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Adjustable reach in a network centrality based on current flows
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Centrality, which quantifies the “importance” of individual nodes, is among the most essential concepts in
modern network theory. Most prominent centrality measures can be expressed as an aggregation of influence
flows between pairs of nodes. As there are many ways in which influence can be defined, many different centrality
measures are in use. Parametrized centralities allow further flexibility and utility by tuning the centrality
calculation to the regime most appropriate for a given purpose and network. Here we identify two categories of
centrality parameters. Reach parameters control the attenuation of influence flows between distant nodes. Grasp
parameters control the centrality’s tendency to send influence flows along multiple, often nongeodesic paths.
Combining these categories with Borgatti’s centrality types [Borgatti, Soc. Networks 27, 55 (2005)], we arrive at
a classification system for parametrized centralities. Using this classification, we identify the notable absence of
any centrality measures that are radial, reach parametrized, and based on acyclic, conserved flows of influence.
We therefore introduce the ground-current centrality, which is a measure of precisely this type. Because of
its unique position in the taxonomy, the ground-current centrality differs significantly from similar centralities.
We demonstrate that, compared to other conserved-flow centralities, it has a simpler mathematical description.
Compared to other reach-parametrized centralities, it robustly preserves an intuitive rank ordering across a wide
range of network architectures, capturing aspects of both the closeness and betweenness centralities. We also
show that it produces a consistent distribution of centrality values among the nodes, neither trivially equally
spread (delocalization) nor overly focused on a few nodes (localization). Other reach-parametrized centralities
exhibit both of these behaviors on regular networks and hub networks, respectively. We compare the properties
of the ground-current centrality with several other reach-parametrized centralities on four artificial networks and
seven real-world networks.
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I. INTRODUCTION

Centrality measures are prescriptions for assigning impor-
tance values to nodes in complex networks, and the power of
the concept stems from the flexibility of characterizing impor-
tance in different ways. As such, centralities can be applied
everywhere from Internet search results (Google’s PageRank
[1]) to identifying important structures in neuron networks
[2]. Centrality is one of the most basic and widely studied
concepts in network theory.

Recently, we summarized how many prominent centrality
measures arise from the aggregation of “influences” flowing
between pairs of nodes [3]. These influences are encoded in
the entries of a centrality matrix M, whose specification is
equivalent to that of the overall measure. As we demonstrate
here, these pair influences can be revealing measurements
in their own right (see Sec. IV B 2). Centrality results are
also useful beyond identifying influential nodes and influence
flows between node pairs. Often, researchers posses quantita-
tive information about individual nodes—information which
is external to the specification of the network structure. A
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centrality that approximately reproduces these data can reveal
principles inherent in the structure of the network. In Ref. [4]
we investigated the architecture of the Florida electric power
grid along these lines. A strong correlation was revealed be-
tween the known generating capacities of power plants and
the values of a centrality based on Estrada’s communicability
[5,6], here referred to as the communicability centrality. Quan-
tification of such correlations between node attributes and
network structure requires centrality measures with a built-in
tuning parameter.

The communicability centrality has a parameter that con-
trols the (graph) distance over which nodes can influence
each other. Such parameters can reveal the length scale over
which the network is optimized. Since there are many ways
for a centrality to limit the distance that influence can spread,
we introduce the reach-parametrized category to describe
centralities with parameters that have this effect. We will
discuss how the reach-parametrized category includes the
well-known PageRank [1], Katz [7], and α [8] centralities.
The reach-parametrized category is not exhaustive. In Ref. [3]
we introduced the conditional walker-flow centralities, which
include parameters that interpolate these centralities between
older, well-known measures. The conditional walker-flow
measures belong to a distinct category: grasp-parametrized
centralities. These centralities’ parameters also attenuate
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influence, but in a way different from reach parameters. While
reach parameters control how far centrality influence can
spread, grasp parameters control how many alternative paths
influence can follow.

In addition to reach and grasp parametrization, here we
further classify parametrized centralities according to the
conceptual dimensions introduced by Borgatti [9,10]. Ref-
erencing this classification system, we show that there is a
notable absence of centrality measures that are radial, reach
parametrized, and based on acyclic, conserved flows of in-
fluence. To fill this void, we introduce the ground-current
centrality. There, influence is modeled by the flow of electri-
cal current from the source node to all possible end nodes,
from which the current flows to ground. (The method is
fully described in Sec. III.) The physics of current flow nat-
urally satisfies the conservation and acyclicity criteria, while
variable resistances to ground naturally limit the spread of
currents (and hence influences), thus representing a reach
parameter.

Conservation and acyclicity enable the ground-current cen-
trality to perform differently from other reach-parametrized
centralities in several ways. Most importantly, we demonstrate
that, compared to other reach-parametrized centralities, the
ground-current centrality robustly preserves an intuitive rank
ordering across a range of simple network topologies. Here we
take the closeness centrality (specifically, its harmonic variant
[11–13]) to provide the paradigmatic intuitive centrality rank-
ing for simple networks, since it places greater importance on
nodes that are close to many others.

However, the ground-current centrality can also repro-
duce aspects of betweenness: when the reach is high, it
is highly sensitive to network bottlenecks, assigning them
high centrality rank, whereas other reach-parametrized cen-
trality measures almost completely ignore bottlenecks in
certain situations. We further show that, on hub networks,
the ground-current centrality does not lead to excessive lo-
calization. This is a phenomenon [14] whereby the majority
of the net centrality is assigned to a small fraction of nodes.
On the other hand, in regular networks the ground-current
centrality does not lead to excessive delocalization: the as-
signment of nearly the same centrality value to every node.
Other measures, such as the Katz and communicability cen-
tralities, exhibit both these behaviors. Recently, it has also
been proposed to construct centrality measures from diffusion
dynamics [15].

The remainder of this paper is organized as follows. In
Sec. II we present a classification system for parametrized
centrality measures, discussing in detail the distinction be-
tween reach and grasp parameters. In Sec. III we define the
ground-current centrality. In Sec. IV we discuss the properties
of the ground-current centrality relative to other similarly
classified measures. To that end, we perform a numerical
study of the centralities’ detailed performance on a variety
of networks. These include four artificial networks designed
to highlight a particular network property, as well as seven
real-world networks. In Sec. V we conclude that the spe-
cial properties of the ground-current centrality stem from
its unique position as a radial reach-parametrized centrality
based on acyclic, conserved flows.

II. REACH AND GRASP PARAMETERS FOR NETWORK
CENTRALITIES

In this section, we present a wide-ranging classification
of parametrized centrality measures, which includes the most
prominent measures in the literature. We find that a simple and
reasonable combination of centrality characteristics has not
yet been studied, which motivates us to introduce a measure,
the ground-current centrality, to which we devote Secs. III–V.

A. Notation and conventions

The N × N adjacency matrix is denoted A. Here we con-
sider both weighted and unweighted adjacency matrices. The
graph distance between nodes i and j is denoted di j . In the
case of weighted networks, we may instead use Di j , which is
the length of the shortest edge path from node i to j, where
the length of a given edge (a, b) is (Aab)−1 [3].

The most commonly studied centrality measures can be
found in, e.g., Ch. 7 of [13], and many can be written [10]
in the matrix form

ci = α
∑

j

Mi j, (1)

where ci is the centrality of node i, and the sum is over the N
nodes in the network. We focus on centralities with a single
parameter �, so M = M(�). The matrix elements Mi j of
the N × N centrality matrix M encode the level of influence
that node j exerts on node i, and the final centrality is the
sum of such influences. In this paper we denote column (row)
vectors as kets (bras). The normalization factor α ensures that
〈c |1〉 = 1, where |1〉 is the column vector with all elements
equal to one [16]. The normalization factor is different for
every centrality measure, and for each choice of parameter
value, so α = α(�). To maintain readability, we will omit the
� dependence of α and M, and we will not specify which
centrality α normalizes when it is clear from the context.

The degree centrality (DEG) is one of the simplest and
most commonly studied network measures. It can be put
into the above form by setting MDEG equal to A so that
cDEG

i = α
∑

j Ai j = αki. In this paper we consider (poten-
tially) weighted, symmetric adjacency matrices. The ki are,
thus, (potentially) weighted degrees, and there is no distinc-
tion between indegree and outdegree.

A very important centrality that cannot be expressed in
the above form is the closeness centrality (CLO): cCLO

i =
(
∑

j Di j )−1. In Ref. [3] we therefore used the harmonic close-
ness centrality (HCC) [11–13], which can be written in matrix
form as

MHCC
i j = D−1

i j . (2)

A useful modification of Eq. (1) involves subtracting the
diagonal of the centrality matrix M:

c̃i = α̃
∑

j

M̃i j = α̃
∑

j

(M − Diag(M))i j, (3)

where α̃ is the corresponding normalization factor. This mod-
ified form M̃ simply prevents self influence, and we thus refer
to c̃ as the exogenous centrality.

Above, we have used Diag(M) to indicate the modified
form of matrix M that has all nondiagonal entries set to zero.
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In the following, we will also use the symbol Diag(|v〉) to
indicate the diagonal matrix with the elements of the vector
|v〉 appearing on the diagonal.

B. Reach-parametrized centralities

A centrality parameter � is a reach parameter if changing
it tends to attenuate the influence flow Mi j between pairs
of nodes i and j separated by large graph distances di j . For
weighted networks, it is possible to instead use the weighted
graph distance Di j .

Three prominent reach-parametrized centralities with sim-
ilar definitions are the PageRank (PRC), Katz (KC), and α

centralities. The first two of these can be defined [1,7,17],
respectively, by

MPRC = [
I − �−1

PRCA Diag(|k−1〉)
]−1

(4)

and

MKC = (
I − �−1

KCA
)−1

, (5)

where |k−1〉i = k−1
i , the identity matrix is I, and where we

have employed the matrix inverse. (For the PRC, we have used
a simplified definition that works for the symmetric adjacency
matrices considered in this paper.) The α centrality is a vari-
ation of the Katz centrality, involving another parameter [8].
Here we focus on the KC.

The fact that the parameters � control the network distance
over which influence can spread is seen from the series expan-
sion for the Katz centrality:

MKC = I + �−1
KCA + �−2

KCA2 + �−3
KCA3 + · · · . (6)

Since, in general, (Al )i j is equal to the number of walks
of length l from node i to node j, one can see that larger
values of �KC tend to suppress the influence of longer walks.
The case of the PageRank centrality is similar, except that
each term in the series expansion describes a single random
walk, rather than counting the total number of walks. This is
because the value of [A Diag(|k−1〉)]l

i j is the probability of a
walker starting on node j being on i after l steps [18]. Thus
�PRC controls the length of walks in the same way as �KC.
Incidentally, the series expansion in Eq. (6) makes clear that
the Katz centrality will diverge at some small value �KC; the
same is true for the PageRank centrality at �PRC = 1. In what
follows, we restrict �KC and �PRC to the range where Eq. (6)
and the corresponding series expansion for the PageRank are
convergent.

