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Models of complex networks often incorporate node-intrinsic properties abstracted as hidden variables. The
probability of connections in the network is then a function of these variables. Real-world networks evolve over
time and many exhibit dynamics of node characteristics as well as of linking structure. Here we introduce and
study natural temporal extensions of static hidden-variable network models with stochastic dynamics of hidden
variables and links. The dynamics is controlled by two parameters: one that tunes the rate of change of hidden
variables and another that tunes the rate at which node pairs reevaluate their connections given the current values
of hidden variables. Snapshots of networks in the dynamic models are equivalent to networks generated by the
static models only if the link reevaluation rate is sufficiently larger than the rate of hidden-variable dynamics or
if an additional mechanism is added whereby links actively respond to changes in hidden variables. Otherwise,
links are out of equilibrium with respect to hidden variables and network snapshots exhibit structural deviations
from the static models. We examine the level of structural persistence in the considered models and quantify
deviations from staticlike behavior. We explore temporal versions of popular static models with community
structure, latent geometry, and degree heterogeneity. While we do not attempt to directly model real networks,
we comment on interesting qualitative resemblances to real systems. In particular, we speculate that links in
some real networks are out of equilibrium with respect to hidden variables, partially explaining the presence
of long-ranged links in geometrically embedded systems and intergroup connectivity in modular systems. We
also discuss possible extensions, generalizations, and applications of the introduced class of dynamic network
models.
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I. INTRODUCTION

Networks are ubiquitous in nature [1–9], and their study
relies heavily on the mathematical and computational analysis
of simple models [10,11], typically in the form of random
networks built according to some stochastic rules. In many
models, nodes are assigned characteristics (such as fitnesses
[12,13] or spatial coordinates in a physical [14] or latent
space [15–17]), which in turn affect the network’s structural
formation. Such models fall under the umbrella of hidden-
variable (HV) models [18] because they depend on internal
node characteristics that are only implicitly expressed by the
network structure through effects on link formation. Usu-
ally, HVs are not externally specified as parameters; rather,
their probability distribution is specified [12,19] and they
are sampled during the network’s formation. Two sources
of randomness underly such networks: the random HVs
of nodes and the random formation of edges given those
HVs. In general, HV models are defined by the following
procedure:

(1) A random HV configuration H is drawn with proba-
bility density ρ(H ) from a set of possible HV configurations
H.

(2) Graph G is then drawn with conditional probability
P (G|H ) from a set of possible graphs G.

As a result, the overall probability of sampling any partic-
ular graph G ∈ G is equal to

P (G) =
∫
H
P (G|H )ρ(H )dH. (1)

HV models, due to their capacity to encode nodewise
heterogeneity, are in many cases capable of exhibiting more
structural realism than models without HVs. For example,
HVs underly network models incorporating realistic fea-
tures such as community structure (stochastic block models
(SBMs) [20]), latent geometry (random geometric graphs
(RGGs) [21]), and degree heterogeneity (soft configuration
models (SCMs) [22]).

However, such models do not capture the dynamics of node
characteristics nor the impact thereof on network structure.
The influence of dynamic node states on evolving link struc-
tures has been investigated in the context of adaptive networks
[23–28], but in that case node states arise due to a highly
complex feedback, interacting with one another through co-
evolving links. Such models are more realistic and have
interesting features but they do not directly explore the impact
of dynamic node properties on dynamic network structure.

There is a wide abundance of real-world examples of dy-
namic node properties influencing the dynamics of network
structure, such as:
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(a) changing habits, interests, jobs, and other attributes of
people in social networks [29],

(b) changing geospatial coordinates of organisms during
formation of social ties, group-memberships, and pathogenic
contact networks [30–34],

(c) changing phenotypic traits of species as they biologi-
cally evolve in ecological networks [35,36],

(d) changing marketing and administrative strategies of
entities in economic networks [37,38],

(e) changing demographic and infrastructural character-
istics of cities in evolving highway and airport networks
[39–41],

(f) changing gene-expression levels of neurons in devel-
oping connectomes [42,43],

(g) changing consumption-levels of residential nodes in
evolving power grids [44,45], and

(h) changing displayed content of websites on the evolv-
ing world-wide web [46,47].

These examples motivate the development of a simple
modeling framework describing the impact of dynamic node
characteristics on dynamic link structures. Such a framework
would provide a temporal analog of how node properties in-
fluence network structure in HV models. In fact, it is standard
practice to derive temporal versions of static-network con-
cepts [48–66], as has been done for several models of static
networks with hidden variables such as SBMs [67–73].

Motivated by these considerations, here we study tem-
poral extensions of general static hidden-variables models
(SHVMs) obtained by introducing dynamics of hidden vari-
ables and of links. In these models, each node has an evolving
HV and each node pair has a pairwise affinity (equal to the
connection probability in the SHVM), which is a function of
the HVs of both nodes. Pairwise affinities evolve over time
due to their dependence on a pair of evolving HVs. The net-
work itself evolves via node pairs being selected to reevaluate
their connections, resampling them with connection probabil-
ity equal to the pair’s affinity at the moment of reevaluation.
These systems are governed by just two parameters beyond
those of any static model: a rate of HV dynamics σ and a rate
of link resampling ω.

We find that these models have snapshots that are statisti-
cally equivalent to networks generated from the static model
if:

(a) the link-resampling rate is sufficiently larger than the
rate of HV dynamics, or

(b) if we add an additional dynamic mechanism whereby
links actively respond to changes in HVs.

We also identify the conditions under which model net-
works evolve gradually, i.e., exhibit link persistence, and
evaluate qualitative resemblances of snapshots to some real
networks which arise as deviations from static-model behav-
ior. We obtain analytical and numerical results for effective
connection probabilities (the probability of a node pair being
connected given their current HV values), directly quantifying
deviations from static-model behavior in each case.

The family of models we introduce is demonstrated to
have wide generality, as exemplified by temporal extensions
of four different static models with HVs: SBMs [20], RGGs
[21], SCMs [22], and hyperbolic graphs [15]. These exam-
ples relate to, and partially encompass, several models of

networks with dynamic node properties that have been pre-
viously studied—for instance, dynamic latent space models
[74–77], dynamic RGGs [78,79], and dynamic SBMs [72,73].
The framework we study is also widely generalizable to other
contexts.

Our study takes a step toward realistic modeling of dy-
namic networks with dynamic node properties. It introduces
a family of temporal network models that extends SHVMs
to the temporal setting, providing theoretical insight into the
kinds of structure that can emerge as a consequence of the
influence of HV dynamics on network-structure dynamics.
The framework can be used for studying real-world temporal
networks under the null hypothesis that physical or latent
dynamic hidden variables drive the dynamics of network
structure. Additionally, motivated by the phenomenology
emerging in these models, we speculate that links in some real
systems are out of equilibrium with respect to HVs, partially
explaining the presence of long-ranged links in geometrically
embedded systems and intergroup connectivity in modular
systems.

In Sec. II, we describe the properties that we use to charac-
terize the models we introduce. We then introduce the static
and temporal hidden-variables model (THVM) families in
Sec. III, followed by various limiting regimes in Sec. IV.
Section V provides several examples illustrating temporal HV
models. We then consider a variant of the family of models in
Sec. VI, incorporating an additional dynamic mechanism that
enforces static-model connection probabilities. The final sec-
tions are dedicated to descriptions of related work (Sec. VII)
and a discussion of our results and the implications thereof
(Sec. VIII). Appendices provide the details of several calcula-
tions and procedures left out of the main text.

II. DESIRED PROPERTIES OF DYNAMIC
HIDDEN-VARIABLE MODELS

This section outlines the properties that we use to charac-
terize the family of dynamic HV models that we introduce.
Our goal is to construct natural temporal versions of static
networks with HVs and to understand the consequences of
having introduced such dynamics. Our approach is via a
Markov chain on graphs and HV configurations, with sources
of randomness in the original static model being replaced by
random processes in the temporal model.

Specifically, given an SHVM, i.e., a probability density
on HV configurations H ∈ H and a conditional probabil-
ity distribution on graphs G ∈ G given H , the temporal
extension yields a probability distribution/density on tem-
poral sequences of graphs and HV configurations, denoted
G = {G(t )}T

t=1 ∈ GT and H = {H (t )}T
t=1 ∈ HT , respectively.

We will evaluate the conditions under which models within
our framework satisfy the following properties:

(a) Equilibrium property. The marginal probability of a
graph at any timestep is identical to its probability in the static
model; likewise for HVs.

