. (1). For analytical simplicity, we
imagine that voters are connected on an Erdös-Rényi graph
[38]. That is, we choose Ji j independently (with the condition
Ji j = Jji) from a probability distribution of the form

P(Ji j ) =
(

1 − p

N

)
δ(Ji j ) + p

N
π (Ji j ), (3)

where π (Ji j ) is a probability distribution to be specified [sat-
isfying π (Ji j ) = 0 for Ji j < 0], δ(·) is the Dirac δ function
and p is the typical number of social connections per voter.
One notes that by setting p = N with the choices π (Ji j ) =
δ(Ji j − 1/N ) and f = 0, we recover the rates associated with
the classic all-to-all connected voter model from Eqs. (1).

III. MICROSCOPIC RELAXATIONAL DYNAMICS

Given the model setup, we now derive dynamical equations
for the biases of individual voters. Consider the probability
P({si}, t ) of observing a particular opinion configuration {si}
at time t . This probability distribution obeys the following
master equation [24]:

dP({si}, t )

dt
=

∑
j

(Ej − 1)[s jr
−
j P({si}, t )]

+
∑

j

(
E−1

j − 1
)
[(1 − s j )r

+
j P({si}, t )], (4)

where the step operators take their usual meaning

Ej f (s1, . . . , s j, . . . , sN ) = f (s1, . . . , s j + 1, . . . , sN ),

E−1
j f (s1, . . . , s j, . . . , sN ) = f (s1, . . . , s j − 1, . . . , sN ). (5)

One can thus deduce the following evolution equations for the
first moments [24],

d〈si〉
dt

= 〈r+
i 〉 − 〈(r+

i + r−
i )si〉, (6)

where the angular brackets indicate an ensemble average over
the intrinsic noise of the system for a single starting condition
{si(0)} and a fixed interaction network. Defining the single-
site bias mi(t ) = 2〈si(t )〉 − 1 for each site i, one obtains the
following set of coupled ODEs from Eqs. (1) and (6):

dmi

dt
=

∑
k

(2Aik − 1)Jikmk − mi

∑
k

Jik . (7)

Conveniently, Eq. (7) doesn’t depend on any higher moments
of si(t ). For f = 0, Eq. (7) reduces to a network diffusion
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equation, which has previously been derived for the standard
network voter model [13].

The set {mi(t )} are the quantities central to our consider-
ation. They can be thought of as the statistical “biases” that
individuals have for one opinion over the other. An alternative
set of quantities {Ci(t, 0)}, the correlations that each opinion
has with its starting value, is discussed in Appendix A.

Due to its linearity, one can rewrite Eq. (7) in terms of a
single matrix M̂ such that ṁi = ∑

j Mi jm j , where

Mi j = (2Ai j − 1)Ji j − δi j

∑
k

Jik, (8)

and where δi j is the Kronecker δ. Let v(μ) be the eigenvector of
M̂ with associated eigenvalue μ. If we decompose the initial
single-site biases mi(0) in terms of the eigen-basis of M̂ so
that mi(0) = ∑

μ c(μ)v
(μ)
i , then one finds

mi(t ) =
∑

μ

c(μ)v
(μ)
i eμt . (9)

Thus, we see that the eigenvalues μ of M̂ govern the persis-
tence times of the single site biases mi.

Since {mi(t )} are bounded such that −1 � mi � 1, M̂ can-
not possibly have any positive eigenvalues. However, it can
have eigenvalues equal to zero and arbitrarily small negative
eigenvalues. The existence of such eigenvalues would imply
a long-lasting bias for voters. Using replica techniques to
deduce the eigenvalue spectra of matrices of the form M̂, we
are able to determine the factors that contribute to long-lasting
biases.

IV. SPECIAL CASE: COMPLETE GRAPH

For the sake of developing some intuition and to contrast
against later results, we discuss the behavior of the model
when the social network is a complete graph. We first con-
sider the dynamics of the quantities {mi} when there are no
antagonistic links ( f = 0) and then discuss the effect of intro-
ducing such links ( f > 0). For now, we restrict ourselves to
a homogeneous fully connected network such that p = N and
π (Ji j ) = δ(Ji j − 1/N ).

A. No antagonistic links ( f = 0)

We first examine the case of the classic voter model by
setting f = 0, π (Ji j ) = δ(Ji j − 1/N ) and p = N . The matrix
M̂ in this case always has an eigenvector v(0) = [1, 1, · · · , 1]
with corresponding eigenvalue μ = 0. The remaining N − 1
eigenvectors v(μ) are all orthogonal to this (following from the
symmetry of M̂) and have degenerate eigenvalues at μ = −1.

As t → ∞, all components with nonzero eigenvalues van-
ish and we are left with mi(∞) = c(0)v

(0)
i = c(0) [see Eq. (9)].

Since all other eigenvectors are orthogonal to v(0), we must
have that c(0) = N−1 ∑

i mi(0). That is, in the long-run, each
single-site bias tends to the population-averaged initial bias.

This is connected to the fact that, in the classic voter
model, consensus is always eventually achieved for finite
N . Consensus is achieved at

∑
i si(∞) = N with proba-

bility N−1 ∑
si(0) and at

∑
i si(∞) = 0 with probability

N−1 ∑
[1 − si(0)]. So, because consensus is always reached

for finite N , there is always a persistent single-site bias.