The series form of the Katz centrality above suggests a
class of reach-parametrized centralities based on power series
in the adjacency matrix (with the PageRank case similar).
These take the form M(�) = ∑∞

l=0 f (l )Al�−l , where the
Katz centrality sets all factors f (l ) to one. This choice, how-
ever, is not ideal because the series does not converge when
�KC is smaller than the largest eigenvalue of A (λ1, with
corresponding eigenvector |ψ1〉). In the general case, for small
�, the higher-order terms are dominated by

f (l )(λ1/�)l |ψ1〉 〈ψ1| . (7)

For M to converge for all �, 1/ f (l ) must grow super-
exponentially in l . A reasonable choice, inspired both by
the Estrada communicability metric [5] and by the desire to

make contact with statistical physics, is to choose the factors
f (l ) = (l!)−1. This formula, which defines the communica-
bility centrality (COM) in terms of the matrix exponential
function, means that

MCOM(�T ) = exp(A/�T ) = I + �−1
T A
1!

+ �−2
T A2

2!
+ �−3

T A3

3!
+ · · · , (8)

where we have introduced the “temperature” parameter �T .
(This is very similar to the total communicability studied in
Ref. [19].) In past work [20], we compared the communica-
bility centrality to several other centrality measures prominent
in the literature, finding that it gives the best match to the
generating capacities in the Florida power grid.

The communicability and Katz centralities have several
satisfying properties, especially in their exogenous forms
M̃COM and M̃KC. From the series expansions, it is easy to see
that the degree centrality is recovered in the low-reach limits
(�T → ∞ and �KC → ∞). In fact, in these limits we obtain
M̃COM = M̃KC = A. In the high-reach limits (�T → 0 and
�KC → λ1), the largest eigenvalue dominates as in Eq. (7), so
the centralities reduce to the well-known eigenvector central-
ity [13]. For large, fully connected networks, the exogenous
forms M̃ give very similar results. These centralities also
satisfy two very reasonable conditions on assigning influence
between nodes i and j: (1) the existence of many walks leads
to more influence due to the presence of the term (Al )i j ,
but (2) long walks are suppressed due to the weights �−l .
(PageRank satisfies very similar conditions.)

Though several individual examples of reach-parametrized
centralities are well-known in the field of network science, we
believe that we are the first to identify reach-parametrized as
a distinct category of centrality measures. We emphasize that,
for every reach-parametrized centrality in this paper, we have
defined the parameters � such that small � results in high
reach, while large � results in low reach.

C. Grasp-parameterized centralities

A centrality parameter � is a grasp parameter if it tends to
attenuate the influence of indirect paths between two nodes in
a weighted graph. As illustrated in Fig. 1, when the centrality
parameter is set to high grasp, the measure takes into account
many parallel paths between the nodes, while when the cen-
trality parameter is set to low grasp, the measure considers
only the shortest path between the two nodes. This is distinct
from the behavior of reach parameters because the two nodes
can be an arbitrary (weighted) distance apart. Thus, reach-
parametrized and grasp-parametrized are distinct centrality
categories.

In Ref. [3] we introduced the grasp-parametrized central-
ity category, as well as two grasp-parametrized measures,
based on absorbing random walks: the conditional cur-
rent betweenness [MCBT(�D)] and the conditional resistance
closeness [MRCC(�D)]. Collectively, these are the condi-
tional walker-flow centralities, parametrized by the “walker
death parameter” �D. The conditional current betweenness
interpolates from betweenness, at low grasp, to Newman’s
random-walk betweenness [23], at high grasp. Similarly, the
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FIG. 1. High and low grasp centralities. The figures depict the
current of random walkers used to calculate the conditional current
betweenness and the conditional resistance closeness from [3]. This
is demonstrated on the (weighted) kangaroo interaction network from
[21,22]. Line thickness is proportional to current magnitude. A unit
current flows from the source node (large, green) to the target node
(large, red). Dashed lines indicate negligible current (<0.01 units).
(a) At high grasp (low �D), the current takes advantage of many
parallel paths. (b) At low grasp (high �D), the current follows only
the shortest weighted path from the source to the target.

conditional resistance closeness interpolates from the har-
monic closeness, at low grasp, to the harmonic form of the
Stephenson–Zelen information centrality [24] (also known as
the current-flow closeness [25] and the resistance closeness
[3]), at high grasp.

D. Classification of parametrized centralities

There is a proliferation of centrality measures in the
network-science literature. Even in the case of parametrized
centrality measures, which have not yet been studied exten-
sively, there are sufficiently many measures to require an
organizing principle. Here we build on the typologies in-
troduced by Borgatti in Refs. [9,10]. There, centralities are
situated along the conceptual dimensions of Summary Type,
Walk Position, and Walk Type. Each of these is described be-
low. In Table I all of the parametrized centralities discussed in
this paper are classified according to Walk Position (columns)
and Walk Type (rows).

1. Summary Type: How influences are aggregated

The difference between the standard (row-sum) centrality
M and exogenous centrality M̃ lies in what Borgatti calls
Summary Type, which dictates the way influences are aggre-
gated, not the fundamental nature of the centrality. Another

possible variation is the diagonal centrality M = Diag(M).

Estrada’s subgraph centrality [26] is equivalent to M
COM

at
�T = 1.

2. Walk Position: Radial and medial centralities

Though the conditional current betweenness and condi-
tional resistance closeness are parametrized by the same
“walker death” process, they are very different measures. In
Borgatti’s typology, the first of these is a medial centrality
while the latter is radial. This means that the former assigns
importance to a node based on the walks passing through it,
while the latter assigns importance based only on the walks
that start on the node. The classic examples of medial and
radial centrality are betweenness and closeness, respectively,
and we have seen that the conditional walker-flow centralities
reduce to these at low grasp. The columns in Table I group
the parametrized centralities discussed in this paper into radial
and medial categories.

3. Walk Type: Reach, grasp, conserved flows, duplicating flows,
cyclic flows, and acyclic flows

The Walk Type conceptual dimension describes the char-
acteristics of the walks through which influence is spread. For
example, influence might be restricted to geodesic paths, or to
walks of a certain length. It is clear, then, that the categories
of reach-parametrized and grasp-parametrized centrality rep-
resent differences in Walk Type.

A further distinction within the Walk Type is described in
Ref. [9], which compares conserved flow processes (e.g., the
movement of physical objects) to duplicating flow processes
(e.g., the spread of gossip). The conditional current between-
ness and conditional resistance closeness are both calculated
using the conserved current created by a single random walk,
so they are conserved-flow centralities. On the other hand,
the Katz, PageRank, and communicability centralities rely
on infinite summations, as in Eqs. (6) and (8), aggregating
influence from an infinite number of walks. These are thus
duplicating-flow centralities.

Another important subcategory within the Walk Type di-
mension is cyclicity. (Borgatti addresses cyclicity within his
“trajectory dimension.”) The Katz, PageRank, and commu-
nicability are cyclic: the spread of influence within these
centralities is free to form cycles, potentially even recrossing
the same edge over and over. Thus, for all the measures

TABLE I. Classification of parametrized centralities. Centrality measures are classified according to Borgatti’s [9,10] Walk Position
(columns) and Walk Type (rows). Conditional current betweenness subsumes betweenness and random walk betweenness, while conditional
resistance closeness subsumes closeness and information centrality [3]. Reference [27] describes the beta current-flow centrality, whose
derivation is similar to that in Sec. III B. The positions in the table depicted with a light font represent disfavored centrality types, discussed in
Sec. II D 4. The starred entries represent centralities introduced in this paper, filling in “blanks” within the table. The ground-current centrality
is the main result of this paper.

Radial Medial

Acyclic conserved flow Grasp: cond. resistance closeness Grasp: cond. current betweenness and [27]
Reach: ∗ground current (Secs. III and IV)∗ Reach: ∗see Sec. V∗

Cyclic duplicating flow Grasp: none (see Sec. II D 4) Grasp: communicability betweenness
Reach: Katz, PageRank, communicability Reach: ∗see Sec. II D 4∗
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considered here, cyclic centralities are based on duplicating
flows, while acyclic centralities are based on conserved flows.
However, in general, cyclicity and duplication are independent
of each other.

The rows in Table I group the parametrized centralities
discussed in this paper into Walk Type categories.

4. Disfavored centrality combinations

Generally, reach parametrization is not compatible with
medial measures like betweenness, since every pair of source
and target nodes is considered equally, no matter how far apart
they may be. This is why there are no well-known measures
in the light-font areas of the right column of Table I. However,
any reach-parametrized relationship (such as the entries in the
matrix MCOM) may be used to weight pairs of nodes, allow-
ing betweenness-like measures to use reach parameters. (This
modification would also allow the simultaneous use of reach
and grasp parameters.) These areas of the table are marked
with stars to indicate that these centrality combinations are
achievable, though they have not been studied extensively to
our knowledge.

Centralities that are both duplicating and grasp
parametrized are also disfavored. It is difficult to control
the grasp of duplicating-flow centralities since, by the
nature of duplicating influence, they generally cannot restrict
influence to geodesic paths. However, an exception to this rule
is found—for the medial parameter type—in the form of the
communicability betweenness [6], and similarly constructed
centralities. They rely on a mathematical technique for
converting radial reach-parametrized centralities into medial
grasp centralities. This is described in Appendix A. We are
not aware of any similar techniques for arriving at radial,
duplicating, grasp centralities, which is why this area of
Table I remains empty.

5. A radial reach-parametrized centrality based on acyclic,
conserved flows

Aside from the disfavored centrality combinations de-
scribed above, there is one location in Table I (indicated with
bold stars) that has, to our knowledge, not yet been studied.
The Katz centrality, which is radial and reach-parametrized,
is one of the oldest measures in the network science litera-
ture, and the PageRank, of the same type, is one of the most
prominent. It is striking, therefore, that there is no well-known
conserved-flow centrality of this type, given the importance
of conserved flows in both theoretical and practical do-
mains. Therefore, in Sec. III we introduce the ground-current
centrality, which is of the radial, reach-parametrized, and
conserved-flow type. It is also acyclic, whereas the duplicating
radial reach measures are cyclic. In Sec. IV we show that
the use of acyclic, conserved flows leads the ground-current
centrality to some notable differences from the other measures
in the radial, reach-parametrized category.