(b) Persistence property. The level of structural persis-
tence over time—quantified by, e.g., any graph similarity
measure between graphs at adjacent time steps—is high rela-
tive to the null expectation (of two independent and identically
distributed (i.i.d.) static-model samples).
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(c) Qualitative realism. The graph-structure, HV geome-
try (e.g., link lengths), and/or dynamic behaviors resemble
observed characteristics of some real-world systems at a qual-
itative level.

If the equilibrium property is satisfied, the temporal
network in question is a strict extension of the static
model—individual snapshots are then indistinguishable from
static-model realizations. If the equilibrium property is not
satisfied, snapshots deviate from the static model, the resulting
phenomenology of which we seek to understand. The persis-
tence property holding implies a gradually evolving network,
without sudden structural transitions between networks at ad-
jacent time steps. The persistence property can be quantified
by application of graph similarity measures [80] to graphs at
neighboring time steps. In most cases, the level of structural
persistence is tunable, making the level of satisfaction of
the persistence property fall along a continuum. The highest
accessible persistence values arise when the graph is com-
pletely unchanging over time, whereas the lowest accessible
persistence values correspond to graphs that are completely
resampled each time step. To have qualitative realism simply
means that the system exhibits some characteristics and be-
haviors that are analogous to real-world systems—regardless
of whether the detailed mechanisms are realistic or quantita-
tively accurate. In particular, we are interested in qualitative
features relating to the dynamics of node characteristics and
the effects of such dynamics on a network’s structural evolu-
tion.

III. MODELING FRAMEWORK

This section provides an overview of our modeling ap-
proach and then defines static and TVHMs. We first describe
our approach to constructing temporal extensions of static
models, which produce length-T sequences of graphs G
with a probability conditioned on a length-T sequence of
HV configurations H. The latter arises from Markovian dy-
namics [81,82] governed by conditional probability density
PH (H (t+1)|H (t ) ). The initial configuration H (1) is sampled
from the static-model HV density ρ(H (1) ). Markovian dy-
namics yields a temporally joint probability density p(H) as a
product:

p(H) = ρ(H (1) )
T −1∏
t=1

PH (H (t+1)|H (t ) ). (2)

Given H, the graph sequence G is produced via a Markov
chain with transition probability having auxiliary H de-
pendence, PG(G(t+1)|G(t ), H). Herein, we primarily con-
sider graph dynamics with H dependence of the form
PG(G(t+1)|G(t ), H (t+1)) but also consider dynamics of the
form PG(G(t+1)|G(t ), H (t+1), H (t ) ) in Sec. VI. In general, we
could consider any choice of H dependence—as long as G(t )

is not influenced by H (t ′ ) for any t ′ > t , since that would
entail graph structure at time t being dependent on HVs at
future times t ′ > t . The initial graph G(1) is sampled from
the static-model conditional probability P (G(1)|H (1) ). The
H-conditioned temporally joint graph probability distribution

P(G|H) is then given by

P(G|H) = P (G(1)|H (1) )
T −1∏
t=1

PG(G(t+1)|G(t ), H). (3)

Altogether, the temporally joint graph probability distribution
is given by

P(G) =
∫
HT

P(G|H)p(H)dH, (4)

which is the temporal extension of Eq. (1).
It is this strategy that underlies all temporal extensions of

static models that we consider. Static graphs without hyper-
parameters may also be included by disregarding H above,
leaving only Eq. (3), which becomes a general Markov chain
on graphs governed by PG(G(t+1)|G(t ) ). Note that G can be
seen as a multiplex network [83,84] with layers representing
time steps.

A. Static hidden-variables model

Here we describe the SHVM [18], which generates graphs
by a two-step procedure. First, each node j (out of n
total, labeled as {1, ..., n} = [n]) is assigned a hidden vari-
able h j ∈ X , drawn independently with probability density
ν(h j ) from set X . Thus the hidden-variable configuration is
H = {h j}n

j=1 ∈ H = X n and the joint HV density is ρ(H ) =∏n
j=1 ν(h j ). Second, node pairs i j (1 � i < j � n) connect

with pairwise probability f (hi, h j ), independently from one
another. The conditional probability P (G|H ) of a graph G is
thus given by

P (G|H ) =
∏

1�i< j�n

( f (hi, h j ))
Ai j (1 − f (hi, h j ))

1−Ai j , (5)

where {Ai j}1�i< j�n are elements of the adjacency matrix of
graph G. For a fixed H , this is an edge-independent random
graph. But since H is random, P (G) is a probabilistic mix-
ture of Eq. (5) over possible HV configurations H ∈ X n via
Eq. (1).

B. Temporal hidden-variables model

We now describe a temporal version of the SHVM
(Sec. III A), namely, the TVHM. We denote by A(t )

i j the i jth el-
ement of G(t )’s adjacency matrix. The initial conditions (G(1),
{h(1)

j }n
j=1) are sampled from the SHVM. For t ∈ {1, ..., T −

1}, the system updates according to:
(a) HV dynamics. Each node j samples h(t+1)

j from a con-

ditional density Ph(h(t+1)
j |h(t )

j ), discussed below.
(b) Link resampling. Each node pair i j, with probability ω,

resamples A(t+1)
i j with connection probability f (h(t+1)

i , h(t+1)
j ).

Otherwise, A(t+1)
i j = A(t )

i j .
Simply put, each node’s HV undergoes Markovian dynam-

ics (governed by Ph), and each node-pair i j is re-evaluated for
linking (with probability ω each time step) with connection
probability equal to i j’s current affinity value f (h(t+1)

i , h(t+1)
j ).

We separately consider two types of HV dynamics Ph:
(a) Jump dynamics. Each node j, with probability σ ∈

[0, 1], resamples its HV to obtain h(t+1)
j . The conditional
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density for jump dynamics is thus

Ph(h′|h) = σν(h′) + (1 − σ )1h(h′), (6)

with 1h(h′) being the Dirac measure.
(b) Walk dynamics: The HV of every node moves to a

nearby point in X using Brownian-like motion with the av-
erage step length proportional to parameter σ ∈ [0, 1].

We implement the latter option by transforming the density
ν(h) on X to the uniform density on [0, 1]D, where D is
the dimension of X , using the inverse cumulative distribution
function (CDF) transform. We then do a random walk in
[0, 1]D, with step size proportional to σ , preserving the uni-
form distribution. Transformed back to X , the random walk
increments preserve the distribution ν(h). The details are in
Appendix D.

In both walk dynamics and jump dynamics, parameter σ

encodes the rate of change of HVs. Also, in both cases, the
transition probability density PH is separable due to indepen-
dence of {h(t )

j }n
j=1:

PH (H (t+1)|H (t ) ) =
n∏

j=1

Ph
(
h(t+1)

j

∣∣h(t )
j

)
. (7)

The stationary density of the above dynamics is equal to the
static-model HV density ρ. The density of H = {{h(t )

j }n
j=1}T

t=1
is also separable,

p(H) =
n∏

j=1

(
ν
(
h(1)

j

) T −1∏
t=1

Ph
(
h(t+1)

j

∣∣h(t )
j

))
. (8)

The probability of a graph sequence G given H is the temporal
product (3) of the following transition probabilities:

PG(G(t+1)|G(t ), H (t+1)) =
∏

1�i< j�n

Y
A(t+1)

i j

i j (1 − Yi j )
1−A(t+1)

i j ,

(9)
with Yi j denoting the conditional linking probability,

Yi j = ω f
(
h(t+1)

i , h(t+1)
j

) + (1 − ω)A(t )
i j , (10)

encoding the fact that link resampling happens with proba-
bility ω, and that otherwise the link (or nonlink) remains the
same.

We will primarily quantify the structure of THVM snap-
shots via the effective connection probability,

f̄ (h, h′) = lim
t→∞P

(
A(t )

i j = 1
∣∣h(t )

i = h, h(t )
j = h′ ), (11)

which, if the equilibrium property is satisfied, is the same
as the affinity function f (h, h′). If the affinity is a function
of a composite variable such as the distance between or the
product of the pair of HVs, the effective connection probabil-
ity is defined analogously but for those composite quantities.
We note here that the average degree (number of link ends
per node) is independent of the values of σ and ω in THVM
snapshots (see Appendix A).