B. Effect of antagonistic links ( f > 0)

Let us now consider the case with antagonistic connec-
tions where f > 0 and π (Ji j ) = δ(Ji j − 1/N ) and p = N . We
make the assumption (now and in the rest of the work) that
pN f � 1, so that there is always an abundance of antagonistic
connections in the interaction network. Since any two voters
connected by an antagonistic connection will be influenced to
take opposite opinions, a uniform set of opinions (consensus)
is no longer an absorbing state.

Considering again the microscopic dynamics of the indi-
vidual biases mi(t ), we see that (following heuristic arguments
along the lines of Ref. [39]) v(0) remains an eigenvector of the
matrix M̂ for large N , but now the corresponding eigenvalue
is given by μ = −2 f . The remaining eigenvalues are again
clustered around μ = −1 [40]. So in this case, each voter
eventually arrives at a bias of mi = 0. This remains true even
if the system is initiated in the consensus state. That is, rather
like the case with contrarian voters [7,8], we see that a stable
consensus can no longer be reached and the initial condition
no longer has an influence over the long-term dynamics. In-
stead, opinions continue to flip in a frustrated dynamical state.
This effect is demonstrated in Fig. 1(a).

Despite this, we demonstrate in the following sections that
the combination of a sparse interaction network and varia-
tion in the interaction strengths Ji j can lead to a long-lasting
bias for individual voters even when f > 0. This means that
although consensus is not achieved, individual voters may
still retain their biases for an arbitrarily long time. This is
exemplified in Fig. 1(b).

V. APPROXIMATING THE EIGENVALUE
SPECTRUM OF THE MATRIX M̂

To characterize the lifetimes of the individual biases mi

under more general conditions, we must develop a broader
understanding of the eigenvalue spectrum of M̂.

The random matrix M̂ defined in Eq. (8) has a finite average
number of nonzero entries per row/column p. This number is
taken to be an independent parameter from the total number
of rows/columns N . In particular, when the limit N → ∞ is
taken (a useful consideration when approximating the eigen-
value spectrum), p remains finite. Such random matrices are
known as sparse [41,42]. The sparse nature of M̂, combined
with the dependence of its diagonal entries on other elements,
means that its eigenvalue spectrum deviates substantially from
the prototypical Wigner semicircle law [40].

A number of analytical methods exist for the purpose of
evaluating the eigenvalue spectra of sparse random matri-
ces [35,36,41–43]. Here we generalise the effective-medium
(EMA) and single-defect (SDA) approximations, which have
so far largely only been used to evaluate the eigenvalue spec-
tra of random matrices with nonzero elements with fixed
magnitude [35,36,44]. The advantage of these approximation
schemes over others is that they yield closed-form expressions
for the eigenvalue density, which we can then use to efficiently
estimate the expected leading eigenvalue. Importantly, we
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FIG. 1. Results of individual-based simulations of the dynamics determined by the rates in Eq. (1) averaged over 20 000 trials for the same
starting conditions. We plot both the individual biases mi(t ) (thin coloured lines) and the mode of the distribution of the macroscopic order
parameter P(t ) = 2N−1

∑
i si(t ) − 1 (thick black line). The presence of antagonistic links ( f > 0) means that consensus (P = ±1) cannot

occur and P(t ) instead fluctuates around a value of 0 indefinitely. In panel (a), each individual is equally likely to adopt either opinion after an
initial transient period. In panel (b), individuals maintain a long-lived bias for one opinion over the other. In both panels, we use N = 100 and
f = 0.5. In panel (a), π (J ) is as defined in Eq. (12) so that each nonzero off-diagonal element of M̂ has the same magnitude and p = 100. In
panel (b), π (J ) is gamma distributed [see Eq. (22)], with p = 10, m = 1 and s2 = 2.

obtain expressions which hold in the thermodynamic limit
N → ∞.

A more detailed overview of the origin of the EMA and
the SDA is given in Appendix C. In summary, the EMA
approximation ρEMA(μ) to the eigenvalue density of M̂ is
given by (see Appendix C 2)

ρEMA(μ) = − 1

π
Im σ (μ + iε),

μ(σ ) = 1

σ
− p

2σ
− p

4σ 2

∫
dJ

π (J )
1

2σ
+ J

, (10)

where ε is a small, real regularizer which is introduced to
avoid divergences [41,45]. One solves the second of Eqs. (10)
for σ (μ) and substitutes this into the first equation to obtain
the EMA spectrum. To the Author’s knowledge, this result has
not been written explicitly in this form in previous literature.
Conveniently, we see that the object on the right-hand side of
this equation is related to the Stieltjes transform [46] of the
probability distribution π (J ). This observation allows one to
exploit tables of integral transforms when attempting to solve
for σ (μ).

Although the EMA replicates the main ‘bulk’ of the eigen-
value distribution fairly well, it does a poor job of recovering
the tails of the distribution, which are associated with local-
ization effects [36,47]. For this reason, it is beneficial to go
one level of approximation further.

As is derived in Appendix C 3, the more accurate but less
analytically manageable SDA is given by

ρSDA(μ) =
∞∑

k=0

e−p pk

k!

(
− 1

π

)
Im

{∫ k∏
r=1

[dJrπ (Jr )]

× 1

μ + iε + ∑k
r=1[1/Jr + σ (μ + iε)]−1

}
,

(11)

where σ (μ) is again given by inverting the second of
Eqs. (10). Although this expression is analytically unwieldy in
its full generality, it can be used to give important insight into
the eigenvalue spectrum and can be simplified significantly in
certain special cases, as we shall demonstrate. Examples com-
paring the EMA and SDA to numerically evaluated eigenvalue
spectra are given in Figs. 2 and 5.