III. THE GROUND-CURRENT CENTRALITY

A. Generalizing the resistance-closeness centrality

This paper is concerned with developing a conserved-flow
centrality measure that features a reach parameter, tuning

FIG. 2. The ground-current centrality (right) as a multinode
generalization of the resistance-closeness centrality (left). The
ground-current centrality of a node i is given as a function of the
finite ground conductances (shown in light gray), by the currents
flowing from that node to the ground node g when a unit voltage is
introduced between node i and g. The exogenous ground-current cen-
trality M̃GCC

i j is equivalent to the removal of the (dotted) connection
between i and and g. Ignoring the voltage sources, the left side of the
figure illustrates the resistor-network interpretation of the network
N , while the right side illustrates the modified network Ng.

the distance that influences can spread across the network.
To estimate the node centralities in network N [see Fig. 2
(left)], we focus our model on the electrical current flows in
the resistor network derived from N (or equivalently, random
walkers [28] on N ). In this interpretation, an element of N ’s
adjacency matrix Ai j is taken to be the conductance (inverse
resistance) of the direct electrical connection between nodes
i and j [29]. By using current flow to spread influence, we
guarantee that the resulting centrality will be both conserved
and acyclic.

It is not possible to explicitly limit the reach of current
(and hence influence) by increasing the resistance along all
edges, or changing the strength of voltage sources. Since
network current flow is a linear theory, any introduction of
a multiplicative constant m on either (1) all voltage sources
or (2) all resistances will only scale the resulting currents by
m. And since centrality vectors are normalized by the factor
α in Eq. (1), any multiplicative constants do not affect the
final centrality assignments. This provides motivation to build
a parametrization around resistors external to the equivalent
resistor network.

We now introduce a centrality which is a generalization
of (but not a parametrization of) the resistance-closeness cen-
trality (RCC) studied in Ref. [3]. There, MRCC

i j is equal to the
inverse of the effective resistance Reff

i j , which is the current
resulting from connecting a 1-V battery between i and j in N ,
as seen in Fig. 2 (left). Without affecting the results, we may
set the absolute potential scale by connecting j to the ground
node g with a resistance-less wire; the current then returns
to the battery through the ground node. Extrapolating the
measure to multiple nodes is achieved simply by connecting
all nodes directly to ground. The currents I i

j→g from each j to
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ground (when the voltage source is on i) are straightforwardly
interpreted as the contribution of j to the centrality value of i;
that is, the ground currents are just the Mi j . Thus we name this
measure the ground-current centrality (GCC). In summary,

MGCC
i j = I i

j→g (unit voltage source between i and ground).

(9)

(In what follows, we will often omit the superscripts in MGCC

and cGCC when it is clear from the context that we are referring
to the ground-current centrality.)

This centrality measure represents a transition from the
resistance distance, a node-node relation, to a node-network
relation; this process is illustrated in Fig. 2. The ground-
current centrality also represents a complementary approach
to our previous work in Ref. [3]. There the conditional walker-
flow centralities employ the portion of the current that does
not eventually reach ground. Here the entirety of the current
eventually reaches ground, and the centrality is based on the
magnitudes of the ground currents.

If all the nodes were directly connected to ground with
zero resistance, then they would all be at the same potential.
This would mean that no current could flow between them,
leading to a centrality insensitive to the details of the network
structure. To prevent this behavior, we introduce the ground-
conductance vector |C〉, where Cj is the finite conductance
of the edge connecting j to ground. The node potentials are
now Vj = I i

j→g/Cj = Mi j/Cj—in general they are all differ-
ent. Since the network N has N nodes, adding g and its
adjacent edges creates a (N + 1)-node network. This modified
network, called Ng(|C〉), is illustrated on the right side of
Fig. 2. Note that one of the edges between g and i (indicated by
the battery symbol in the circuit diagram) represents voltage
boundary conditions and is therefore not included in Ng(|C〉).

B. The ground-current centrality formula

We now derive a compact formula for the ground-current
centrality. The foundational relation for resistor networks
[13]—as applied to Ng(|C〉)—is

|I in〉 = Lg |V 〉 . (10)

Here |V 〉 is the vector of node voltages, and Lg is the (N +
1) × (N + 1) Laplacian matrix of Ng(|C〉). The jth element
of the vector |I in〉 is equal to the current entering (I in

j > 0) or
leaving (I in

j < 0) the network at node j. In the present case,
illustrated in Fig. 2 (right), I in

j = 0 when j is not i or g.
Because Lg |1〉 = 0, Eq. (10) cannot be inverted as is. A

standard solution [23] is to remove one node from the net-
work, leading to the invertible N × N reduced Laplacian Lred.
This specifies the gauge in which the removed node is at zero
potential (see Appendix B).

We choose to remove node g, appropriately setting its
potential to zero. Proceeding similarly to the derivation in
Ref. [27], removing g leads to the reduced Laplacian Lred =
L + Diag(|C〉). Here L is the standard Laplacian of the
N-node network N : L = Diag(|k〉) − A, where |k〉 is the
weighted degree vector. Therefore, inverting the reduced ver-

sion of Eq. (10) leads to

Vj =
∑

s

[L + Diag(|C〉)]−1
js I in

s

= [L + Diag(|C〉)]−1
i j I in

i , (11)

where only the s = i term in the sum survives, and we have
used the fact that L is symmetric. Recall that i is the index of
the node connected to the battery [see Fig. 2(b)], while j and s
can stand for any node, including i.

From the requirement that Vi = 1, we have I in
i =

1/[L + Diag(|C〉) ]−1
ii . The current Mi j from j to g is just

VjCj . And because all the current entering the network at i
must also leave the network at g,

∑
j Mi j = ∑

j I i
j→g = I in

i ,
so I in

i is equal to the centrality ci of node i. Assembling these
results, we arrive at a generalized formula for the ground-
current centrality:

ci = 1/[L + Diag(|C〉) ]−1
ii ,

Mi j = ci[L + Diag(|C〉) ]−1
i j Cj . (12)

Every row of M corresponds to a different experimen-
tal situation, where the voltage boundary conditions are
changed by connecting a different node i to the 1-Volt
battery. [In matrix form, this can be expressed as M =
{Diag([Lred]−1)}−1[Lred]−1Diag(|C〉).]

For notational convenience, in this section we use the un-
normalized form of the centrality. It can be easily verified
that

∑
j[L + Diag(|C〉) ]−1

i j Cj = 1. This leads to
∑

j Mi j =
ci, which is the unnormalized form of Eq. (1).

We note that, unlike for other centralities, the elements of
the ground-current centrality matrix MGCC do not need to be
calculated to find the ci—in fact, the reverse is true. Nonethe-
less, the MGCC

i j are informative in their own right, since they
encode the influence of node j on i’s centrality. Here, they
will be useful for analyzing test cases that show how the
ground-current centrality differs from similar measures; see
Sec. IV.

The vector |C〉 in Eq. (12) can be used to tune the rela-
tive importance of nodes in the network. For example, in a
power-grid network, we may set Ci = 0 when i is a generator,
thereby ensuring that the centrality rewards only connections
to loads. However, the simplest case, as in Ref. [27], is to set
all ground conductances to the same value �C , meaning that
Diag(|C〉) = �CI, for identity matrix I. This leads us to the
final parametrized form of our centrality:

ci(�C ) = 1/(L + �CI )−1
ii

Mi j (�C ) = I i
j→g = ci (L + �CI )−1

i j �C
. (13)

We emphasize that, unlike other network measures based
on current flows, it is not necessary to perform a summation
to obtain the centrality ci of node i. In what follows, we use
the normalized form of the ground-current centrality matrix
M, as per Eq. (1).

C. Properties and limits of the ground-current centrality

We have argued that the ground-current centrality has a
naturally arising parameter �C . Though �C was necessary to
force the centrality to interact with the network structure, it
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TABLE II. Ground-current centrality high and low �C limits.
The ground-current centrality is formulated in Eq. (13). The limits
for the generalized ground-current centrality [Eq. (12)] are in square
brackets. In the generalized version, �C is not defined, and the limits
should be interpreted as high and low values of 〈C|1〉.

Measure Symbol High �C Low �C

Ground-current centrality MGCC
i j δi j�C �C

[δi jCi] [Cj]
Exogenous ground-current M̃GCC

i j Ai j (1 − δi j )�C

centrality [Ai j] [(1 − δi j )Cj]

is easy to see that this parameter also has the effect of tuning
the centrality’s reach. Consider the �C → ∞ limit. When �C

is large, the vast majority of the current leaving the battery
at node i follows the very high-conductance edge directly to
ground, rather than following the relatively low-conductance
edges leading to other locations in the network. A node can
thus influence only itself, and M becomes diagonal. This can
also be seen from setting j = i in the second line of Eq. (13),
whereby ci ≈ Mii = Ii→g for large �C . Thus the reach is low
when �C is high.

The behavior in the low-�C limit is easy to understand
through physical properties of resistor networks: As �C → 0
the effective resistance to ground approaches infinity, leading
to very small currents in the network; therefore all node poten-
tials approach the value 1 because the potential drop between
adjacent network nodes becomes tiny. Therefore all ground
currents are identical: Mi j = (1 − Vg)�C = �C , since Vg =
0. Nodes at large graph distances from i are not penalized by
the centrality. This means that ci = N�C for all i. When �C

is low, the reach is high and the network looks the same from
every node.

It is also useful to consider the exogenous ground-current
centrality M̃GCC. Referencing Fig. 2, this amounts to the re-
moval of the dotted connection to ground. This variant can
recover the adjacency matrix for large values of �C—much
like the communicability centrality recovers the adjacency
matrix for large values of �T . Detailed calculations for the
limiting forms of the two variants of ground-current centrality
for arbitrary |C〉 vectors are presented in Appendix C. We
summarize the limits in Table II.

The behavior of the ground-current centrality at intermedi-
ate values of �C is intermediate to the behavior at the limits.
As �C decreases from ∞, pairs of nodes (i, j) separated
by larger weighted graph distances Di j start to receive non-
negligible ground current Mi j . This means that the reach of
the centrality increases as �C decreases and, therefore, �C

is a reach parameter. Finally, as �C approaches 0, all pairs
produce the same value of Mi j , regardless of the distance be-
tween i and j, reach is maximized. (The centrality at �C = 0
is undefined, however, since there is no ground-current flow
in that situation.)

Increasing the reach by decreasing �C allows longer net-
work paths to be explored, which leads to more parallel paths
to the same destination. Therefore, tuning reach in this case
also necessarily tunes grasp, but this is a secondary effect.