IV. PARAMETER SPACE AND RESULTING DYNAMICS OF
TEMPORAL HIDDEN VARIABLE MODELS

In this section, we consider several limiting cases in the
space of dynamics parameters (σ, ω) ∈ [0, 1]2, and some

special-case categories of affinity function f . The resulting
regimes exhibit a variety of qualitatively distinct behaviors. If
σ = ω = 0, a single graph is sampled from the static model
and all of its HVs and links are held fixed for all t . To
the opposite extreme, if σ = ω = 1, at each time step, every
node’s HV is fully randomized, and then all possible links
are reevaluated, resulting in a sequence of i.i.d. instances of
the static model. In either case, the equilibrium property is
satisfied—but the persistence property is not for σ = ω = 1
(there is no persistence), whereas for σ = ω = 0 there is
complete persistence.

In Secs. IV A–IV D, several other parameter regimes are
analyzed. We discuss the behavior of temporal networks in
each case, how well they qualify in terms of the equilibrium
and persistence properties, and their relations to preexisting
commonly studied static network ensembles. Table I shows
the different special cases, while a schematic picture of the
space of dynamics parameters is shown in Fig. 1.

A. Quasistatic regime (α2(σ,ω) ≈ 1)

Here we consider the parameter regime quantified by the
condition α2(σ, ω) ≈ 1 (upper-left region of Fig. 1), where

α2(σ, ω) = ω

1 − (1 − ω)(1 − σ )2
∈ [0, 1], (12)

in which networks have both random link structure and ran-
dom HVs, and exhibit both the persistence property and
the equilibrium property. The quantity α2(σ, ω) is a natu-
rally arising function characterizing how effective connection
probabilities differ from their static-model counterparts (see
Appendix A). The equilibrium property is satisfied due to suf-
ficient timescale separation: link resampling happens quickly
enough relative to HV motion for G(t ) to remain caught
up with H (t ). The dynamics can thus be considered qua-
sistatic in the sense of quasistatic transformations in classical
equilibrium thermodynamics [85]. Over time, the HV config-
uration and link structure both fully explore their respective
spaces, functioning as a temporal network whose stationary
distribution is the SHVM defined in Sec. III A. Note that
the equilibrium property is only approximately satisfied if
α2(σ, ω) < 1, that approximation becoming exact only in
limit of extreme timescale separation or α2(σ, ω) = 1. Two
regimes at the boundary of the quasistatic regime have exact
satisfaction of the equilibrium property: ω = 1 (Sec. IV B)
and σ = 0 (Sec. IV C). Adding a third mechanism of dynam-
ics allows for exact satisfaction of the equilibrium property at
all (σ, ω) ∈ [0, 1]2 (see Sec. VI).

B. Complete link resampling (ω = 1)

Here we consider the case ω = 1 (top region of Fig. 1).
This case resembles that of the quasistatic regime, but
all links form based on current HV configurations, so
there is no graph-encoded memory: PG(G(t+1)|G(t ), H) =
P (G(t+1)|H (t+1)). The resulting Markov chain on H × G
thus satisfies the equilibrium property exactly, as opposed
to approximately in the quasistatic regime (Sec. IV A). Link
structure when ω = 1 is more correlated over time than two
i.i.d. samples from the SHVM (due to persistence in HV
configurations) but the specific level of persistence depends on
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TABLE I. Table of limiting cases of dynamics parameters (σ, ω) for THVMs. The first and second columns provide a short-hand name
and the associated parameter regime. The third column states whether the equilibrium property is satisfied, whereas the fourth column states
whether the persistence property is satisfied (in a way that is tunable at any desired level, which, for instance, leaves out the case σ = ω = 0).

Name Parameter regime Equilibrium property Tunable persistence

Single static graph ω = σ = 0 Yes No
i.i.d. graph sequence ω = σ = 1 Yes No
Quasistatic α2(σ, ω) ≈ 1 [Eq. (12)] Yesa Yes
Complete link resampling ω = 1, σ ∈ (0, 1) Yes Depends on f b

Deterministic HV to graph ω = 1, f : X 2 → {0, 1} Yes Depends on f b

Complete HV resampling σ = 1, ω ∈ (0, 1) No Yesc

Fixed HVs σ = 0 Yes Yes
Erdős-Rényi-like σ/ω � 1 No No
Fixed graph structure ω = 0 Yesd Nod

aIn the quasistatic regime, G(t ) will have arisen from an HV configuration closely resembling H (t ), due to a timescale separation. This implies
approximate, rather than exact, satisfaction of the equilibrium property.
bWhen ω = 1, although the persistence property is in general lost due to each possible edge being resampled at every time step, there is still
some persistence present, tuned by σ and dependent upon the affinity function f .
cWhen σ = 1, the persistence property is tunably satisfied at the level of graph structure but not at all at the level of hidden variables, which
are completely resampled every time step.
dIn the case of ω = 0, the initial graph remains fixed for all time, while HVs change. Since the initial condition is sampled from the static
model, this regime technically satisfies the equilibrium property. It does so both at the level of graphs and at the level of hidden variables but
not at all at the joint level. Persistence is not tunable at the level of graphs but is at the level of hidden variables.

the form of the affinity function f (h, h′) and on σ . A variety of
temporal network models have fully resampled edges at each
time step [72,86,87].

As subset of the ω = 1 regime, consider THVMs with
binary affinity function f : X 2 → {0, 1}. In this case, all ran-
domness comes from HVs because f deterministically maps
HV configurations to graphs. The static model’s conditional
probability distribution in such cases is given by a product of
indicator functions,

P (G|H ) =
∏

1�i< j�n

1{Ai j = f (hi, h j )}, (13)

equal to 1 if and only if f (hi, h j ) = Ai j for all i j, and equal
to zero otherwise. Since the HV dynamics PH conserves ρ,
and since ω = 1 ensures that all node pairs have up-to-date
links with respect to HVs, this model satisfies the equilibrium
property exactly. The rate of HV dynamics, and thus of link
dynamics, is controlled by σ (but also influenced by the form
of f ). This regime encompasses sharp RGGs of any kind [21];
see Sec. V B for temporal RGGs with ω ∈ [0, 1].

C. Fixed hidden variables (σ = 0)

Here we consider σ = 0 (left region of Fig. 1), in which
case all HVs are frozen in place, ensuring satisfaction of the
equilibrium property. The initial HV configuration H (1) has
the SHVM density ρ, but conditioning on some particular
initial configuration H (1) yields fixed pairwise connection
probabilities pi j = f (hi, h j ), resulting in temporal versions of
edge-independent static networks [88–90]. Analytical expres-
sions for link dynamics can be written straightforwardly in
terms of the set of values {pi j}1�i< j�n and the parameter ω.
The transition probability PG(G(t+1)|G(t ) ) is

PG(G(t+1)|G(t ) ) =
∏

1�i< j�n

p
A(t )

i j →A(t+1)
i j

i j , (14)

where p0→0
i j , p0→1

i j , p1→0
i j , and p1→1

i j are, respectively, the
nonlink persistence, link-formation, link-removal, and link-
persistence probabilities for node pair i j. That is, pα→β

i j =
P (A(t+1)

i j = β|A(t )
i j = α), given by

pα→β
i j = (1 − ωpi j )

(1−α)(1−β )(ωpi j )
(1−α)β

× (ω(1 − pi j ))
α(1−β )(1 − ω(1 − pi j ))

αβ. (15)

Many static network models have independent edges with
predefined connection probabilities and thus can be made
temporal as THVMs with σ = 0. Examples include the
Erdős-Rényi (ER) model [91] the (soft) SBM [92], and in-
homogeneous random graphs [88] with fixed coordinates.

The persistence property can be quantified by any of the
numerous measures of graph dissimilarity [80] by application
to graph pairs at neighboring time steps. A simple example in
the σ = 0 setting is the expected Hamming dissimilarity [93],∑

1�i< j�n

P
(
A(t )

i j �= A(t+1)
i j

)

=
∑

1�i< j�n

(
p1→0

i j pi j + p0→1
i j (1 − pi j )

)

= 2ω
∑

1�i< j�n

pi j (1 − pi j ), (16)

which simplifies substantially in some cases, for instance,
the ER model (pi j = p for all i j), leaving 2ωp(1 − p)

(n
2

)
.

The parameter ω directly tunes the level of persistence, with
ω = 0 yielding the highest persistence (an unchanging graph)
and ω = 1 yielding the lowest persistence (a fully resampled
graph).