VI. THE EFFECT OF A SPARSE INTERACTION
NETWORK ON INDIVIDUAL BIAS

Having derived general expressions for the eigenvalue
spectrum of the matrix central to our problem M̂, we are
now able to characterize the relaxational dynamics in some
enlightening special cases. We first examine the simple case
where

π (Ji j ) = δ

(
Ji j − 1

p

)
. (12)

Studying this special case allows us to isolate the effects of a
sparse random graph on the relaxational dynamics. We study
the effect of a variation in link strength later in Sec. VII.
One notes that by choosing Ai j = 1 for all pairs (i, j) in
combination with Eq. (12), the matrix M̂ defined in Eq. (8)
becomes the Laplacian of the Erdös-Rényi random graph
[36,48].

Due to the variation in the number of nonzero entries from
row to row, the eigenvalues of M̂ are no longer as simply
distributed as in the all-to-all case discussed in Sec. IV B. In-
stead of the majority of eigenvalues clustering closely around
μ = −1, the eigenvalues become more broadly distributed as
p is reduced.

In the following subsections, we present analytical ex-
pressions for the eigenvalue spectrum of M̂ in this special
case. We then go on to use these results to deduce the
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FIG. 2. (a) Comparison of the EMA [dashed black line—see Eq. (13)] and the SDA [solid red line—see Eq. (15)] with regularizer ε =
0.003 to the results of numerical diagonalization. Using a nonzero value of ε smears out the Dirac-δ peaks in the SDA, making them visible for
the sake of comparison to numerical results. The dot-dashed vertical black line indicates the heuristic prediction for the δ-peak of magnitude
1/N which arises due to the presence of antagonistic links at μ f ≈ −2 f (see Sec. VI A). (b) The integrated eigenvalue density, verifying the
weights and positions of the peaks outside the bulk of the spectrum [see Eqs. (16) and (17)]. The regularizer ε is now set to zero for the
red theory line. The dashed vertical line indicates the position of the edge of the bulk region of the spectrum, as predicted by the EMA [see
Eq. (14)]. In both panels, π (Ji j ) = δ(Ji j − 1/p), f = 0.1, p = 30 and N = 1000. The blue crosses are the numerical results, averaged over 32
realizations of the matrix entries.

behavior of the expected leading eigenvalue as a function of p
and N .

A. Outlier eigenvalue due to antagonistic links

On the macroscopic level, the presence of antagonistic
links ( f > 0) prevents the system from reaching an absorbing
state, as discussed in Sec. IV B. The dynamics continue indef-
initely in a frustrated manner (see Fig. 1). However, the bulk
of the eigenvalue spectrum of M̂ is actually independent of the
fraction of antagonistic links f . This is shown in Appendix C 2
and is evident from Eq. (10). That is, the bulk of the eigenvalue
spectrum of M̂ is equivalent to that of the Laplacian of an
Erdös-Rényi random graph [36] for all values of f when
Eq. (12) is satisfied.

There is, however, a single additional eigenvalue which is
missed by both the EMA and SDA (as discussed in Sec. IV)
at approximately μ f = −2 f (see Fig. 2). The only effect of
varying f on the microscopic dynamics is the location of
this single eigenvalue [35]. So, when f � 0.5, this additional
outlier is not relevant to the persistence of bias.

B. Bulk eigenvalue density and Lifshitz tail
of the Erdös-Rényi graph Laplacian

The eigenvalue spectrum of the Laplacian of an Erdös-
Rényi graph was studied using the SDA in [36]. However,
only numerical results were presented. Here, we present
closed-form expressions for the EMA and SDA in this
special case.

The EMA for the eigenvalue density (see Appendix C 2) is
given by

ρEMA(μ) = −
√

−[p(1 + μ) − 2]2 − 8μp

4πμ
. (13)

According to this expression, the bounds of the eigenvalue
spectrum are given by

μ± = −
(

1 ±
√

2

p

)2

. (14)

The SDA can be used to improve upon the accuracy of
Eq. (13) and to identify the locations of outlier eigenvalues
which are missed by the EMA. The SDA in this case is
given by

σ (μ) = 2 − (μ + 1)p −
√

8μp + (p(μ + 1) − 2)2

4μ
,

ρSDA(μ) =
∞∑

k=0

e−p pk

k!

(
− 1

π

)
Im

[
1

μ + iε + k
p+σ (μ+iε)

]
,

(15)

where again ε is a small real number. According to Eq. (15),
outside the region where the EMA eigenvalue density is
nonzero, one finds Dirac-δ peaks at locations which satisfy
μk[p + σ (μk )] = k for k = 0, 1, 2, · · · . Or, more explicitly,

μk = −p − 3kp + p2 − p
√

(k − 1)2 + (p − 1)2 − 2kp − 1

2p2
.

(16)

We note the negative sign of the square root in the above
expression ensures that these eigenvalues are negative. The
weights of these δ peaks are given by

wk = e−p pk

k!

[
1 − μ2

kσ
′(μk )

k2

]−1

, (17)

where σ ′(μ) = dσ/dμ and σ (μ) is given by the first of
Eqs. (15).