The reach behavior of the exogenous ground-current cen-
trality at high reach (low �C) and low reach (high �C)

FIG. 3. High and low reach in the exogenous ground-current
centrality. This is demonstrated on the (weighted) kangaroo inter-
action network from [21,22]. Compare the grasp behavior of the
conditional current betweenness in Fig. 1. Line thickness for edges
(k, l ) indicates the product of the normalization factor α̃ from Eq. (3)
and the edge current magnitude I i

k→l , where the current flow results
from a unit potential difference between the source node i (large,
green) and the ground node g (not pictured). For readability, the
line thickness is proportional to the square root of α̃I i

k→l . Dashed
lines indicate negligible current: α̃I i

k→l < 0.0001. All connections
to ground have conductance �C and, because this is the exogenous
centrality variant (M̃), every node other than the source node is
connected to ground. Node j’s final contribution to i’s centrality is
α̃ M̃GCC

i j = α̃I i
j→g. (a) At high reach (low �C), the current spreads

out to every node. Though the currents I i
k→l are very small at this

parameter value, the normalization factor results in non-negligible
influences α̃ M̃GCC

i j . In accordance with Table II, the current to ground
is the same at every node. (b) At low reach (high �C), the current
flows only along edges adjacent to the source, weighted by the edge
conductance; see Table II.

is illustrated in Fig. 3. The intermediate reach behavior is
illustrated in Fig. 4. The figures also clearly illustrate the
ground-current centrality’s status as a radial measure: influ-
ence spreads outward from the node i. Further, the centrality
of every node is derived from a single conserved current flow
in a resistor network. These key properties of the ground-
current centrality are reflected in its position in Table I.

IV. UNIQUE FEATURES OF THE GROUND-CURRENT
CENTRALITY

Because of its unique position in the taxonomy presented
in Table I, the ground-current centrality differs significantly
from similar centralities. In Sec. IV A we compare it to other
conserved flow centralities (top row in Table I), while in
Sec. IV B we compare it to other radial reach-parametrized
centralities (left column in the table).

A. Differences from other conserved-flow centralities

Referencing the final expressions in Eqs. (12) and (13),
we consider the differences between the ground-current cen-
trality and other current-based centrality measures previously
considered (the first two rows in Table I). Of course, the
most important difference is that the ground-current centrality
is the only one of these that can control reach, which is
in many ways a more intuitive type of parametrization than
grasp. Further, the other methods’ centrality matrices do not
reduce to the adjacency matrix at any parameter value—this
is a consequence of these centralities not using a reach pa-
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FIG. 4. Intermediate reach in the exogenous ground-current cen-
trality. See the caption to Fig. 3 for explanatory details. The reach
is demonstrated on the (weighted) Florida power-grid network from
[4,30]. In this version of the network, the weights are readable from
the figure: they are inversely proportional to the Euclidean distance
between nodes. When the reach is high (�C is low), the currents
spread to nodes at large weighted distance from the voltage source.
In this regime (e.g., at �C = 0.1), the amount of current flowing
to ground from each node is approximately identical. As the reach
decreases (�C increases to, e.g., 5.0), the ground currents are no
longer identical. The currents along edges far from the voltage source
are diminished and, at very low reach (e.g., �C = 500), only currents
to the voltage source’s nearest neighbors remain.

rameter, and thus being unable to restrict influence to nearest
neighbors.

The ground-current centrality is also mathematically sim-
pler than the alternatives. The closeness and betweenness
centralities rely on algorithms (Dijkstra’s algorithm and the
method described by Brandes in Ref. [31], respectively),

while the ground-current centrality has a closed-form solu-
tion. The resistance closeness and the current betweenness
rely on the calculation of currents using the pseudoinverse or
the inverse of a reduced Laplacian matrix. On the other hand,
the ground-current centrality uses an ordinary matrix inverse
and the ordinary Laplacian L. This is convenient for for-
mula manipulations such as those in Appendix C. Further, the
conditional forms [3] of the resistance closeness and current
betweenness require the calculation of current on every edge,
while the ground-current centrality calculates only currents
that correspond to elements of MGCC. In fact, even this is
unnecessary: Eqs. (12) and (13) show that the final centralities
can be found from the diagonal of the inverted matrix, without
summing over Mi j .

Finally, we emphasize that the ground-current centrality is
significantly simpler conceptually than the alternative mea-
sures. All of these involve solving a current (or walker) flow
problem between pairs of nodes and aggregating all such pairs
to calculate the final centrality. The ground-current centrality,
however, requires only a single current-flow problem for every
node whose centrality we wish to calculate.

B. Differences from other radial reach-parametrized centralities

In Table I the ground-current centrality is the only ra-
dial reach-parametrized centrality that is based on an acyclic,
conserved flow. As a result, it differs significantly from the
Katz, PageRank, and communicability centralities. Especially
at high reach, these alternative centralities lead to unintuitive
centrality rankings on simple example networks. The reason
is that the cyclic flows employed by these centralities are
forced to retrace their steps when the reach is high, while the
ground-current centrality’s conserved current flow never does
so because current flow is acyclic.

We compare the behavior of the radial reach-parametrized
centralities on line networks, subdivided star networks, Cay-
ley trees modified to become regular networks, and a
lattice network with a weighted bottleneck. In these sim-
ply structured networks, the nodes’ centrality rankings are
intuitive. Here we take the closeness centrality to provide
the paradigmatic intuitive centrality ranking, since it as-
signs greater importance to nodes that are close to many
others. In our simply structured example networks, such
nodes are easy to identify by eye. In addition to the simple
example networks, we analyze numerical data from seven
real-world example networks, summarized in Table III. Be-
cause we compare node-node centrality flows (elements of

TABLE III. Summary of real-world example networks. Networks have N nodes and M edges. The density of a network is defined as the
number of edges divided by the number of possible edges: M/[0.5N (N − 1)].

Network Refs. N M Density Weights

C. elegans Neuronal Network [32] 277 1918 0.05 Unweighted
Weighted Florida Power Grid [4,30] 84 137 0.04 Continuous
Unweighted Florida Power Grid [4,30] 84 137 0.04 Unweighted
Italian Power Grid [33] 127 169 0.02 Unweighted
Vole Trapping [34,35] 118 283 0.04 Integer
Kangaroo Group [21,22] 17 91 0.67 Integer
Benchmark Circuit [36] 512 819 0.006 Unweighted
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M) as well as final centralities (elements of |c〉), we rely
specifically on the harmonic [11–13] closeness centrality:
MHCC = D−1

i j .
Of the parametrized centralities considered here, only the

ground-current centrality can reproduce the intuitive ordering
in all the simply structured example networks. Furthermore, in
the case of networks with bottlenecks—including real-world
networks—the ground-current centrality reproduces aspects
of the betweenness centrality, as well as the harmonic close-
ness. In the case of regular networks, the ground-current
centrality does not result in nearly identical centrality values,
as do several of the alternative measures. Conversely, in the
case of real-world networks with hubs, we show that the
ground-current centrality assigns centrality weight more eq-
uitably than the communicability centrality, while still giving
the most weight to the hub.

In this section we use the exogenous form (M̃) of the
discussed centralities, since only the exogenous forms of
the communicability, Katz, and ground-current centralities
reduce to degree centrality at low reach (M reduces to A).
Furthermore, only the exogenous communicability centrality
leads to nontrivial results in the case of regular networks (see
Sec. IV B 3). However, the results for the full ground-current
centrality MGCC are very similar to those for M̃GCC. We also
limit the discussion to normalized centralities, introducing the
normalization factor α̃ into Eq. (13) so that α̃

∑
i j M̃ = 1.

Without normalization, centrality values for the communi-
cability (M̃COM) become unmanageably large at high reach,
while ground-current centrality values (M̃GCC) go to zero in
the same regime.

1. Line networks

Consider the unweighted network of N nodes arranged in
a straight line, so that the two end nodes have degree 1, while
the middle N − 2 nodes have degree 2. Here the harmonic
closeness centrality specifies a centrality ranking that grows
with proximity to the center of the line. Indeed, this intuitive
ordering is reproduced by almost all the centrality measures
under consideration, and across all parameter values (except
those extremal values where all centralities are equal). The
PageRank is the only centrality that does not reproduce this
ordering.

The PageRank places the degree 1 nodes in the lowest cen-
trality rank, but the rankings from there on out are the reverse
of those of the harmonic closeness, so that the node at the
center of the line has the second-lowest rank. This unintuitive
ordering occurs at all nonextremal parameter values. More
generally, the PageRank has properties that make it unsuitable
as a reach-parametrized centrality. As the parameter goes to
zero, the reach technically increases. However, at this param-
eter value, the random walk behind the PageRank is allowed
to take many steps, including steps that retrace its own path.
Thus the walk approaches its stationary distribution, which
is proportional to the degree of nodes [13]. The result is the
paradoxical situation where increasing the PageRank’s reach
tends to make it more like the degree centrality, which is
inherently low reach. We believe that this behavior leads to
the unintuitive ordering on the line network.

FIG. 5. The subdivided star network S{1,2,3,4,6,8}. We compare
only the centralities of the large, labeled nodes. However, all 26
nodes are accounted for in the adjacency matrix. The node labels
indicate the number of edges in the “spoke” terminated by that node,
e.g., one must traverse four edges to move from n0 to n4. The weights
are chosen to make the total weighted graph distance along the
spoke equal to unity: here Dn0n1 = Dn0n2 = Dn0n3 = Dn0n4 = Dn0n6 =
Dn0n8 = 1. All edges within a spoke have the same length, and thus
the same weight. (The edge weights are inversely proportional to
the Euclidean distances in the figure.) For example, the six edges
between n0 and n6 have weight 6. Because edge weights are in-
verse to weighted edge distances, 6 × (1/6) = Dn0n6 = 1. There is
one exception to the previous rules: a long edge (n0, nlong), where
dn0nlong = 1 and Dn0nlong = 1000.

Originally, the PageRank centrality was developed to rank
websites, which form directed networks of hyperlinks. Our
simple test case suggests that the PageRank is not well suited
to undirected networks.

2. Subdivided star networks

We now introduce a simple class of weighted networks
that also have intuitive centrality matrix values based on
the harmonic closeness. These subdivided star networks S{d}
comprise a series of “spokes” emanating from the hub node
n0. Each spoke consists of a chain of edges. The network is
specified precisely by {d}, the list of unweighted distances
along the spokes. The edge weights are chosen to make the
weighted distance (D) along each spoke equal to unity. See
the caption to Fig. 5 for further details and an illustration for
{d} = {1, 2, 3, 4, 6, 8}. We also intend to compare the behav-
ior of a node very distant from n0. To do this, we connect a
final node nlong directly to n0, setting Dn0nlong = 1000.