Edge-resampling dynamics with fixed pi j values closely
resembles dynamic percolation [94], which has been inves-
tigated in lattices [95], trees [96], and ER graphs [97,98], and
also relates to edge-Markovian networks [99–101].
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FIG. 1. Two-parameter space of possible dynamics. The two
parameters (σ, ω) ∈ [0, 1]2 tune the rate of change of hidden vari-
ables and rate of resampling of links, respectively. In general, with
dynamic hidden variables, link-structure is out of equilibrium rela-
tive to the configuration of hidden variables at any particular time
step, violating the equilibrium property. In the quasistatic regime
(upper left) and along the upper and leftward boundary regions
(ω = 1 and σ = 0, respectively), the equilibrium property is re-
covered. In the lower-right regime, HVs are so randomized that
network snapshots resemble Erdős-Rényi graphs. At σ = 1 (right-
hand boundary), all hidden variables are resampled at every time
step, but only a fraction ω of links resampled. If ω = 0 (lower
boundary), the network structure remains fixed for all time, regard-
less of the hidden-variable dynamics. The dashed curves distinguish,
qualitatively, three regimes: the quasistatic regime lies above the
upper dashed curve, the Erdős-Rényi-like regime lies below the
lower dashed curve, and the general nonequilibrium regime lies in
between. The shapes of the dashed curves come from contours of
the function α2(σ, ω): the upper curve approximately designates
α2(σ, ω) = 0.85, whereas the lower curve approximately designates
α2(σ, ω) = 0.15 (see Sec. IV A and Fig. 3). Both curves emanate
from (0,0) and reach the σ = 1 boundary at the values of α2(1, ω) =
ω ≈ 0.85 (upper curve) and α2(1, ω) = ω ≈ 0.15 (lower curve), see
Eq. (12).

D. Complete resampling of hidden variables (σ = 1)

Here we consider the case for which all HVs are resam-
pled at every time step (σ = 1), so no HV-driven structural
persistence exists (right region of Fig. 1). Note that walk
dynamics is parameterized by σ so σ = 1 implies complete
HV randomization. If σ = 1, correlations among links (and
nonlinks) do still exist due to simultaneous resampling; the
set of node pairs selected for link resampling at time step t
forms links based upon the same underlying HV configuration
H (t ). In this setting, ω quantifies the level of agreement among
node pairs as to what the HV configuration is. For instance, in
spatial network models, if σ = 1, then ω directly controls the
level of geometry-induced correlations.

Given the HV configuration at time t and averaging over
all past time steps, node pair i j is connected with probability

P
(
A(t )

i j = 1
∣∣h(t )

i , h(t )
j

) = ω f
(
h(t )

i , h(t )
j

) + (1 − ω)〈 f 〉, (17)

where 〈 f 〉 = ∫
X 2 ν(h)ν(h′) f (h, h′)dhdh′ is the expected

affinity of a pair of nodes with randomized HVs. The expres-
sion 17 is an example of an effective connection probability
which deviates from the static-model affinity function. A more
general formula for the effective connection probability in the
case of jump dynamics and arbitrary f (h, h′), σ , and ω is
derived in Appendix A, and some special cases are described
in the examples in Secs. V A–V D. As ω → 0 with σ = 1 (and
in general for σ/ω � 1), the model approaches a temporal
version of the ER model, since each node pair at the time
of link resampling will have completely randomized HVs;
each edge will then independently exist with probability 〈 f 〉 if
0 < ω � 1. If ω = 0, we have a fixed graph structure, i.e., a
network that simply remains as whatever the initially sampled
graph was, but with dynamic HVs (for any σ > 0).

V. TEMPORAL EXTENSIONS OF POPULAR
STATIC NETWORK MODELS

This section contains several examples of THVMs. In each
subsection, we describe a SHVM, its temporal extension ac-
cording to the modeling framework of Sec. III B, and the
effective connection probability that arises due to the dy-
namics, and offer some additional discussion. We specifically
consider temporal extensions of the following static network
models: SBMs [20], RGGs [21], hypersoft configuration mod-
els (HSCMs) [22], and hyperbolic graphs [15].

A. Temporal stochastic block models

This subsection considers temporal extensions of SBMs,
which are used to model community structure in networks
[20,92,102,103].

1. Static hyperparametric SBMs

We consider a static network with conditionally Bernoulli-
distributed edges amongst n nodes j ∈ [n], each node having
been randomly assigned to one of m groups (a.k.a. communi-
ties, blocks, colors). Each node j independently draws a group
index q j ∈ [m] = {1, ..., m} from probability distribution � =
{�q}q∈[m]. Each node pair then connects with probability fqi,q j .
In this definition, the group memberships {qj} j∈[n] are not
externally specified as model parameters—rather, their dis-
tribution � is specified. Thus, the group memberships are
hyperparameters, and we refer to these static networks as
hyperparameteric SBMs or hyper-SBMs (equivalent to inho-
mogeneous random graphs with hidden color [105,106]). The
expected number of nodes nq in a given block q is 〈nq〉 = n�q,
and the joint distribution of {nq}q∈[m] is multinomial. Note that
this model could be formulated with continuous HVs as per
Sec. III A, but we instead use discrete HVs for simplicity (see
Appendix H for the continuous-to-discrete mapping). As an
illustrative example to be used throughout this section, we
consider the case of m = 2 groups, with �1 = 1 − �2 = u.
The within-group affinity is p = f1,1 = f2,2, and the between-
group affinity is zero ( f1,2 = 0).

2. Temporal hyper-SBMs

To make the hyper-SBM dynamic, at each time step t ∈
{2, ..., T } each node i with probability σ resamples its group
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FIG. 2. Snapshots of a temporal stochastic block model: A modular network with dynamic group assignments and link resampling. The
n = 100 nodes are partitioned into two groups with group-membership probabilities �1 = 0.4 = 1 − �2, and group memberships change in
time by group resampling with probability σ . The affinity function is fq,q′ = p1{q = q′} with p = 0.25, disallowing intergroup connections in
the static model. Network snapshots are displayed via a spring-force layout algorithm [104], for various parameters (σ, ω) such that networks
span a variety of structural outcomes. Node coloration is by group membership and link coloration is black for within-group links and green for
between-group links. In the central panel, the effective connection probability f̄1,2 between communities is plotted. Outside of the quasistatic
regime, group-membership dynamics is fast enough for a substantial number of intergroup links to exist ( f̄1,2 > 0), despite the intergroup
connection formation probability being f1,2 = 0.

index q(t )
i from distribution �, and then each node pair i j

with probability ω resamples A(t )
i j with connection probability

fq(t )
i ,q(t )

j
. Thus,

P
(
q(t )

i = q′∣∣q(t−1)
i = q

) = (1 − σ )1{q = q′} + σ�q′ (18)

and

P
(
A(t )

i j = 1
∣∣A(t−1)

i j , q(t )
i , q(t )

j

) = (1 − ω)A(t−1)
i j + ω fq(t )

i ,q(t )
j
.

(19)
See Fig. 2 for visualized embeddings of network snapshots
from the stationary distribution of the example m = 2, �1 =
u = 1 − �2, fq,q′ = p1{q = q′}.

3. Effective connection probabilities in hyper-SBMs

The block dynamics of nodes in temporal hyper-SBMs
introduces several novel features to the system. First, pairwise
affinities change over time. Second, the set of all existing links
at time t need not have arisen from the group assignments of
time t . Temporal snapshots in general thus deviate from the
static model—the equilibrium property does not necessarily
hold. However, even if snapshots do not resemble the static
model, they do resemble a static model—an effective SBM.
Consider two nodes, with current group indices q, q′. Aver-
aging over all past values of HVs, we obtain the effective
connection probability f̄q,q′ for dynamic hyper-SBMs. Since
the SBM case is directly obtainable from discretization of the

continuous model (see Appendix H), we can use a discrete
version of the general formula derived in Appendix A, namely,

f̄q,q′ = α2 fq,q′

+ (α1 − α2)(〈 fq,·〉 + 〈 fq′,·〉)

+ (1 − 2α1 + α2)〈 f 〉, (20)

where coefficients αb(σ, ω) for b ∈ {1, 2} are given by

αb = ω

1 − (1 − ω)(1 − σ )b
, (21)

and marginally averaged affinities are

〈 fq,·〉 =
∑

q′
�q′ fq,q′ ,

〈 f 〉 =
∑

q

�q〈 fq,·〉 =
∑
q,q′

�q�q′ fq,q′ . (22)

Note that when σ = 1 we have α1(1, ω) = α2(1, ω) = ω

and Eq. (20) reduces to the form of Eq. (17). In the simple
example case (m = 2, �1 = u, fq,q′ = p1{q = q′}), terms in
f̄q,q′ are evaluated as

〈 f1,·〉 = up,

〈 f2,·〉 = (1 − u)p,

〈 f 〉 = p(u2 + (1 − u)2),

(23)
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from which the formula for f̄q,q′ becomes

f̄q,q′ = α2 p1{q = q′}

+ (α1 − α2)

⎧⎨
⎩

2up, q = q′ = 1
2(1 − u)p, q = q′ = 2

p q �= q′

+ (1 − 2α1 + α2)p(u2 + (1 − u)2). (24)

In particular, the between-group effective connection proba-
bility becomes

f̄1,2 = p(α1 − α2 + (1 − 2α1 + α2)(u2 + (1 − u)2)), (25)

which is visualized in Fig. 2. In the extreme case of σ/ω � 1,
all links form between nodes with effectively random group
assignments, making all pairs equally likely to connect, and
reducing the system to a temporal ER network of connection
probability p(u2 + (1 − u)2).