The EMA and the SDA predictions for the eigen-
value spectrum are compared to the results of numerical
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diagonalization in Fig. 2(a). Indeed, the SDA provides a more
accurate approximation of the bulk region than the EMA. The
weights of the δ peaks predicted by the SDA are verified
in Fig. 2(b) using the integrated eigenvalue density C(μ) =∫ 0
μ

dλ ρ(λ).
One notes that in the numerical results the δ peaks are

“smeared” across a range of values of μ, creating a smooth
“Lifshitz tail” [47,49–52]. The integrated eigenvalue density
therefore varies continuously with μ for the numerical re-
sults, in contrast to the theoretical prediction which jumps
discontinuously. Despite this smearing effect, however, the
magnitudes of the peaks are well-predicted by the SDA [see
Eq. (17)]. The smearing effect appears not to be alleviated by
using a larger matrix size N .

C. Expected leading eigenvalue: Dependence on p and N

The typical relaxation time of the system is characterized
by the leading (rightmost) eigenvalue of the matrix M̂. Having
verified the EMA and SDA, we now use these approximations
to evaluate the expected leading eigenvalue (ELE) and exam-
ine its dependence on the parameters p and N .

There exists a broad literature on the subject of leading
eigenvalues of random matrices and for adjacency matrices
in particular (see, for example, Refs. [53–55]). Because the
leading eigenvalues cluster in a series of Dirac-δ peaks in our
case, it is possible for us to estimate the ELE analytically for
large N using the SDA in a relatively simple fashion.

For the present discussion, we imagine that f is suffi-
ciently large so that the single eigenvalue associated with a
nonzero f (μ f ) is such that μ f < μ− [see Eq. (14)]. We
also approximate each eigenvalue of the random matrix as
being drawn independently from the distribution ρSDA(μ) [see
Eq. (15)].

The probability that a particular eigenvalue of M̂ takes the
value μk is wk [given by Eq. (17)]. So the probability that
none of the eigenvalues of M̂ take the value μ1 is q1 = (1 −
w1)N . This means that the probability that μ1 is the largest
eigenvalue is given by

p1 = 1 − (1 − w1)N . (18)

The probability that the largest eigenvalue is μ2 is then p2 =
q1[1 − (1 − w2)N ]. The pattern continues so that the proba-
bility that μk is the largest eigenvalue is

pk = [1 − (1 − wk )N ]
k−1∏
l=1

(1 − wl )
N . (19)

We make the further approximation that if none of the Dirac-δ
peaks attract any eigenvalues, then the leading eigenvalue is
given by the edge of the bulk of the eigenvalue spectrum as
predicted by the EMA [see Eq. (14)]. That is, the probability
that the largest eigenvalue is μ− is given by

p− =
kmax∏
l=1

(1 − wl )
N , (20)

where kmax is the number of Dirac-δ peaks with μk > μ−.
One can verify p− + ∑kmax

l=1 pl = 1. The expected leading

FIG. 3. The expected leading eigenvalue of M̂ for the case with
π (J ) = δ(J − 1/p) as a function of the total number of voters N .
Here p = 10 and f = 0.5 and the numerical results were averaged
over 32 trials. The horizontal dot-dashed magenta line at the top of
the figure is the position of the largest δ peak at μ1 [see Eq. (16)].
The horizontal dashed black line at the bottom of the figure is the
edge of the bulk of the eigenvalue spectrum μ− [see Eq. (14)]. The
solid red curve is the theoretical prediction in Eq. (21).

eigenvalue is then given by

〈μmax〉M = p−μ− +
kmax∑
k=1

pkμk, (21)

where the angular brackets 〈·〉M represent an average over
realizations of the random matrix M̂.

From Eq. (21), we can extract the N-dependence of the
expected leading eigenvalue. This is shown in Fig. 3 along
with the results of numerical diagonalization. We note that
the ELE deviates more significantly from the edge of the
EMA bulk spectrum the more N is increased. It thus becomes
more necessary to take into account the tails of the eigen-
value spectrum for large N . In the limit N → ∞, it is almost
certain that one eigenvalue will occupy the value μ1, so we
see 〈μmax〉M → μ1 as N → ∞. Since the EMA and SDA are
based on a saddle-point approximation, which assumes large
N , we should not expect our results to hold for smaller values
of N .

We also demonstrate the behavior of the ELE as a function
of p in Fig. 4. The SDA captures the behavior well for mod-
erate to large values of p. We see that as p is increased, the
eigenvalue spectrum becomes more compact. For p → ∞, the
distribution tends towards a Dirac-δ peak centered on μ = −1
(as discussed in Sec. IV).

However, the approximations fail to capture the precise
behavior for small p. This is because the Gaussian approx-
imation involved in the EMA (see Appendix C 2) is only
accurate for large p [35]. Despite this, the prediction of the
ELE approaching μ = 0 for p = 2 [see Eq. (14)] may have
some significance. For regular lattices with dimension d � 2,
consensus is always reached in the classic voter model even
in the thermodynamic limit [13]. With the presence of an-
tagonistic links, the ELE approaching μ = 0 would signify
persistently disordered biases instead.

As we discuss in Sec. VII, it is possible for this threshold
value of p to increase from 2 when variation in link strength
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FIG. 4. The expected leading eigenvalue of M̂ for the case with
π (J ) = δ(J − 1/p) as a function of the typical number of connec-
tions per voter p. Here N = 1000 and f = 0.5 and the numerical
results were averaged over 32 trials. The three theory lines are as
described in the caption of Fig. 3.

is introduced, as is shown in Fig. 6. We note that the predicted
threshold value is thus always above the percolation threshold
for Erdös-Rényi graphs at p = 1 [35,56].