We are concerned only with influence flows between the
hub node and the nodes at the ends of the spokes. We choose
S{1,2,5,10,18,30} as a representative example network, on which
we compare the influence values M̃ for different central-
ities. Specifically, we consider M̃n0ip , for peripheral nodes
ip ∈ {nlong, n1, n2, n5, n10, . . .}. All the nodes ip (except nlong)
are the same weighted distance from n0, but their unweighted
distances dn0iP are all different. As a result, the ordering of ma-
trix elements in the unweighted harmonic closeness (HCC) is
clear: M̃HCC

n0ip goes down for ip on “longer” spokes, while these
matrix elements are all the same for the weighted HCC. On
the other hand, the unweighted HCC matrix elements M̃HCC

n0nlong
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FIG. 6. Selected values of α̃M̃COM for the S{1,2,5,10,18,30} network. The same data are plotted on (a) log-linear and (b) log-log scales. Note
that the normalization factor α̃ depends on �T . Without α̃, the M̃ values become unmanageably large. The Katz centrality is qualitatively
similar, but with convergence failure at high reach (low values of �T ). At high reach, the COM fails to reproduce the intuitive HCC ranking
of the M̃n0 ip .

and M̃HCC
n0n1

are the same, while in the weighted case M̃HCC
n0nlong

is much smaller than any other M̃HCC
n0iP . (Note that we use the

harmonic closeness, because the standard closeness does not
specify matrix elements.) Of all the parametrized centralities
considered here, the ground-current centrality is the only one
that matches the intuitive ordering of both weighted and un-
weighted HCC.

Note that we are not comparing the final centrality values
cip of the peripheral nodes, but rather the matrix elements
M̃n0ip , since these values are not inflated by the presence of
nodes along the spokes [37].

Figure 6 depicts the communicability centrality M̃COM
n0ip .

Though the rank ordering for all iP except nlong matches HCC
at low reach (high �T ), the levels begin to cross as the reach
is increased, and at high reach (�T → 0) M̃COM

n0n30
becomes the

highest, though in HCC it is the lowest. This matrix element
alone deviates from the ordering established at low reach (high
�). The reason, to be discussed in Sec. V, is the duplicating
nature of the communicability centrality. Another issue is that
the ranking of centrality element M̃COM

n0nlong
does not appreciably

change as the parameter is decreased (reach is increased).
Furthermore, the addition of spokes to the network can

affect the rank ordering of the other ip. For example,

while the figure shows that M̃COM
n0n5

> M̃COM
n0n10

for the network
S{1,2,5,10,18,30}, this is not the case for the network S{1,2,5,10},
even though they differ only by the addition of two spokes.
In the smaller network M̃COM

n0n10
is the largest at high reach (low

�T ) (and in general the largest M̃COM
n0ip at high reach occurs

for the ip with the largest value of dn0ip in the network). The
ground-current centrality is not susceptible to such reshuffling
upon the addition of spokes because different spokes are elec-
trically independent when n0 is the network’s voltage source,
as in the calculation of M̃GCC

n0ip (see Sec. III A).
The Katz centrality on the S{1,2,5,10,18,30} network is qual-

itatively similar to the communicability centrality in Fig. 6,
reproducing the features discussed above. As with the com-
municability, M̃KC

n0n30
begins to overtake the other values of

M̃KC
n0ip as �T is reduced. However, the convergence fails before

it can overtake M̃KC
n0n5

.
The PageRank centrality reproduces HCC’s M̃n0i ranking

for all nodes except iP = nlong. In fact, M̃PRC
n0n1

= M̃PRC
n0nlong

for

all values of �PRC—therefore M̃PRC
n0nlong

is consistently tied for
the highest rank. This happens because the random walker
beginning on either n1 or nlong must traverse the edge to n0,
regardless of the weight of that edge. The result does not seem

FIG. 7. Selected values of α̃M̃GCC for the S{1,2,5,10,18,30} network. The same data are plotted on (a) log-linear and (b) log-log scales. Note
that the normalization factor α̃ depends on �c. Without α̃, M̃ values go to zero at small �c. The inset in (b) shows the detailed behavior of the
curves at high reach (low �C), where the values for all peripheral nodes ip become indistinguishable well before M̃n0nlong achieves the same

value. At all parameter values, the ground-current centrality reproduces the HCC’s intuitive centrality ordering on the M̃n0 i.
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FIG. 8. Closed Cayley trees with degree k and n generations.

reasonable, because the connection from n0 to nlong is meant
to carry very little influence.

Figure 7 shows that, for the ground-current centrality, the
ordering of the M̃GCC

n0ip matches the HCC ordering at all param-
eter values for all ip except nlong. In addition, the M̃GCC

n0nlong
is

ranked lowest at high reach (low �C), matching the weighted
HCC. While this matrix element is not ranked lowest at low
reach (high �C), Fig. 7(a) shows that it does not amount to
a significant centrality contribution at those parameter values.
The inset of Fig. 7(b) shows that, while all M̃n0ip values even-
tually converge as �C → 0, those for the peripheral nodes ip

other than nlong converge at much higher �C . This behavior is
reasonable, given that Dn0ip = 1 for all ip other than nlong, and
that Dn0nlong = 1000.

3. Regular networks

We have seen that (the exogenous forms of) several central-
ities under discussion reduce to degree centrality at low reach
(high �). In a sense, then, lower parameter values (higher
reach) are perturbations on the degree centrality. Therefore, it
becomes reasonable to factor out the contribution of nearest-

FIG. 9. Exogenous centrality values for the closed Cayley tree
with k = 3 and n = 7. In this network, all nodes at a given generation
are equivalent, so there are only eight unique data points. The param-
eter values for each centrality are chosen to give the largest possible
spread in the centrality values of the generations (ground-current:
�C = 0.010, communicability: �T = 0.202, PageRank: �PRC =
1.055). As discussed in the text, the Katz and PageRank centralities
are identical on this network. The communicability values are similar
but not equal to the Katz values. The horizontal line indicates the
value of 1/N , which coincides with the normalized degree centrality
values on this network.

FIG. 10. The weighted bottleneck network with length 5: B(L =
5). All but two of the edges have unit lengths. The two edges forming
the bottleneck have lengths of 10. They are depicted as thick lines in
the figure.

neighbor influence to probe each centrality method’s unique
characteristics. Testing on a k-regular network, where every
node has degree k, accomplishes this goal.

For k-regular networks, the communicability, Katz, and
PageRank—but not ground-current—centralities are always
trivial, with every node’s centrality value equal to 1/N . More
generally, this result obtains for any M that can be written as
a power series in the adjacency matrix: M(A) = a0I + a1A +
a2A2 + · · · . This is because A |1〉 = k |1〉, and so M(A) |1〉 is
proportional to |1〉 as well. Applying the normalization factor
from Eq. (1) results in |c〉 = αM(A) |1〉 = (1/N ) |1〉.

FIG. 11. Normalized (a) betweenness and (b) closeness results
on B(L = 15). Each nonwhite pixel corresponds to a node of B(L =
15). For readability, the color scale is chosen such that the maximum
centrality value (at given �) is black and the minimum nearly white.
The (normalized) centrality values corresponding to these colors are
reported for every �. A completely white region in the subfigures
indicates a lack of network nodes in that location.
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FIG. 12. Communicability centrality on B(L = 15). The full range of parameters is shown, in the sense that increasing or decreasing their
values does not alter the image. The parameters are equally spaced on a log scale. For comparison, the red-bordered subfigure illustrates the
centrality on the isolated L = 15 lattice, using a maximum reach �T value for that network, so that decreasing �T does not alter the image.
See the caption to Fig. 11 for details.

Equations (8) and (6), respectively, show that the com-
municability and Katz centralities display this degeneracy.
Equation (4) for the PageRank centrality shows the same, not-
ing that, for regular graphs the factor of Diag(|k−1〉) becomes
a scalar. Indeed, in the case of regular graphs, the PageRank
becomes identical to the Katz centrality with �KC = k�PRC.

It is still possible to achieve nontrivial results by remov-
ing the diagonal of M, i.e., using the exogenous forms of
these centralities, given by M̃. (On the other hand, the diag-
onal forms M tend to produce the inverse centrality ranking,
because M |1〉 = M̃ |1〉 + M |1〉.) Nonetheless, the centrality
values are still nearly identical, because the diagonal does not
account for a large fraction of the final centrality weight. In
general, the ground-current centrality results in nontrivial and
more varied centrality values for both M and M̃.

As a test case, we consider the modified Cayley trees de-
picted in Fig. 8. The (unmodified) Cayley tree is an acyclic
nearly regular network, defined by two parameters: k and n.
The first of these is the degree of every interior (i.e., nonleaf)
node, while the second is the number of generations grown
out from the central generation-0 node. For m � 1, the mth
generation contains k(k − 1)m−1 nodes. Cayley trees have the
special property that it is intuitive which nodes are more
central than others: the lower the generation, the higher the
centrality, in accordance with the harmonic closeness, HCC.

This is because, as can be seen in Fig. 8, lower-generation
nodes are closer to the center, while higher-generation nodes
are more peripheral. To arrive at the modified Cayley tree, we
add edges to every leaf node, resulting in a k-regular graph.

The new edges are added in such a way as to keep the leaf
nodes on the network’s periphery and the lower-generation
nodes closer to the center. This “tree closure” method, de-
scribed below, can be employed for all odd values of k.
However, here we report centrality results only for k = 3 and
n = 7, since results are qualitatively similar for other values
of k and n. To “close” a k = 3 Cayley tree, every leaf node
i makes two additional connections. The closest leaf node to
i, which lies graph distance d = 2 away, is skipped. Then i is
connected to the next-closest two leaf nodes, a graph distance
d = 4 away. This produces a symmetric network, where every
node at a given generation is equivalent. The HCC ordering is
unaffected by the addition of these edges.

All the centralities under discussion reproduce the HCC
centrality hierarchy: lower generation nodes have higher
centralities. However, the centralities other than the ground-
current centrality are nearly trivial. In Fig. 9 we plot the
centralities for the parameters that produce the largest range
between the centrality values of the 0th and nth generation
nodes. For consistency, we have used the exogenous (M̃)
forms of every centrality. However, the full (M) ground-
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FIG. 13. PageRank centrality on B(L = 15). See the caption to Fig. 11 for details. Here the red-bordered subfigure illustrates the centrality
on the isolated L = 15 lattice at very low reach.

current centrality is very similar. The full form of the other
centralities leads to the trivial result of centrality values of
1/N for every node, illustrated by the horizontal line in the
figure. However, for the other centralities, even the exogenous
form does not produce much deviation from 1/N .

The analysis presented here also leads to similar results
when applied to square-lattice segments, made into regular
networks by the addition of multiedges along the periphery.
Based on these considerations, we propose that the ground-
current centrality is a reasonable choice for discriminating
central and noncentral network structure in regular graphs.
This may also be true for nearly regular graphs, such as the
street networks of cities that have gridlike layouts.

4. Networks with bottlenecks

The ground-current centrality is the only radial reach cen-
trality in Table I that is based entirely on a single acyclic,
conserved flow. As a result, it is more sensitive to bottlenecks
than the other centralities.

a. Lattices with a bottleneck. We have argued that, of
all the reach-parametrized centralities considered here, the
ground-current centrality is the only centrality that reproduces
intuitive centrality orderings on a range of networks. To this
end, we have showed that it matches the centrality rankings
specified by the harmonic closeness. In this section, we further
show that the ground-current centrality also captures intuitive

aspects of the betweenness centrality when applied to net-
works with bottlenecks.