4. Temporal hyper-SBM discussion

Interesting examples of qualitative realism arise in tem-
poral hyper-SBMs. For instance, group dynamics of nodes
yields intergroup connectivity, as is observed in real systems.
If someone joins a different club, switches political parties,
or emigrates to a new country, they at first primarily carry
ties to their original group—and thus upon changing group
membership, they suddenly have many intergroup links—not
because of intergroup link formation, but because of dynamic
group membership. Likewise, within-group connectivity can
be lower than in the static model, as is the case in real systems
due to nodes having recently arrived from another group or
from neighbor nodes having recently departed. These effects
arise outside the quasistatic regime, so we speculate that in
some cases the nonequilibrium regime can better emulate
real-world systems. We also note that we here considered
group-resampling HV-dynamics (a discrete version of jump
dynamics), but we could also consider a general Markov chain
on group assignments with stationary distribution �.

B. Temporal random geometric graphs

In this section, we describe THVMs arising from static
RGGs, which model the influence of an underlying geometry
on graph structure [21].

1. Static random geometric graphs

In RGGs, nodes are assigned spatial coordinates as HVs,
and node pairs are linked if their coordinates are closer
than some threshold distance r. Hence the affinity is bi-
nary, f (hi, h j ) = 1{dX (hi, h j ) � r}, with dX : X 2 → [0,∞)
denoting the geodesic distance in latent space X . Examples
of well-studied RGGs include Euclidean RGGs with periodic
or nonperiodic boundary conditions [21], spherical RGGs
[107], and hyperbolic RGGs (the hyperbolic model with
inverse-temperature parameter β = ∞ [15]). As a primary
example, we consider a simple one-dimensional RGG with
periodic boundary conditions: X = [0, 1) and dX (hi, h j ) =
1/2 − |1/2 − |hi − h j ||.

2. Temporal RGGs

To go from static RGGs to temporal RGGs, we incor-
porate coordinate dynamics and link-resampling dynamics.
We consider here jump dynamics, each node resampling its
coordinate according to the static-model density ν, with prob-
ability σ , each time step t ∈ {2, ..., T } (the coordinate density
follows Eq. (6), with ν(h) = 1 for the uniform density on
the unit interval). Link resampling happens independently for
each node pair with probability ω each time step. Since RGGs
have deterministic connectivity, link resampling of i j at time
t guarantees that A(t )

i j = 1 if dX (h(t )
i , h(t )

j ) � r and A(t )
i j = 0

otherwise. But if i j’s connectivity is not resampled at time t ,
links may fall out of equilibrium with respect to coordinates.
Note that we could also study temporal RGGs with walk dy-
namics, with either periodic or reflecting boundary conditions;
for simplicity, we study jump dynamics here, leaving temporal
RGGs with walk dynamics for a future study.

3. Effective connection probabilities in temporal RGGs

We now describe the effective connection probability f̄ (x)
for RGGs between pairs of nodes for arbitrary (σ, ω). The
expression for f̄ (x) in temporal RGGs is derived in Appendix
B, and the result is provided here:

f̄ (x) = α21{x � r} + 2r(1 − α2). (26)

The quantity α2 = α2(σ, ω), defined in Eq. (21), directly
governs the level of locality in temporal RGGs. See Fig. 3
for a visualization of the function α2(σ, ω) and of network
snapshots across a range of (σ, ω)-values. The effective con-
nection probability f̄ (x) has a steplike form, with connection
probability α2 + 2r(1 − α2) for all x � r and 2r(1 − α2) for
all x > r. The above effective connection probability agrees
perfectly with the results of numerical simulations, see Fig. 4.

4. Temporal RGG discussion

The naturally arising function α2(σ, ω) ∈ [0, 1] describes
the level of locality in network snapshots (see Fig. 3), and
quantifies the equilibrium property. It interpolates between
the case of RGGs (α2(σ, ω) = 1) and ER graphs (α2(σ, ω) =
0), resembling the structural transition of the Watts-Strogatz
model [108]. In this case, all links form locally and it is dy-
namics of node positions that induces the transition (alongside
the formation of local links at the nodes’ new locations);
a similar phenomenon has been observed in contagion dy-
namics among mobile agents [109]. Also note, in dynamic
RGGs, links can exist that were not possible in the static
model model: links of length greater than r, since the effective
connection probability f̄ (x) no longer goes completely to
zero for x > r [see Eq. (26)]. This is related to phenomena
observed in real-world networks: pairs of people may form
friendships locally but maintain those friendships after be-
coming geographically separated, resulting in the existence of
long-ranged social ties that would not likely have formed at
that distance. Likewise, the function f̄ (x) is also less than one
for distances x � r, allowing for nonlinks that would be im-
possible in the static model. That phenomenon also appears in
real-world systems: instead of individuals knowing everyone
in their local vicinity, nonlinks between close-by pairs may
exist due to them having only recently become proximate.
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FIG. 3. Snapshots of a temporal random geometric graph: A geometrically embedded network with dynamic node coordinates and link
resampling. Coordinates of n = 100 nodes are sprinkled uniformly into a 1D ring of unit circumference and change in time via jump dynamics
(coordinate resampling with probability σ ). The affinity as a function of distance is f (x) = 1{x � r}, where r = 0.1 is the connection radius,
disallowing long-ranged links in the static model. Snapshots are shown at various values of (σ, ω), with the displayed embedding having
angular positions equal to 2π times spatial coordinates and radial positions set equal to 1 plus some added random noise to aid with visualization
of network connectivity among close by node pairs. Link coloration is according to length: black links are of distances x � r whereas green
links are of distances x > r. In the central panel, the function α2(σ, ω) ∈ [0, 1] is visualized, which encodes the level of locality in temporal
RGGs [see Eq. (26)].

As with the case of temporal hyper-SBMs, these examples
of qualitative realism are in conflict with the equilibrium
property. Note also that similar deviations of f̄ (x) relative to

FIG. 4. The effective connection probability, in theory and sim-
ulation, for 1D RGGs at various values of the dynamics parameters
(σ, ω). The static model affinity function f (x) is plotted with square
markers. The solid lines are numerical estimates of the effective
connection probability f̄ (x) (with ω increasing as colors change from
blue to yellow), whereas the dotted lines are the theoretical effective
connection probability [Eq. (26)].

f (x) occur in THVMs arising from soft RGGs, [110–113], for
example, the H2 model (see Sec. V D).

C. Temporal hypersoft configuration model

In this section, we consider a dynamic version of HSCMs,
which model networks with degree heterogeneity [22].