VII. THE EFFECT OF DISTRIBUTED INTERACTION
STRENGTH ON INDIVIDUAL BIAS

Having examined the simple case where all nonzero ele-
ments of Ji j take the same value, we now consider an example
where the magnitudes of the nonzero elements may take any
value over the positive real axis. Consider the gamma distri-
bution

π (J ) = 1

�(k)θ k
Jk−1e− J

θ . (22)

We introduce the parameters m and s2 via

〈J〉π = m/p, 〈(J − 〈J〉π )2〉π = s2/p, (23)

where 〈·〉π denotes an average with respect to the distri-
bution π (J ). The choice of scaling with p in Eq. (23) is
common and ensures sensible behavior for large p [45,57].
Noting that for the gamma distribution we have 〈J〉π = kθ

and 〈(J − 〈J〉π )2〉π = kθ2, Eq. (23) requires that k = m2

s2 p and

θ = s2

m .

A. Bulk of the eigenvalue spectrum

To evaluate the EMA of the eigenvalue spectrum of the
matrix M̂ according to Eqs. (10), the Stieljes transform of the
distribution π (J ) is required. The Stieltjes transform of the
gamma distribution in Eq. (22) is known and is given by [46]∫

dx
π (x)

x + y
= yk−1

θ k
e

y
θ �

(
1 − k,

y

θ

)
. (24)

We thus arrive at a closed-form expression for EMA, in this
case,

μ(σ ) = 1

σ
− p

2σ
+ p(2σ )1−k

4σ 2θ k
exp

(
1

2θσ

)
�

(
1 − k,

1

2θσ

)
.

(25)

Eq. (25) can be solved to yield σ (μ), which can in turn be
used to yield the eigenvalue density via the first of Eqs. (10).
The results of doing so are compared with computationally
generated eigenvalue spectra in Fig. 5.

B. Expected leading eigenvalue: Dependence on s2

Although one can obtain a reasonable approximation of the
bulk of the eigenvalue spectrum using the EMA, one cannot
obtain the SDA in the same way as in Sec. VI. This is because
the multidimensional integrals in Eq. (11) cannot be evaluated
in a systematic fashion. However, the nature of these integrals
tells us that no isolated peaks are predicted outside the bulk
region of the spectrum, in contrast to the example in Sec. VI.
Instead, there are smooth tails.

Despite not being able to evaluate the SDA, we can still
approximate the ELE using the EMA [see Fig. 6(a)]. The
upper bound of the EMA works best as an approximation to
the ELE when N is low, but not so low as to invalidate the
saddle-point approximation. If N were to be increased from
the value used in Fig. 6(a), then the ELE would move further
into the tail of the distribution and thus closer to zero, as is
exemplified in Fig. 3. The upper bound of the EMA therefore
acts as an approximate lower bound for the ELE.

FIG. 5. Verification of the EMA when the nonzero values of Ji j are gamma-distributed for various values of the scaled variance s2. In
panel (a) s2 = 0.01, in panel (b) s2 = 0.1, and in panel (c) s2 = 1. As the variance of the nonzero values of Ji j is increased and the mean is
held constant, the right-hand tail of the eigenvalue distribution begins to extend towards zero. The blue crosses are the results of numerical
diagonalization for m = 1, N = 100, f = 0.5 and p = 10 averaged over 1000 realizations of the matrix entries. The dashed black line is the
EMA prediction from Eq. (25).
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FIG. 6. (a) Expected leading eigenvalue as a function of s2 with p = 30 and m = 1. The critical value at which the EMA boundary hits zero
for this value of p and m is s2 ≈ 0.72. The remaining system parameters in both figures are f = 0.5 and N = 100. The blue crosses indicate
the results of numerical diagonalization averaged over 64 trials. The dashed line is the upper bound of the EMA prediction. (b) The upper
boundary of the EMA eigenvalue spectrum as a function of the system parameters s2 and p for m = 1. The dashed line is the set of points at
which the boundary of the EMA eigenvalue spectrum first hits μ = 0.

We see in Fig. 6(a) that increasing the variance of the
coupling constants between voters (whilst holding the mean
constant) can bring the largest eigenvalue arbitrarily close to
zero. In fact, there is a value of s2 where the boundary of the
EMA spectrum hits μ = 0.

The upper boundary of the EMA spectrum is plotted as
a function of p and s2 in Fig. 6(b). We see that either in-
creasing s2 or decreasing p (see also Fig. 4) broadens the bulk
region of the eigenvalue spectrum and therefore increases the
ELE. Consequently, the critical value of s2 at which the EMA
boundary hits μ = 0 increases as p is increased. Figure 6(b)
therefore indicates that a combination of a sparse interaction
network and a high degree of variation in interaction strengths
can lead to persistent bias.

VIII. DISCUSSION AND CONCLUSION

We have studied a natural variation of the classic net-
work voter model that introduces quenched disorder in
the interactions between individuals. The consequences of
the introduction of such disorder were seen to be most evident
in the individuals’ biases for one opinion over the other, mi.
Crucially, we observed that the lifetimes of these biases were
governed by the eigenvalues of the matrix M̂ [see Eq. (9)].
Thus, we were able to deduce the factors that contributed to
the persistence of individual bias by analyzing the eigenvalues
of M̂ using the theory of sparse random matrices.

In the classic, fully connected voter model without
quenched disorder (p = N , f = 0 and s2 = 0), consensus is
always eventually reached for finite system sizes N [13]. In
our analysis, this meant that M̂ had an eigenvalue μ = 0 with
corresponding eigenvector v(0) = [1, 1, · · · , 1] and all other
eigenvalues were negative. With the introduction of antagonis-
tic interactions between voters f > 0, we found that this zero
eigenvalue became μ f = −2 f . As a result, each individual
bias eventually decayed to zero and consensus was no longer
achievable [as demonstrated in Fig. 1(a)].