To show that the ground-current centrality independently
captures aspects of harmonic closeness and betweenness, we
construct a network to which those two centralities assign
very different centrality rankings. Consider the weighted bot-
tleneck network B(L = 5) depicted in Fig. 10. It consists of
two L × L square sublattices, connected by a single bottleneck
node. All edges have unit length, except for the two edges
incident on the bottleneck node, which have length 10. The
weighting of these edges helps distinguish the harmonic close-
ness and the (weighted [31]) betweenness on this network, as
shown in Fig. 11.

The addition of the bottleneck node significantly changes
the structure of the network by increasing the number of nodes
reachable from the peripheral regions of the two sublattices.
It is remarkable, then, that the communicability, Katz, and
PageRank centralities are largely insensitive to the bottleneck
node’s inclusion.

Consider Fig. 12, which depicts the exogenous communi-
cability centrality values c̃COM on B(L = 15) on a range of �T

values. (The results in this section also hold for other values of
L.) The full range of parameters is shown, in that increasing or
decreasing the parameter values does not alter the image. The
bottom-right portion of the figure confirms that the exogenous
centrality is proportional to the degree centrality at low reach
(high �): all nonperipheral nodes have the identical, highest
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FIG. 14. Ground-current centrality on B(L = 15). See the caption to Fig. 11 for details.

centrality rank. As the the reach is increased (� decreased),
the region of high centrality rank shrinks towards the middle
of each sublattice, largely insensitive to the presence of the
bottleneck node. The top-left portion of the figure shows the
high-reach (low �) centrality values of the isolated L = 15
lattice: its centrality ranks are almost indistinguishable from
the sublattices of B(L = 15). The Katz centrality behaves
similarly, and so is not pictured.

The PageRank is also insensitive to the bottleneck, as seen
in Fig. 13. There the top-left portion shows that the PageRank
reduces to degree centrality at high reach (low �), unlike
the communicability, Katz, and ground-current centralities.
As the reach is decreased (� increased), the centrality ranks
remain largely symmetric within each sublattice, regardless of
proximity to the bottleneck node. The bottom-right portion of
the figure shows that the resulting pattern is very similar to
that produced by PageRank on an isolated L = 15 lattice.

In contrast, the high-reach ground-current centrality is
highly sensitive to the presence of the network’s bottleneck, as
shown in Fig. 14. At intermediate reach (�C = 0.00674), the
centrality ranks within the sublattices are very similar to those
of the isolated lattice at high reach (�C = 0.00002), shown
in the figure’s top left. The rankings are also similar to the
harmonic closeness centrality of Fig. 11(b). While increasing
the reach (lowering �C) does not change the centrality pattern
in the isolated lattice, it has a large effect on the weighted
bottleneck network. The figure shows that the region of high
centrality contracts tightly around the bottleneck as �C → 0,

creating a pattern much more similar to the betweenness cen-
trality of Fig. 11(a).

b. Bottlenecks in real networks. The ground-current cen-
trality’s sensitivity to bottlenecks at high reach is also present
in real networks. Here we use high-betweenness nodes as a
proxy for bottleneck structures. We compare the between-
ness and the communicability, PageRank, and ground-current
centralities as applied to seven example networks, including
the previously discussed kangaroo network, Florida power
grid network, and weighted bottleneck network B(L = 15).
We also analyze the Italian power grid previously studied in
Ref. [33]. The unweighted C. elegans network [32] consists
of 277 nodes corresponding to the majority of the nematode
worm’s neurons. The nematode is well studied in network
theory [38,39] and neuroscience [40] because it has one of
the simplest neural structures of any organism. Here we ana-
lyze only the undirected version of this network. Finally, we
analyze the largest connected component of the vole trapping
network from [34,35], depicted in Fig. 15. The network’s 118
nodes represent voles, while its 283 edges link voles that were
caught in the same trap during a particular trapping session,
where the integer edge weights correspond to the number of
times they were trapped together. This network is different
from the other real networks under consideration because
it has high-betweenness nodes that do not also have high
degree.

We quantify the preference of a centrality X for bottlenecks
by the ratio fX: the number of nodes that are highly ranked

052308-14



ADJUSTABLE REACH IN A NETWORK CENTRALITY … PHYSICAL REVIEW E 103, 052308 (2021)

FIG. 15. Vole trapping network [34,35]. The black nodes are
those in the top 5% of betweenness rank. The gray nodes are, at high
reach, those in the top 5% exogenous communicability centrality
(equivalently, eigenvector centrality) rank. They are the two nodes
with the highest weighted degree and some of their high-degree
neighbors.

in both X and betweenness divided by the number of nodes
that are highly ranked in betweenness. (Here, “highly ranked”
means “in top 5%”.) This measurement is illustrated for
the exogenous communicability and the exogenous ground-
current centralities in Figs. 16 and 17. The solid curves in
the figures indicate the centrality values of the nodes in the
corresponding networks (respectively, the unweighted version

FIG. 16. (a) Exogenous communicability centrality on the un-
weighted Florida power-grid network. (b) Exogenous ground-current
centrality on the unweighted Florida power-grid network. The black
curves correspond to nodes in the top 5% of betweenness rank.
All the curves above the dashed red line correspond to nodes in
the top 5% of (a) exogenous communicability and (b) exogenous
ground-current centrality rank. See the text for details.

FIG. 17. (a) Exogenous communicability centrality on the vole
network [34,35]. (b) Exogenous ground-current centrality on the vole
network. For details, see the text and the caption to Fig. 16. The black
lines correspond to the black nodes in Fig. 15.

of the Florida power grid depicted in Fig. 4, and the trapping
network of voles depicted in Fig. 15). The thick black curves
correspond to nodes that lie in the top 5% of betweenness
rank. The dotted red curve indicates the cutoff for high cen-
trality: all the values above this curve lie in the top 5% of
communicability centrality in part (a) or ground-current cen-
trality in part (b). The centrality’s sensitivity to bottlenecks is
measured as the fraction f of thick black curves that lie above
the dotted red curve. (In these, and the following, figures, we
use a scaled form of � that is constrained to lie between zero
and one. See Appendix D for details.)

Figures 16 and 17 also illustrate the unique properties of
the vole network. The low-reach (high parameter) region in
these plots display the networks’ degree centralities. Unlike
the unweighted Florida power grid network, the vole network
has no high-betweenness nodes in the upper ranks of degree
centrality. This absence of high-betweenness nodes persists
across most of the parameter range, for both the communica-
bility and the ground-current centrality. At very high reach,
the ground-current centrality assigns close to equal impor-
tance to every node. However, the high-betweenness nodes
rise in relative rank. As a result, the fraction fGCC quickly rises
from zero at low �C .

The values of f are reported in Fig. 18. In Fig. 18(a)
the communicability centrality is not sensitive to bottlenecks:
for all but one of the networks under consideration (the
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FIG. 18. Fractions of high-betweenness nodes among nodes with high (a) exogenous communicability, (b) exogenous PageRank Centrality,
and (c) exogenous ground-current centrality. The fraction in (a) is equal to zero at all parameter values for both the vole network and the
kangaroo network. The fraction in (b) is equal to zero at all parameter values for the kangaroo network. The crosses in (c) depict the fractions
of high-betweenness nodes among nodes with high harmonic closeness centrality (HCC). These are always less than or equal to the highest
fractions obtained by the ground-current centrality.

unweighted Florida grid), fCOM is maximized at large �T ,
where cCOM is equivalent to the degree centrality. Note that
fCOM is zero for the vole network at all parameter values.
This is because the high-betweenness nodes do not have the
highest degrees and are not in the most highly connected
regions of the network. Figure 18(b) shows that the PageRank
centrality is also not sensitive to bottlenecks. In three out of
the seven example networks, fPRC is maximized at high reach
(low �PRC), which for PageRank is equivalent to the degree
centrality. In the other four cases, the amount of variation in
fPRC is small.

This is in sharp contrast to fGCC, illustrated in Fig. 18(c).
In every example network except the Florida grid, the highest
value of fGCC is achieved at the lowest �c (highest reach),
and these maxima are significantly larger than the values at
large �C , which is equivalent to degree centrality. Notably,
fGCC is very high for the vole and kangaroo networks, which
had fCOM = 0 for all �T . The low-�c values of fGCC are
also greater than or equal to the values fHCC for the harmonic
closeness centrality, as indicated by crosses in the figure. We
note that fGCC for the kangaroo network undergoes a sharp
transition from 0 to 1 as the Scaled �C approaches 10−5 from
above. (As mentioned in Appendix D.)

In summary, the ground-current centrality at high reach
captures features of the betweenness centrality, assigning high
ranks to bottleneck nodes.

5. Localization

Centrality localization [14,41] describes the situation when
a small number of nodes account for a large fraction of the
total centrality. (This can be viewed as a generalization of
Freeman’s centralization metric [42].) As shown in Fig. 9,
the communicability, Katz, and PageRank centralities exhibit
virtually no localization on closed Cayley trees, since the
centrality values of all nodes are nearly equal. In Ref. [14]
the amount of localization of a square-normalized centrality c
is measured with the inverse participation ratio (IPR):

IPR(c) =
∑

i

c4
i . (14)

The minimum IPR value for a network of size N is 1/N , and
occurs in the trivial case where all centrality values are iden-
tical. The largest value of IPR(̃cCOM)N for the closed Cayley
tree (k = 3, n = 7), across all possible parameters, is approx-
imately 1.004. The fact that this is close to 1 confirms that
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� �

FIG. 19. (a) The IPR of c̃COM and (b) the Gini coefficient of c̃COM for our example networks. The IPR is plotted on a log scale. The network
labeled “circuit” is the electrical circuit network 838 from the ISCAS 89 benchmark set. The low-reach (scaled � ≈ 1) results are equivalent
to those of the degree centrality. The high-reach results (scaled � ≈ 0) results are equivalent to those of the eigenvector centrality.

localization is absent to the extent that the centrality is nearly
trivial. The ground-current centrality is still highly unlocal-
ized, but farther from the trivial limit: IPR(̃cGCC)N ≈ 2.243.

While the communicability centrality exhibits little local-
ization (is nearly trivial) in the case of regular networks, in
many cases it exhibits so much localization that most nodes
have centralities that are nearly zero. In Ref. [14] it is shown
that networks with prominent hub nodes (i.e., nodes directly
connected to a large number of other nodes) lead to highly
localized eigenvector centrality, which is the high-reach limit
of communicability centrality. Among the networks studied
by the authors is the electrical circuit network 838 from the
ISCAS 89 benchmark set [36]. The maximum IPR value for
any network is 1, and occurs when all nodes but one have zero
centrality. The eigenvector centrality for the circuit network
has relatively high localization: IPR ≈ 0.179, corresponding
to very little centrality assigned to nodes other than the hub
node and its neighbors. Thus we see that in cases of both high
and low localization, the centrality is not informative about
most of the nodes in the network.