1. Static hypersoft configuration model

The static model we now consider is the HSCM [22,114],
a hyperparametric version of an SCM. SCMs come in several
varieties such as the Chung-Lu model [115], inhomogeneous
random graphs [88], and the Norros-Reittu model [116]. Node
pairs connect with Ai j values being independent (typically
Bernoulli or Poisson distributed), such that, on average, each
node has a particular degree value. In hyperparametric SCMs,
that degree value is randomly assigned, according to some
specified distribution of expected degrees. For example, one
way to obtain SCMs with a degree distribution that is Pareto-
mixed Poisson (with, say, power-law tail exponent γ and
expected degree 〈k〉), is for nodes j ∈ [n] to be assigned
HVs hj ∈ [h−,∞) drawn from a Pareto density ν(h) = (γ −
1)hγ−1

− h−γ , with minimal HV value h− = (γ − 2)〈k〉/(γ −
1), and then for node pairs to be connected with probability

f (hi, h j ) = 1

1 + n〈k〉/hih j
≈ hih j

n〈k〉 , (27)
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FIG. 5. Expected degree over time of a node in a temporal hy-
persoft configuration model with jump dynamics of hidden variables.
Each node’s expected degree (blue dotted curve) equilibrates toward
its current static-model expected degree (green solid curve), as per
Eq. (29). In any realization, the actual degree over time fluctuates
(purple curve) but its ensemble average (orange solid curve) behaves
as predicted. The average was obtained by simulating 1000 realiza-
tions with (n, 〈k〉, γ , ω, σ ) = (200, 8, 2.8, 0.04, 0.01), keeping the
HV trajectory {h(t )

j }T
t=1 of a single node j fixed across trials.

the approximation holding when hih j/n〈k〉 � 1. The ex-
pected degree of a node i in the static model is

〈ki|hi〉 = (n − 1)
∫ ∞

h−
f (hi, h)ν(h)dh ≈ hi. (28)

The actual degrees of nodes are sharply peaked around their
expected degrees, and thus the above implies that the degree
distribution itself likewise has a power-law tail with exponent
γ and mean 〈k〉.

2. Temporal HSCMs

Now we consider a temporal version of HSCMs. At each
time step, each node j, with probability σ , resamples its HV
h(t )

j from the static-model HV-density ν (jump dynamics).
Then, each node pair i j (1 � i < j � n), with probability ω,
has its indicator variable A(t )

i j resampled from a Bernoulli of

mean f (h(t )
i , h(t )

j ).
In the static model, the HV value h j alone determines the

expected degree 〈k j |h j〉. But in the temporal version, the quan-
tity h(t )

i is time evolving, and the expected degree dynamically
trails behind the static-model expected degree, equilibrating at
a geometric pace (see Fig. 5):

E
[
k(t )

i

∣∣{h(t−s)
i

}
s�0

]
= (n − 1)ω

∑
s�0

(1 − ω)s
∫ ∞

h−
f
(
h(t−s)

i , h
)
ν(h)dh

= ω
∑
s�0

(1 − ω)s
〈
ki

∣∣h(t−s)
i

〉
. (29)

We can also average the above over all HV values at time
steps earlier than t , to obtain an effective expected degree that

depends only on h(t )
j . To do this, we use the probability density

of h(t−s)
j given h(t )

j under jump dynamics:

Ps
(
x
∣∣h(t )

j

) = (1 − σ )s1h(t )
j

(x) + (1 − (1 − σ )s)ν(x). (30)

Averaging Eq. (29) over HVs at all time steps t − s for s > 0,

E
[
k(t )

i

∣∣h(t )
i

] = ω
∑
s�0

(1 − ω)s
∫ ∞

h−
Ps

(
x
∣∣h(t )

i

)〈ki|x〉dx

= α1
〈
ki

∣∣h(t )
i

〉 + (1 − α1)〈k〉, (31)

where α1(σ, ω) = ω/(1 − (1 − ω)(1 − σ )). In this case, α1

measures the level of equilibration of node neighborhoods to
their expected sizes. Having α1 ≈ 1 indicates the quasistatic
regime whereas α1 ≈ 0 indicates an averaged-out behavior so
the expected degree of any given node is simply the expected
average degree 〈k〉 of the network.

3. Effective connection probabilities in temporal HSCMs

We now discuss effective connection probabilities in
HSCMs. The formula derived in Appendix A applies, but
note that the affinity f (h, h′) [Eq. (27)] is a function only
of the product ψ = hh′. Thus we can examine the effective
connection probability as a function of ψ , denoted f̄ (ψ ). To
calculate f̄ (ψ ), we first must compute the probability density
of a product of HVs in past time steps, given the value of the
product at the current time step. We then sum the expected
affinity given the product, weighted by ps = ω(1 − ω)s, over
all past time steps s > 0. These calculations require a variety
of intermediate steps and are described in Appendix C.

4. Temporal HSCM discussion

Note that in HSCMs, nonequilibrium dynamics reduces
degree heterogeneity; nodes with large HV values only tran-
siently retain them. Equilibration, on the other hand, allows
for a full structural expression of the nodes’ internal hetero-
geneity. This implies that extremely heterogeneous real-world
networks, if described by these models, would typically be
in the quasistatic regime. We only considered jump dynamics
here (resampling of static-model expected degree values) but
we could alternatively study walk dynamics, where the nodes’
HVs undergo a Brownian-like motion in a way that preserves
ν. This could be achieved straightforwardly as described in
Appendix D, alongside reflecting boundaries as studied in
Appendix E.

D. Temporal hyperbolic graphs

In this section, we consider a temporal extension of the
hyperbolic model [15] (the H2 model, for short), a geometry-
based network model simultaneously exhibiting sparsity,
clustering, small worldness [117,118], degree heterogeneity,
community structure [119], and renormalizability [120].

1. Static H2 model

The H2 model is parameterized by a number of nodes
n, average degree 〈k〉, power-law exponent γ , and inverse
temperature β (which tunes the level of clustering). Hidden
variables are polar coordinates, h j = (θ j, r j ), namely, a radial
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FIG. 6. Hidden-variable dynamics of nodes in a temporal H2 model, at increasing values of σ , with fixed ω = 0.1. In each subplot, node
coordinates for 100 random nodes are shown at two adjacent time steps, from a network with parameters (n, γ , β, R) = (500, 2.2, 5, 8). Each
arrow points from the coordinate location of a node at a given time step (grey) to the coordinate location of the same node at the next time step
(black). (a)–(c) depict jump dynamics (coordinate resampling with probability σ , otherwise remaining in place), whereas (d)–(f) depict walk
dynamics (all nodes move to neighboring locations, with mean step length parameterized by σ ). Marker sizes are proportional to node degree
values. For small σ/ω (a), (d), nodes’ existing connections have arisen from approximately the present coordinates, making snapshots closely
resemble the static hyperbolic model, as seen, e.g., by the exhibited degree heterogeneity. For larger σ/ω [(b), (e)], connections have arisen
via mixtures of past and present coordinates, reducing degree heterogeneity. For very large σ/ω [(c), (f)], the system behaves similarly to a
temporal Erdős-Rényi network.

coordinate r j ∈ [0, R] encoding the popularity of node j and
an angular coordinate θ j ∈ [0, 2π ), encoding the similarity of
node j to other nodes. These coordinates are sampled accord-
ing to separable density ν(θ, r) = νang(θ )νrad(r) where angles
are distributed uniformly (νang(θ ) = 1/2π ) and radii have an
exponentially growing density,

νrad(r) = γ − 1

2

sinh( γ−1
2 r)

cosh( γ−1
2 R) − 1

, (32)

where R = R(n, 〈k〉, β, γ ) is selected so the mean degree is
〈k〉. The static-model affinity of node pair i j is a Fermi-Dirac
function [121] (a sigmoid) of the hyperbolic geodesic distance
xi j between i and j,

f (hi, h j ) = f (xi j ) = 1/(1 + e(β/2)(xi j−R) ), (33)

where xi j = xi j (hi, h j ) is given by

cosh(xi j ) = cosh(ri ) cosh(r j )

− sinh(ri ) sinh(r j ) cos(θi j ),
(34)

with θi j = π − |π − |θi − θ j ||. The connection probability
and coordinate density in this model result in power-law
degree distributions (but could also give rise to other degree
distributions if the radial coordinate density was different),
a similar feature to that exhibited by HSCMs—but also, the
geometry arising from inclusion of the angular coordinate
yields a large clustering coefficient and spatially localized
link structure, making this model also similar to standard

RGGs. Increasing the parameter β yields a more localized link
structure, approaching a step function as β → ∞, leaving in
that case an RGG (see Sec. V B 1) on the hyperbolic disk. As
β → 0, typical link lengths approach the system size and the
model behaves similarly to the HSCM (see Sec. V C 1).