We then went on to show (see Fig. 6) that the combination
of a sparse interaction network (low p) and a variation in
the interaction strengths between individuals (high s2) could
broaden the bulk of the eigenvalue distribution of the matrix
M̂, but leave the outlier at μ f = −2 f unchanged. With suffi-
cient disorder, the bulk of the eigenvalue spectrum of M̂ could
extend to zero. Thus, the leading eigenvalue of the system,
which no longer corresponded to the consensus state, could
tend towards zero in the thermodynamic limit N → ∞. This
indicated that individual biases could persist for arbitrarily
long times, even when consensus was not reached.

The kind of persistence of microscopic order in the face of
macroscopic disorder observed here is reminiscent of the spin
glass phase in magnetic materials. In fact, the spin-glass order
parameter originally proposed by Edwards and Anderson [21]
(which was later refined [59]) can be seen to be nonzero
when there is an eigenvalue of M̂ which approaches zero
[see Appendix A]. Although we cannot identify precisely the
critical point at which the leading eigenvalue tends to 0 in
thermodynamic limit, due to the nature of the approximations
used in this work, we can at least say that the persistent
bias in the model presented here is akin to the behavior of
a spin-glass.

To proceed analytically, it was important to choose an
appropriate method to approximate the eigenvalue distribution
of the sparse random matrix M̂. The effective-medium and
single-defect approximations were chosen here due to their
ability to provide convenient closed-form expressions. One
downside to this approach is that the results are not exact (al-
though they can be very accurate) and the approximations are
not necessarily well-controlled; one cannot precisely predict
when they will fail and to what degree.

We could instead have used the series expansion technique
developed by Rodgers and Bray [43,48], the cavity approach
of Rogers et al. [58] or the stochastic population dynamics
approach of Kühn [41]. While the former method provides
a more rigorous scheme of approximation and the latter two
provide a near-perfect replication of the spectrum, none of
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FIG. 7. Reproduction of Figs. 3, 4, and 6(a) [panels (a), (b), and (c), respectively] using matrices of the form Eq. (B1) instead of Eq. (8),
with all other model parameters being equal.

these approaches offer the closed-form expressions that we
sought. It was such expressions that allowed the efficient eval-
uation of the leading eigenvalue as a function of the various
system parameters.

An interesting avenue for future work would be to study
persistent bias on different types of complex network (such as
scale-free [60] or small-world networks [61,62]) or perhaps to
make analytical headway with the more challenging model
discussed in Appendix B. Work investigating the effect of
quenched disorder on the macroscopic dynamics in the voter
model in more detail is under way.
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APPENDIX A: RELATIONSHIP BETWEEN EIGENVALUES
AND LONG-TERM CORRELATIONS

Calculating the single-site bias mi involves taking the en-
semble average over all possible system trajectories for a
given starting condition. Using the more explicit notation
mi(t |{s j (0)}), we have

mi(t |{s j (0)}) =
∑
si (t )

P(si(t )|{s j (0)})[2si(t ) − 1], (A1)

where {s j (0)} is the starting configuration of the whole sys-
tem. One may wish to use a quantity that reflects the degree
to which single-site bias is preserved over time but that is
independent of initial conditions. One can write an expression
for the correlation of a single opinion at time t with its starting
value as follows:

Ci(t, 0) ≡ 〈〈[2si(t ) − 1][2si(0) − 1]〉〉
− 〈〈2si(t ) − 1〉〉〈〈2si(0) − 1〉〉, (A2)

where the double angular brackets represent an average over
the starting configuration and all possible resulting trajecto-
ries. Assuming a symmetrical initial distribution of biases, we
see that the terms 〈〈2si(t ) − 1〉〉 and 〈〈2si(0) − 1〉〉 vanish and

one obtains

Ci(t, 0) =
∑

si (t ),{s j (0)}
P(si(t )|{s j (0)}) P({s j (0)})

× [2si(t ) − 1][2si(0) − 1]

=
∑

{s j (0)}
mi(t |{s j (0)}) P({s j (0)}) [2si(0) − 1]. (A3)

We can replace mi(t, {s j (0)}) using the eigenbasis decompo-
sition in Eq. (9) to write

Ci(t, 0) =
∑

μ

∑
{s j (0)}

P({s j (0)}) [2si(0) − 1]

× c(μ)({s j (0)})v(μ)
i eμt . (A4)

Since Ci(0, 0) > 0, we see that when there is an eigenvalue μ

which approaches 0, biases can have a nonvanishing correla-
tion with their starting values for large t . The original order
parameter proposed by Edwards and Anderson for the study
of spin glasses was limt→∞ Ci(t, 0) [21].

APPENDIX B: MODEL WITH NODE-ORIENTED
UPDATE PROCEDURE

In the model presented in Sec. II, links are chosen at a
rate proportional to their weight and, if the link is active,
one of the voters changes its opinion. An equivalent node-
centred formulation of these dynamics would be to select a
node proportional to its degree and then choose a neighbor
to copy with probability proportional to the weight of the
link.