Hub networks are not the only network architecture that
leads to strongly localized eigenvector centralities. For exam-
ple, the vole network eigenvector centrality leads to IPR ≈
0.218. Here, the localization is due to nodes with high
weighted degree that do not have high unweighted degree,
and so are not hubs in the usual sense. See Fig. 15 for an
illustration. Here the top 5% of nodes in eigenvector centrality
rank account for about 87% of the total centrality.

Another metric of localization is the Gini coefficient,
frequently used by economists to quantify wealth or

income inequality [43]. The simplest definition is the
following weighted average of centrality differences:

Gini coefficient (c) =
∑N

i

∑N
j |ci − c j |

2(N − 1)
∑N

i ci

. (15)

An advantage of the Gini coefficient over the IPR is that
the latter is constrained between 0 (trivially unlocalized) and
1 (maximally localized) for all networks. We report similar
results with both metrics, though the Gini may be easier to
interpret. For example, the Gini coefficient for the eigenvector
centralities of the circuit and vole networks are approximately
0.780 and 0.939, respectively, which indicates significant lo-
calization.

So far we have considered only the eigenvector centrality,
which is the high-reach limit of the communicability cen-
trality. The IPR and Gini coefficient values for all parameter
values of the exogenous communicability centrality, as ap-
plied to all the considered example networks, are reported in
Figs. 19(a) and 19(b), respectively. The localization almost
always increases with increasing reach, and in several cases it
reaches values indicating a significant degree of localization.
At high reach, the vole network scores higher than the circuit
network on both localization measures. The Italian power grid
network scores similarly to the circuit network on the Gini
coefficient. This result is reasonable: the top 5% of nodes in
eigenvector centrality rank account for approximately 44%
of all centrality, indicating the presence of localization. In
general, as can be seen in Fig. 19(b) the communicability
centrality cannot produce unlocalized results, except in the

� �

FIG. 20. (a) The IPR of c̃GCC and (b) the Gini coefficient of c̃GCC for our example networks. See the caption to Fig. 19. Crosses represent
the values of the nonbacktracking centrality (NBC) [14], based on the Hashimoto matrix [45].
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case of regular networks as discussed in Sec. IV B 3, or in
the case of nearly regular networks such as B(L = 15).

The pattern is reversed with the ground-current centrality,
which tends to produce unlocalized centrality values. The IPR
and Gini coefficient for the exogenous ground-current central-
ity are shown in Figs. 20(a) and 20(b), respectively. Almost
always, the localization values decrease with increasing reach.
At very high reach they invariably reach the minimum values
(N−1 for IPR, 0 for Gini), since the ground-current centrality
always produces uniform centrality in the limit of high reach.
However, this occurs only at very high reach, meaning that
the centrality is unlocalized, but not trivial. In general, the
Gini coefficients are between 0.15 and 0.50 for much of the
parameter range. For comparison, the range of Gini coeffi-
cients for income across all nations is 0.24 to 0.63, according
to the World Bank [44]. The crosses in the figure represent
the IPR and Gini values for the nonbacktracking centrality
(defined only for unweighted networks), which is presented
in Ref. [14] as a nonlocalizing alternative to the eigenvector
centrality.

V. CONCLUSION: ACYCLIC, CONSERVED-FLOW
CENTRALITIES

Network centrality measures can be described as more
or less appropriate only relative to the specific demands
of a given application. Here we have shown that the
ground-current centrality is particularly well suited for
purposes requiring low localization. However, there may be
situations in which it would be desirable to pick out only
some important nodes from a network. In this case, high
localization would be desirable, and both the ground-current
centrality and the nonbacktracking centrality from [14] would
be inappropriate choices.

A key aim of centrality research is to identify the prop-
erties that may render a centrality more or less useful in
different situations. To aid in this task, we have expanded
Borgatti’s centrality typology [9,10] to categorize the proper-
ties of parametrized centralities (see Table I). In expanding
the typology, we introduced the reach-parametrized and
grasp-parametrized categories. [From this perspective, the
communicability centrality is a reach-parametrized centrality
that increases localization with increasing reach (Fig. 19),
while the ground-current centrality is a reach-parametrized
centrality that decreases localization with increasing reach
(Fig. 20).] Along with the reach vs grasp distinction, we
categorize parametrized centralities as to their Walk Position
(radial vs medial), as well as whether they are based on acyclic
and conserved flows.

The utility of the ground-current centrality stems from
its unique position in this classification system. The ground-
current centrality is the only radial reach-parametrized
centrality based on acyclic, conserved flows (see Table I and
Sec. II D 5). As a result, it closely matches intuitive as-
pects of the harmonic closeness and betweenness centrality
orderings, unlike the PageRank, Katz, and communicability
centralities. It is noteworthy that the closeness and between-
ness are, respectively, the low-grasp limits of the conditional
resistance-closeness and the conditional current-betweenness
centralities introduced in Ref. [3], which are also based on

acyclic, conserved flows. This behavior is demonstrated on
a variety of networks, including line networks, star networks,
regular networks, and networks with bottlenecks, as discussed
in Sec. IV B. The reason is that, with acyclic, conserved flows,
influence cannot get trapped in any part of the network; as the
reach is increased, the influence must always flow toward as
yet unvisited nodes [46]. We now consider how this manifests
on the types of networks listed above.

In the line network (see Sec. IV B 1 the random walkers of
the PageRank centrality “bounce” off the end nodes, so that
walkers on nodes near the periphery are less likely to leave the
periphery than walkers near the center are likely to leave the
center. This leads to a higher centrality for peripheral nodes.
(However, end nodes have the lowest centrality of all, because
all walkers on them have no choice but to leave.) This scenario
cannot occur with acyclic centralities, because “bouncing” off
the end node always creates cycles of length 2.

For cyclic centralities on the closed Cayley tree (see
Sec. IV B 3), influence that originates on the periphery is
less likely to arrive at the center node than it is to stay on
the periphery. This is because all nodes have the same de-
gree, and so the influence is not biased toward the center.
The same reasoning holds for any regular network that has a
central location. In acyclic centralities like the ground-current
centrality, all sufficiently high-reach (and thus long) paths
must pass through the center. Thus, the ground-current cen-
trality provides a sensitive, nonlocal measure of centrality
for regular networks (see Fig. 9). We propose that it may
also be the appropriate choice for nearly regular networks,
such as the Manhattan street grid, though further study is
needed.

The weighted bottleneck network B (see the first part of
Sec. IV B 4) behaves similarly to regular networks: cyclic-
centrality influence originating in one of the sublattices is
likely to stay there, since the nodes there have higher degrees
than the bottleneck nodes. In acyclic centralities, all suffi-
ciently long paths must pass through the bottleneck node. This
reasoning also holds for real networks with bottlenecks (see
the second part of Sec. IV B 4), where the ground-current cen-
trality prefers high-betweenness nodes at high reach (low �C).
For example, the high-betweenness nodes in the vole network
(black nodes in Fig. 15) do not have very high weighted or
unweighted degree. At high reach (low �T ), the highest com-
municability centrality (gray nodes) occurs in nodes with high
weighted degree, near clusters of high unweighted degree. The
influence is trapped in these parts of the network, just as it was
in the sublattices of B. In contrast, the acyclic ground-current
centrality must pass influence through the high-betweenness
nodes when the reach (and thus the path length) is sufficiently
high; see Figs. 16–18.

The cyclic nature of the communicability and eigenvector
centralities also contributes to their tendency toward strong
localization on some networks (see Sec. IV B 5). In Ref. [14]
the nonbacktracking centrality is used as a less localizing
alternative. It is based on the Hashimoto matrix [45], whose
definition prevents influence from traveling in cycles of length
2. The ground-current centrality does not allow influence to
travel in cycles of any length, and consequently tends to have
even less localization than the nonbacktracking centrality, as
seen in Fig. 20.
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In addition to being acyclic, the ground-current central-
ity is based on conserved, rather than duplicating, flows.
(Though cyclicity and duplication are generally independent
dimensions of centrality type, Table I demonstrates that they
coincide for the metrics considered here.) The reliance on du-
plicating flows leads the communicability (and Katz) rankings
to deviate from those of the other centralities in the subdi-
vided star network S (see Sec. IV B 2). As shown in Fig. 6,
communicability influence originating on the central node n0

of S{1,2,5,10,18,30} flows primarily to n30 at high reach (low
�T ). This is paradoxical because n30 is the node at the highest
unweighted distance from n0. The situation is explained by the
pattern of influence duplication within the communicability
centrality, defined in Eq. (8). There each factor Al corresponds
to influence traveling l steps, duplicating at every node in
proportion to its weighted degree. Because nodes on the n30

spoke have the highest weighted degrees in the network, most
of the duplication occurs there. In fact, when the reach (and
therefore l) is high, ≈99.4% of the influence is created along
the n30 spoke, even though its original source is n0. As a result,
n30 receives the highest centrality.

Thus, the high-degree regions of a network are doubly
challenging for the communicability centrality and similar
measures. Because of cyclicity, influence tends to get trapped
in these areas and, because of duplication, even more influ-
ence is created there. These phenomena can lead to very high
centrality localization [14]. However, these situations do not
arise with the acyclic, conserved (nonduplicating) ground-
current centrality.

In summary, the unique features of the ground-current
centrality arise from its position in the classification system
of Table I, which encompasses parametrized measures of
two types: reach and grasp. The ground-current centrality
is the only acyclic, conserved measure with parametrized
reach. Furthermore, the other acyclic, conserved centralities
have more complicated descriptions and formulas, since grasp
parametrization requires more involved calculations [3]. Real-
world processes on networks usually have limitations on both
travel distance (reach) and the number of paths that can be
traveled (grasp). An appropriate choice of � is required to
apply parametrized centralities to study such processes. We
are currently developing methods to quantify the levels of
reach and grasp across different centrality measures.
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APPENDIX A: COMMUNICABILITY BETWEENNESS
AND SIMILAR CENTRALITIES

The communicability betweenness centrality (CMB) [6] is
described by

MCMB
i j (�T ) =

∑
s

exp(A/�T )s j− exp(A/�T −E(i)/�T )s j

exp(A/�T )s j
,

where i 	= s, i 	= j, s 	= j. (A1)

Here E(i) is the ith row and column of A, with zeros else-
where, so the numerator quantifies i’s contribution to the
communicability MCOM

s j of s and j. In this context, �T , usu-
ally a reach parameter, acts as a grasp parameter. This works
similarly to the conditional current in Ref. [3]: as the reach is
decreased, the shortest path between s and j becomes domi-
nant. While the numerator goes to zero, the denominator does
as well, which allows for a finite contribution.