2. Temporal H2 model

To temporally extend the H2 model, we allow coordinate
dynamics so each node j exhibits a trajectory in the hyperbolic
disk, h(t )

j = (θ (t )
j , r (t )

j ) for t ∈ [T ]. For jump dynamics, each
node jumps to a random location according to density ν(θ, r),
with probability σ each time step. For walk dynamics, each
node j steps to a random location h(t+1)

j having angular and
radial coordinates adjusted to relatively close-by values, with
increasingly large steps for larger σ values; we describe the
details of H2 walk dynamics in Appendix F. Dynamics of
nodes on the hyperbolic disk is visualized in Fig. 6, for both
jump dynamics and walk dynamics. For σ � 1, nodes rarely
resample their coordinates (in jump dynamics) and step to
only very localized regions (in walk dynamics). On the other
hand, for σ ≈ 1, almost all nodes resample their coordinates
at each time step (in jump dynamics) or move to a nearly
randomized location (in walk dynamics). We note that many
other natural and interesting choices for HV dynamics exist,
as we discuss in Sec. VIII and Appendix F.
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FIG. 7. Effective connection probability function f̄ (x) in
snapshots of a temporal hyperbolic model with (n, γ , β, R) =
(500, 2.2, 5, 8), for various values of ω. With slower link resampling
(smaller ω), links are increasingly allowed to dynamically stretch
before being removed by link resampling, resulting in deviations
from the static-model affinity f (x) (black dotted line). Coloration
of the curve f̄ (x) is from yellow to blue as ω increases. The upper
panel, (a), shows the case of jump dynamics of coordinates. The
lower panel, (b), shows the case of walk dynamics of coordinates.
The choice of coordinate dynamics is consequential in the nonequi-
librium regime, despite each having the same stationary density.

3. Effective connection probabilities in the temporal H2 model

In the temporal H2 model considered here, the effective
connection probability f̄ (x) no longer remains in the standard
Fermi-Dirac form of f (x) (see Fig. 7). With decreasing ω/σ ,
the connection probability function smooths out and extends
to a longer range due to links being stretched more rapidly
(for walk dynamics) or more frequently (for jump dynamics).
This effect is more uniform and extends all the way out to long
ranges for jump dynamics, whereas it is more localized for
walk dynamics, for any given nonequilibrium value of (σ, ω).

Since the coordinates of H2 reflect popularity and similar-
ity attributes, the effective connection probability and other
nonequilibrium effects arising when outside of the quasistatic
regime have specific interpretations. The set of current links
arose from nodes having been connected at past time steps

when their previous similarity attributes were compatible
(small hyperbolic distance); in real networks, such links may
persist into the future even if the similarity attributes change.
For instance, with social networks, consider friendships on
Facebook, followers on Twitter, or author collaborations: sim-
ilarity between connected pairs may decrease over time, but
they tend to remain connected. Likewise, it could take some
time for two people that become more similar to discover
one another and to connect in an online or traditional social
network.

4. Temporal H2 model discussion

Outside of the quasistatic regime, snapshots G(t ) do not
fully resemble the static H2 model—the equilibrium prop-
erty is in general violated (despite the fact that each link
was formed via the static-model connection probability cor-
responding to the pairwise distance at the time of that link’s
formation). This phenomenon results in reduced clustering
because links become spread out across the space rather than
being localized amongst neighboring groups of nodes. De-
gree heterogeneity is also suppressed, as is the case for the
temporal HSCM (see Sec. V C), because nodes accumulating
large numbers of links due to being near the disk’s center
do not stay near the disk’s center indefinitely. Clustering and
heterogeneity arise in the static H2 model due to the cor-
relations in links from the underlying geometry. But in the
static model, all links (and nonlinks) arise from the same
underlying coordinate configuration. When coordinates are
dynamical, these correlations are weaker; nodes are linked
with probabilities arising as a mixture of past and present
coordinate configurations.

VI. LINK UPDATING IN RESPONSE TO
HIDDEN-VARIABLE DYNAMICS

Finally, we describe an additional dynamical mechanism
that can be incorporated to achieve the equilibrium property
exactly in TVHMs, while retaining the persistence property,
for all values of σ and ω: links are updated directly in response
to changes in HVs rather than only through link resampling,
to keep connection probabilities up to date (we refer to this
mechanism as link response). In this model variant, G(t+1)’s
probability distribution depends on each of G(t ), H (t+1), and
H (t ), rather than on just the former two. We illustrate the
mechanism at first in the case of ω = 0. Suppose node pair
i j has a link with probability pi j = f (hi, h j ), and that HVs
(hi, h j ) are updated to become (h′

i, h′
j ) in the next time step.

To ensure that the pair is then connected with probability
p′

i j = f (h′
i, h′

j ), we selectively delete now-less-likely edges
between connected pairs and selectively add now-more-likely
edges between unconnected pairs. In particular:

(a) If p′
i j � pi j , then Ai j = 1 ⇒ A′

i j = 1, and Ai j = 0 ⇒
add link with probability q+

i j ,
(b) If p′

i j � pi j , then Ai j = 0 ⇒ A′
i j = 0, and Ai j = 1 ⇒

remove link with probability q−
i j .

The outcome needs to result in P (A′
i j = 1|h′

i, h′
j ) = p′

i j .
Thus,
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(a) If p′
i j � pi j , the new connection probability satisfies

p′
i j = pi j + (1 − pi j )q+

i j . Hence, q+
i j = 1 − 1−p′

i j

1−pi j
.

(b) If p′
i j � pi j , the new connection probability satisfies

1 − p′
i j = pi jq

−
i j + (1 − pi j ). Hence, q−

i j = 1 − p′
i j

pi j
.

Note that if p′
i j = pi j , then q+

i j = q−
i j = 0; no links will

form or break unless pairwise affinities change. Denoting
p(t )

i j = f (h(t )
i , h(t )

j ) for t ∈ {1, ..., T }, the graph transition prob-
ability given H becomes

PG(G(t+1)|G(t ), H) =
∏

1�i< j�n

Yi j
(
A(t+1)

i j

∣∣A(t )
i j , H

)
, (35)

with Yi j : {0, 1} → [0, 1] denoting the conditional adjacency-
element probability distribution. For any ω ∈ [0, 1], we have

Yi j
(
1
∣∣A(t )

i j , H
) = ωp(t+1)

i j + (1 − ω)Ki j
(
A(t )

i j , H
)
, (36)

where Ki j (A
(t )
i j , H) incorporates the link-response dynamics:

Ki j
(
A(t )

i j , H
) = 1

{
p(t+1)

i j � p(t )
i j

}(
q+

i j

(
1 − A(t )

i j

) + A(t )
i j

)
+ 1

{
p(t+1)

i j � p(t )
i j

}
(1 − q−

i j )A
(t )
i j . (37)

With the inclusion of link response, arbitrary static HV net-
works can be extended to temporal settings while satisfying
the equilibrium property exactly (see Appendix VI for a full
derivation) and the persistence property in a tunable fashion.
Allowing ω > 0 does not alter the equilibrium property’s ex-
act validity and it provides a more tunable level of structural
persistence.

With G(t ) indistinguishable from a static-model realiza-
tion, all nonequilibrium phenomena of the types discussed in
Secs. V A–V D are prevented—this can either enhance or hin-
der qualitative realism, depending on the context. If a single
node’s HV is changed, it will need to reevaluate connections to
all other nodes for which affinities have changed. This could
be realistic in some cases, since nodes themselves may be
at the most liberty to reevaluate their connections. In other
cases, more gradual structural transitions may be preferred.
This model variant could thus serve well as a temporal null
model, especially for temporal networks with snapshots well
described by an SHVM. Despite structure of THVMs with
link-response being identical to that of SHVMs, all dynamical
features are open for study and for comparison to real-world
networks.

VII. RELATED WORK

We briefly review existing lines of research related to our
study.

Several temporal network models are worth mention-
ing. Temporal analogs of specific static models have been
considered [67–73,122,123], many of which preserve the
equilibrium property. Most such models have nondynamic
node properties, yielding models related to edge-Markovian
networks [99,100,124–126] and dynamic percolation [94–96].
The dynamic-S1 model [87] is a temporal extension of the
static S1 model [15] consisting of a sequence of independent
samples with HVs partially inferred from real data and par-
tially synthetically generated; the dynamics therein resembles

THVMs with ω = 1 and σ = 0 but with varying average
degree parameter across snapshots. Although it is common
practice to extend static-model concepts to temporal settings
[48–66], many models of temporal networks are instead de-
rived from first principles [127–132] and focus primarily
on inference techniques, real-world applicability [133–136],
and/or the effects of temporality on spreading [86,99].