In most formulations of the voter model on complex net-
works, nodes are selected to change at a rate independent of
their degree. To check that the qualitative predictions of our
model carry over to this case, in Fig. 7 we repeat the numerical
diagonalizations used to produce Figs. 3, 4, and 6 using a
matrix of the form

Mi j = p

pi
(2Ai j − 1)Ji j − δi j

p

pi

∑
k

Jik, (B1)

where pi is the degree of node i. We see that although the
ELE is quantitatively different (as should be expected), sim-
ilar dependencies of the ELE on the system parameters N ,
p, and s2 carry over to this case. This suggests that our
general conclusions regarding the influence of system size,
link paucity and link weight variation carry over to this
case.
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APPENDIX C: DERIVATION OF THE EXPRESSIONS
FOR THE EMA AND SDA

1. General formulation and setting up the saddle-point problem

This Appendix summarizes how one arrives at the general
expressions for the effective-medium approximation (EMA)
and the single-defect approximation (SDA) for the eigenvalue
density of the matrix M̂, Eqs. (10) and (11), respectively.
Following standard methods [35,45,57,63], one can find the
density of eigenvalues ρ(μ) via the resolvent. We have

ρ(μ) = 1

Nπ
Im Tr[M̂ − (μ + iε)1]−1 = 2

Nπ
Im

∂ ln Z

∂μ
,

(C1)

where ε is a small real number and we have defined the
partition function Z (μ), which can be written as a Gaussian
integral,

Z (μ) =
∫ ∞

−∞

[∏
i

dφi

]
exp

[
i

2

(
μ

∑
i

φ2
i −

∑
i j

Mi jφiφ j

)]
.

(C2)

We are interested in the disorder-averaged eigenvalue density,
as opposed to the eigenvalue density of any one particular ran-
domly drawn matrix. To take the average over the ensemble
of random matrices (indicated by [·]M), we employ the replica
trick [20] [ln Z]M = limn→0([Zn]M − 1)/n, where

Z (μ)n =
∫ ∞

−∞

[∏
i,α

dφα
i

]

× exp

[
i

2

(
μ

∑
i,α

(
φα

i

)2 −
∑
i jα

Mi jφ
α
i φα

j

)]
, (C3)

and where α indexes the n replicas. We now introduce the
quantity c(ϕ), which is related to the fraction of sites with a
field ϕi equal to a reference value ϕ, where the bold script
indicates a vector in replica space,

c(ϕ) = 1

N

∑
i

δ(ϕ − ϕi ). (C4)

One therefore obtains for the disorder-averaged replicated
partition function [35,44],

[Z (λ)n]M =
∫

Dc(ϕ) exp(−NSeff ),

Seff [c(ϕ)] =
∫

dϕc(ϕ) ln c(ϕ)

− iμ

2

∫
dϕc(ϕ)ϕ2 + Heff [c(ϕ)], (C5)

where the integration is taken only over normalized c(ϕ)
such that

∫
Dc(ϕ) = 1 and we have defined the effective

Hamiltonian

exp [−NHeff ] =
[

exp

(
− i

2

∑
i j

Mi jϕi · ϕ j

)]
M

. (C6)

We note that the entropic contribution to Seff in Eq. (C5)
arises from the possible combinations of sites occupying

the state ϕ [64] (see Refs. [44,65] for a more thorough ac-
count of this term). The eigenvalue density is recovered from
Eq. (C5) via

ρ(μ) = lim
n→0

2

nNπ
Im

∂

∂μ
ln [Zn]

= lim
n→0

1

πn
Re

∫
dϕc(ϕ)ϕ2. (C7)

Our strategy is now to evaluate the effective action Seff in the
limit N → ∞, using the saddle-point approximation, with p
held finite. The saddle-point satisfies the condition δSeff

δc(ϕ) = 0,
or more explicitly

c(ϕ) = N exp

[
i

2
μϕ2 − δHeff

δc(ϕ)

]
, (C8)

where N is a normalization constant. In general, this cannot
be solved exactly and one has to resort to a further approx-
imation scheme. Two related approximations (the EMA and
SDA), each of which has its own advantages and limitations,
are described below. We note that, up until this point, our
consideration has been entirely general and we have not used
a specific form of the matrix M̂.

2. The effective-medium approximation (EMA)

Because each lattice site i is statistically equivalent and the
total number of sites is large, we can make the approximation
that the number of sites taking a particular field value ϕ is
approximately Gaussian [35]. This is expected to be a valid
approximation provided p is sufficiently large. We therefore
employ the ansatz

cEMA(ϕ) = (2π iσ (μ))−n/2 exp

(
− ϕ2

2iσ (μ)

)
. (C9)

We note that in this ansatz the replicas are independent and
symmetric with respect to one another. The EMA eigenvalue
density is thus given by [using Eq. (C7)]

ρEMA(μ) = − 1

π
lim
n→0

Im σ (μ + iε), (C10)

where ε is a small real quantity introduced to avoid any sin-
gularities [45]. Substituting Eq. (C9) into Eq. (C5), we obtain
a far simpler saddle-point equation dSeff/dσ (μ) = 0, or more
precisely

μ

2
− 1

2σ
+ dHeff

dσ
= 0. (C11)

a. General π(J)

Taking the general case where the random matrix Mi j is as
defined in Eq. (8) and Eq. (3), one obtains for the effective
Hamiltonian defined in Eq. (C6)

−Heff = − p

2
+ p

2

∫
dJπ (J )

∫
dϕdψ c(ϕ)c(ψ)

×
{

f exp
[ iJ

2
(ϕ + ψ)2

]