This technique can be generalized to convert any ra-
dial reach-parametrized centrality into a medial grasp-
parametrized centrality. The effect of the expression A − E(i)
is simply to remove node i, resulting in a modified network.
From there, the fractional differences in centrality between the
original and modified networks are calculated. For example,
the resulting grasp-parametrized medial form of the Katz cen-
trality would be

Mi j (�T ) =
∑

s

∑
l

(
Al/�l

T

)
s j − ∑

l

(
[A − E(i)]l/�l

T

)
s j∑

l

(
Al/�l

T

)
s j

,

where i 	= s, i 	= j, s 	= j.

APPENDIX B: THE REDUCED LAPLACIAN ASSIGNS
V = 0 TO THE REMOVED NODE

Resistor networks are described by the system of equations
|I〉 = L |V 〉, where L is defined in terms of the elements of
the conductance matrix ci j . This system is underdetermined
when solving for |V 〉 because of the gauge invariance of
the scalar potential; this fact is captured by the equation
L |1〉 = 0. Standard methods to solve this underdetermined
system include (a) using the pseudoinverse of the Laplacian
matrix L and (b) removing one node g from the network,
leaving (N − 1)-dimensional reduced vectors |V 〉red and |I〉red,
and the (N − 1) × (N − 1)-dimensional reduced matrix Lred.
With the latter method, the resulting system is no longer
underdetermined and can be solved with standard matrix in-
version. Here we show that this forces the gauge such that the
potential of the removed node is zero, hence g for “ground.”
This result is commonly quoted, but the explanation is almost
always omitted and is included here for completeness.

Consider the description of the unreduced linear system in
terms of the reduced one:

L |V 〉 = |I〉

= = =(∑
i cgi −〈cg|

− |cg〉 Lred

) (
Vg

|V 〉red

)
=

(
Ig

|I〉red

). (B1)

Here we have, without loss of generality, chosen g to be the
node in position one, and the vector |cg〉 is defined to have ith
element equal to cgi. Note that, by the solution of the reduced
problem, |V 〉red = (Lred )−1 |I〉red. With this substitution, the
second row of the multiplication in Eq. (B1) results in

|I〉red = − |cg〉Vg + |I〉red , (B2)

which forces Vg = 0, as claimed.
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APPENDIX C: ASYMPTOTIC FORMS OF THE
GROUND-CURRENT CENTRALITY

In this Appendix, we derive the limiting values of both
variants of the ground-current centrality in the regimes of
both high and low ground conductances. To demonstrate the
robustness of our reasoning, we will not rely on the physical
analogy with current flow; all calculations will follow solely
from the matrix formula Eq. (12).

Here we consider an arbitrary vector |C〉 of ground con-
ductances, and so rather than �C , we rely on the the average

ground conductance: 〈�C〉 def= N−1 ∑
i Ci = N−1Ctot. When

all ground conductances are identical, as in Eq. (13), 〈�C〉
reduces to �C . When analyzing the limiting behavior of the
centrality, we consider only cases in which all ground conduc-
tances are small or all are large, though there may be relative
fluctuations around the average value 〈�C〉.

1. Precise calculation of the low 〈�C〉 limits

The general form of the ground-current centrality depends
primarily on the elements of the matrix [L + Diag(|C〉) ]−1,
and the low 〈�C〉 limit of the centrality can be extracted from
the low 〈�C〉 limit of the matrix. As 〈�C〉 goes to zero, the
[L + Diag(|C〉) ]−1 matrix ceases to converge because L is
singular. The manner of the divergence of this matrix can
be specified precisely by using the eigendecomposition as
follows.

We separate out the asymptotic portion of the matrix by
writing it in terms of the diagonal matrix Q with elements
Qii = √

Ctot/Ci. This “quotient matrix” is convenient because
it is invariant under a uniform scaling of the Ci, so does
not depend on the value of 〈�C〉. Furthermore, Q satisfies
Q Diag(|C〉) Q = ICtot = I 〈�C〉N . We can then write

[L + Diag(|C〉) ]−1 = Q[QLQ + I 〈�C〉N]−1Q. (C1)

From the well-known fact that all symmetric graph Lapla-
cians are positive semidefinite, we have that the matrix QLQ
has all eigenvalues λi � 0. In fact, there is only one eigenvalue
equal to zero: λ0 = 0, with corresponding normalized eigen-
vector |v0〉 such that |v0〉i = √

Ci/Ctot . This is because Q is
invertible and the entire nullspace of L is spanned by |1〉, thus
the nullspace of QLQ is spanned by the vector |v〉 satisfying
Q |v〉 = |1〉.

Therefore we have

QLQ = |v0〉 0 〈v0| +
N−1∑
i=1

|vi〉 λi 〈vi| ,

where the eigenvectors |v〉 of QLQ form an orthonormal
basis. With the addition of the identity matrix term, we are
able to take the inverse:

[QLQ + I 〈�C〉N]−1 = |v0〉 (〈�C〉N )−1 〈v0|

+
N−1∑
i=1

|vi〉 (λi + 〈�C〉N )−1 〈vi| .

As 〈�C〉 approaches 0, the first term dominates because all the
λi are greater than 0:

[QLQ + I 〈�C〉N]−1 ≈ |v0〉 (〈�C〉N )−1 〈v0| , (C2)

[L + Diag(|C〉)]−1 = Q[QLQ + I 〈�C〉N]−1Q

≈ |1〉 (〈�C〉N )−1 〈1| , (C3)

where Eq. (C3) comes from Eq. (C1) and the definition of Q.
Using this result in Eq. (12), we find that

ci = 〈�C〉N = Ctot, (C4)

Mi j = Cj . (C5)

This is the same result that was obtained when reasoning
about the physical properties of resistor networks in the low
〈�C〉 limit.

A seeming difficulty in the preceding is posed by the possi-
bility of zero ground-conductance values, since the Q matrix
will then have infinitely large entries. However, since the
contribution of the Q matrices cancels out in Eq. (C3), we see
that the results hold for arbitrarily small ground-conductance
values. As a result, Eq. (C4) still holds for the exogenous
ground-current centrality, with only the caveat being that diag-
onal elements of M̃ are 0 because self-influence is disallowed.
As a result, the exogenous form will have c̃i = Ctot − Ci.

2. Precise calculation of the high 〈�C〉 limits

The high 〈�C〉 limit of the ground-current centrality can be
found transparently from the limiting form of Eq. (12):

ci → lim
〈�C〉→∞

1/[L + Diag(|C〉) ]−1
ii = Ci,

Mi j → lim
〈�C〉→∞

ci[L + Diag(|C〉) ]−1
i j Cj = δi j Cj . (C6)

This is again in agreement with the behavior of physical
resistor networks, as described in Sec. III C.

The above limiting procedure fails in the case of the exoge-
nous ground-current centrality. Recall that for this measure,
the diagonal elements M̃ii are set to zero by construction.
While Eq. (C6) shows that the diagonal component of the ma-
trix [L + Diag(|C〉) ]−1 becomes dominant in the high 〈�C〉
limit, we are now looking for the significantly smaller off-
diagonal terms. These terms can be found by utilizing the
well-known Woodbury matrix identity [47]:

[A + UCV ]−1 = A−1 − A−1U [C−1 + VA−1U ]−1VA−1,

where double-struck letters refer to arbitrary, but compatibly
sized matrices. Here, we take A = Diag(|C〉), U = L, and
C = V = I, for the identity matrix I. Let us denote the in-
verse of Diag(|C〉) as D, where Di j = δi jC

−1
j . In the high

〈�C〉 limit, D will approach zero. Applying the formula,
Eq. (C6) becomes

Mi j =
(D − DL[I+DL]−1D)i j

(D−DL[I+DL]−1D)ii
Cj

large〈�C〉−→ (D − DLD)i j

(D−DLD)ii
Cj,

(C7)
where we have kept only terms up to second order in D.

Here we can see that, in the high 〈�C〉 limit, Mii ap-
proaches the value of Ci, which is diverging. This is an
illustration of the dominance of the diagonal seen in Eq. (C6).
For the exogenous centrality (M̃), however, only the off-
diagonal elements are needed; they are found by taking the
second term in the numerator and the first term in the denom-
inator of the preceding equation. This is because in the latter
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case we are free to throw away O(D2) terms, but in the former
the O(D2) terms are all that remain off diagonal. The result,
using the definition of the Laplacian matrix [with the diagonal
weighted degree matrix Diag(|k〉)], is

M̃i j : j 	=i
large 〈�C〉−→ −{D[Diag(|k〉) − A]D}i j : j 	=i

Dii
Cj

= (DAD)i j

C−1
i

Cj = C−1
j Ai jC

−1
i

C−1
i

Cj = Ai j . (C8)

(Here we have dropped the j 	= i after the first equals sign
because DAD has zeros on the diagonal.)

Thus, the exogenous ground-current centrality matrix re-
duces to the adjacency matrix in the limit of large 〈�C〉. This
behavior is what motivates the introduction of this variant of
the ground-current centrality.

Finally, we underscore that the asymptotic reasoning in this
section works only when every element of |C〉 goes to infinity
with 〈�C〉, i.e., |C〉 = 〈�C〉|̃C〉, where every term in |̃C〉 does
not approach zero. Thus, O(D2) is equivalent to O(〈�C〉−2).

APPENDIX D: SCALED PARAMETERS

The horizontal axis in many of the figures in Sec. IV B uses
a rescaled form of the parameters �T , �PRC, and �C . This
is done because parameter values for different networks are,

in general, not comparable: e.g., �T = 2.5 means something
very different for the kangaroo network (see Fig. 1) than
it does for the Florida power-grid network (Fig. 4). In the
former, there is almost no variation in the centrality values at
�T � �left

T = 8.25, while in the latter, �T ≈ 2.5 is a region of
dramatic variation (while stability is obtained at �T � �left

T =
0.40657). Specifically, the left boundary �left of the varying
region is calculated to be the largest parameter that satisfies

�ci(�)/ci(�)

��/�
< .001, ∀i,∀� < �left, (D1)

with the right boundary �right being defined similarly. The
parameter range between �left and �right accounts for the vast
majority of variation in the centrality values.

The dimensionless quantity �ci (�)/ci (�)
��/�

is the discrete
derivative of the log-log centrality plot [such as the one in
Fig. 6(b)]. Because the PageRank centrality fails to con-
verge at �PRC < 1, it is appropriate to plot log cPRC against
log(�PRC − 1). This replaces ��/� with ��/(� − 1) in
Eq. (D1).

To plot our results for several different networks on the
same axes in Figs. 18–20, we produce a “scaled �” where all
relevant parameter values are constrained between zero and
one:

scaled � = (� − �left )/(�right − �left ). (D2)
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