+ (1 − f ) exp
[ iJ

2
(ϕ − ψ)2

]}
, (C12)
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where we have used the definition of c(ϕ) in Eq. (C4) and we have used the result 1 + a/N ≈ exp(a/N ) for large N to
re-exponentiate. Using the EMA ansatz in Eq. (C9), the integration over the fields ϕ and ψ can be performed explicitly
to yield ∫

dϕdψ c(ϕ)c(ψ) exp

[
iJ

(ϕ − ψ)2

2

]
=

{∫
dφαdψα 1

2π iσ
exp

[
− (φα )2 + (ψα )2

2iσ

]
exp

[
iJ

(φα − ψα )2

2

]}n

= (−i)n[1 + 2σJ]−
n
2 , (C13)

and ∫
dϕdψ c(ϕ)c(ψ) exp

[
iJ

(ϕ + ψ)2

2

]
=

{∫
dφαdψα 1

2π iσ
exp

[
− (φα )2 + (ψα )2

2iσ

]
exp

[
iJ

(φα + ψα )2

2

]}n

= (−i)n[1 + 2σJ]−
n
2 . (C14)

Importantly we note that the dependence on f vanishes. That is, the bulk of the eigenvalue spectrum (in the EMA approximation)
is independent of the proportion of antagonistic connections. From Eq. (C5), we have

Seff [σ ] = − n

2
ln(2π iσ ) − n

2
+ nμ

2
σ + p

2
− p

2

∫
dJ π (J )[1 + 2σJ]−

n
2 . (C15)

We are now in a position to solve the saddle-point equation dSeff/dσ = 0 and take the limit n → 0. This yields the function
σ (μ) that can be related to the eigenvalue density via Eq. (C10). Differentiating with respect to σ and taking the limit n → 0
one obtains

lim
n→0

1

n

δSeff

δσ
= μ

2
− 1

2σ
+ p

2

∫
dJ π (J )

J

1 + 2σJ
. (C16)

Setting the right-hand side equal to zero and rearranging, one arrives at the second of Eqs. (10) in the main text. We recognize
the integral in Eq. (10) as being related to the Stieltjes transform of the probability distribution π (J ). If the Stieltjes transform
of π (J ) is known, then Eq. (10) can be inverted for σ (μ), which can then be used to yield the eigenvalue density via
Eq. (C10).

Although the EMA replicates the main ‘bulk’ of the eigenvalue distribution fairly well, it does a poor job of recovering
the outlier eigenvalues which come about due to localization effects [36,47]. For this reason, it is beneficial to go one level of
approximation further by substituting the EMA back into the original saddle-point solution of Eqs. (C5) [see Appendix C 3 on
the SDA].

b. Special case: π(J) = δ(J − 1/p)

Substituting π (J ) = δ(J − 1/p) in Eq. (10) and solving for σ (μ), one obtains

σ (μ) = 2 − (μ + 1)p −
√

8μp + (p(μ + 1) − 2)2

4μ
, (C17)

Substituting Eq. (C17) into Eq. (C10), one ultimately arrives at Eq. (13). One can show that the expression in Eq. (13)

is normalized by making the change of variables x =
√

p
8 (1 + μ) +

√
1

2p and by using the result
∫

dx
√

1 − x2/(a − x) =
−√

1 − x2 + a arcsin(x) − √
1 − a2 arctan[(ax − 1)/(

√
1 − a2

√
1 − x2)].

3. The single-defect approximation

The single-defect approximation involves taking the Gaussian ansatz for the EMA, and substituting this back into the original
saddle-point condition to obtain a more accurate expression for the eigenvalue density. In principle, this resubstitution procedure
can be iterated many times. Although this produces a more accurate approximation of the eigenvalue spectrum, the expressions
one obtains can become more unwieldy and therefore less useful.

More specifically, returning to the saddle-point condition Eq. (C8) and expanding this as a series, one obtains

c(ϕ) = N e
i
2 μϕ2

∞∑
k=0

[
− δHeff

δc(ϕ)

]k

. (C18)

One now inserts the EMA solution into the right-hand side of this equation and uses Eq. (C7) to obtain the single-defect
approximation to the eigenvalue density [35,36].

052309-11



JOSEPH W. BARON PHYSICAL REVIEW E 103, 052309 (2021)

To evaluate Eq. (C18), we must first find Heff
δc(ϕ) . Differentiating Eq. (C12) and exploiting the independence from f , one

obtains

− Heff

δc(ϕ)
= p

∫
dJ π (J )

∫
dψ c(ψ)

{
exp

[ iJ

2
(ϕ + ψ)2

]}

= p
∫

dJ π (J )
∏
α

{∫
dψα 1√

2π iσ
exp

[
− (ψα )2

2iσ

]
exp

[
iJ

(φα + ψα )2

2

]}

=
∫

dJ π (J )[1 + Jσ ]−n/2 exp

[
iϕ2

2(1/J + σ )

]
, (C19)

where we have inserted the Gaussian ansatz Eq. (C9) to evaluate the integrals over ψ. This can now be substituted into Eq. (C18)
to give

c(ϕ) = ηe
i
2 μϕ2

∞∑
k=0

e−p pk

k!

{∫
dJ π (J )[1 + Jσ ]−n/2 exp

[
iϕ2

2(1/J + σ )

]}k

, (C20)

where we see that the normalization constant η = N ep tends to unity when n → 0. Finally, using Eq. (C7), one obtains the
final expression for the SDA. One notes that the integral over J and the limit n → 0 are interchangeable (this can be shown by
integrating by parts). Upon substitution of Eq. (C20) into Eq. (C7), the general expression for the SDA of the eigenvalue density
is then given by Eq. (11).
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