Most relevant to THVMs are several existing works with
dynamic HVs that influence link dynamics. Several dynamic
latent space models [74–77] exist, as do dynamic RGGs [78]
(the latter being continuous time and infinite space, with nodes
sprinkled as a Poisson process [137–139] and undergoing
Brownian motion [140], with links remaining up to date as
for THVMs with ω = 1). A model with both dynamic HVs
and persistent links [141] was recently introduced, along-
side rigorous inference techniques and applications—but not
in reference to static network models. Other studies inves-
tigated spreading on dynamic RGG-like graphs [79,109]. A
few versions of dynamic SBMs are of particular relevance;
in one such paper [72], the model is a case of the temporal
hyper-SBM studied in Sec. V A with complete edge resam-
pling (ω = 1). Another study was of a temporal hyper-SBM
with ω < 1 which thus exhibits both link persistence and
group-assignment persistence [73], influencing performance
of community detection algorithms and motivating the devel-
opment of new ones. Another area of relevant work is the
rapidly emerging area of dynamic graph embeddings [75,142–
154], related to the task of inference of HV trajectories [155].

We also note some additional works that are less directly
related to ours. Adaptive network models (for instance, SIS
dynamics [156] alongside contact switching [23,24]), have
dynamic node properties that evolve with time and guide net-
work evolution, a commonality with THVMs. Networks with
node addition and node removal [157–160] have dynamic
node properties (degree values as opposed to HVs) that influ-
ence link formation. In the fitness model of growing networks
[12], static HVs and dynamic degrees both govern connec-
tion probabilities. Some static network models admit dual
growing formulations [161]—analogously, if the equilibrium
property holds, THVM snapshots can be seen as dynamically
produced static-model samples. Indeed, network-rewiring and
MCMC algorithms are widely used to sample static networks
[162–166]; in stationarity, these can be viewed as temporal
networks satisfying the equilibrium property, with a level of
persistence tunable via the number of iterations between adja-
cent snapshots. Dynamic variants of the configuration model
[167–169] exemplify this.

VIII. DISCUSSION

In this paper, we have studied temporal network models
that are natural counterparts of SHVMs, obtained by inclu-
sion of a dynamic mechanism for node characteristics (jump
dynamics or walk dynamics) and dynamic mechanism for link
structure (link resampling). Due to the wide generality of the
static HV framework, many popular static network models can
be made temporal as THVMs.

With a single source of randomness in the static
model, which includes ω = 1 with deterministic connectivity
(Sec. IV B) and σ = 0 with fixed initial HVs (Sec. IV C), the
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equilibrium property is exactly satisfied and the persistence
property is controllable. If, however, the static model has two
layers of randomness and links are not completely refreshed
each time step (σ > 0 and ω < 1), THVM snapshots are not
in general distributed according to the static model. Rather,
numerous structural deviations arise, due to links falling out of
equilibrium with respect to HVs—for instance, the effective
connection probability f̄ (h, h′) can substantially differ from
the affinity function f (h, h′) (see Figs. 4 and 7). Despite
violating the equilibrium property, such models arise naturally
and exhibit qualitative realism in interesting ways—for in-
stance, the appearance of long-ranged links in temporal RGGs
(Sec. V A 3) and intergroup links in temporal hyper-SBMs
(Sec. V A 3). An exception to the nonequilibrium dynamics
arises in the quasistatic regime (Sec. IV A) in which case the
equilibrium property is approximately satisfied, due to all A(t )

i j
values arising from an HV configuration closely resembling
H (t ). A second exception arises if we add a third dynamical
mechanism (Sec. VI), namely, link updating in direct response
to HV changes, which allows exact satisfaction of the equilib-
rium property (see Appendix G) for all (σ, ω). Both situations
also lend themselves to tunable satisfaction of the persistence
property, governed σ and ω.

An assortment of possible modifications, improvements,
and extensions are worth mentioning. Although many ques-
tions are open within the present framework, altered dynamics
could also be considered. For HV dynamics, correlated mo-
tion akin to Langevin dynamics [170,171] could provide
insight into the formation and persistence of communities. Al-
tered link structure and link dynamics could be considered as
well: some examples include directed and/or weighted links,
node-centric link-resampling dynamics [172], or pairwise-
individualized resampling rates. Continuous-time formula-
tions of THVMs could allow some theoretical simplifications;
continuous time is used in studies of dynamical percolation
[94,173,174] and edge-Markovian networks [97–101], which
could each be extended to a THVM-like framework by in-
troducing HVs. Our results can also inform future studies
of adaptive networks [175–179]; THVMs provide a simple
setting in which dynamic node properties influence network
evolution. Understanding such settings will provide a base-
line for what to expect when coevolutionary feedback is also
present. An example of real-world links influencing node
properties is social influence, whereby acquainted pairs can
become more similar over time [180,181]—or geographically
move to closer-by coordinate locations. The inclusion of inter-
dependencies relating to dynamical processes [182,183] can
allow for more interesting dynamics and realism but at the
cost of increased model complexity.

Real-world networks have dynamic node properties that
influence dynamics of link structure. Examples of such phe-
nomena were set forth in Sec. I, ranging across a wide variety
of systems and scales. One direct real-world application of
THVMs could be to serve as null models [65,184] for evolving
networks with dynamic node-properties [75]. Dynamic em-
bedding methods [142–154] or generalizations of inference
methods from dynamic SBMs [73] could potentially allow
retrieval of H (and perhaps also σ , ω, and f ) from an observed
G. Links of real evolving networks may not in general be fully
equilibrated relative to the current set of node characteristics,

which is a dynamical behavior exhibited by THVMs outside of
the quasistatic regime. Hence, in some cases, the equilibrium
property and qualitative realism may be in conflict, implying
that caution should be used when applying static models to
snapshots of evolving networks. That said, static models do in
many cases accurately describe such snapshots; the internet,
for example, has exhibited a clear power-law degree tail for
decades [155,185], evidently remaining in equilibrium from
the perspective of THVMs (see the discussion in Sec. V C).
We expect that the present study will usefully inform general
classifications of real-world networks according to the dynam-
ics of node properties and of how those properties influence
link dynamics.

ACKNOWLEDGMENTS

We thank B. Klein, S. Redner, M. Shrestha, L. Torres,
R. Van der Hofstad, and I. Voitalov for useful discus-
sions and suggestions. This work was supported by ARO
Grants No. W911NF-16-1-0391 and No. W911NF-17-1-
0491, and by NSF Grants No. IIS- 1741355 and No.
DMS-1800738. F.P. acknowledges support by the TV-HGGs
project (OPPORTUNITY/0916/ERC-CoG/0003), co-funded
by the European Regional Development Fund and the Re-
public of Cyprus through the Research and Innovation
Foundation.

APPENDIX A: EFFECTIVE CONNECTION
PROBABILITIES

Here we calculate effective connection probabilities for
general THVMs with HVs evolving by jump dynamics (HV
resampling with probability σ ). We define the effective con-
nection probability f̄ (h, h′) to be the probability of A(t )

i j = 1

given h(t )
i = h and h(t )

j = h′, in the limit as t → ∞. That is,

f̄ (h, h′) = lim
t→∞P

(
A(t )

i j = 1
∣∣h(t )

i = h, h(t )
j = h′ ), (A1)

where the limit t → ∞ is to wash out any initial condition.
Due to the edge-resampling dynamics, the current value of
A(t )

i j arose from being last resampled at some time t − s, with s
being a random nonnegative integer having distribution ps =
ω(1 − ω)s (where ω is the probability of link resampling at
any given time step). The effective connection probability is
given by

f̄ (h, h′) =
∑
s�0

psE
[

f
(
h(t−s)

i , h(t−s)
j

)∣∣h(t )
i = h, h(t )

j = h′ ].
(A2)

To evaluate the above, we introduce a density Ps(x|h), namely,
the density of h(t−s)

i (evaluated at x) given h(t )
i = h. In our case,

by jump dynamics and conditioning on h(t )
i = h, we have

Ps(x|h) = (1 − σ )s1h(x) + (1 − (1 − σ )s)ν(x) (A3)

because h will have arisen from x after s time steps via either
(a) zero jumps having occurred, that event having probability
(1 − σ )s, or via (b) at least one jump having occurred, in
which case the density is completely randomized to ν(x). The
expectation value appearing in Eq. (A2) is equal to

E
[

f
(
h(t−s)

i , h(t−s)
j

)∣∣h(t )
i = h, h(t )

j = h′ ]
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=
∫
X

∫
X

f (x, x′)Ps(x|h)Ps(x
′|h′)dxdx′, (A4)

which, using Eq. (A3) and integrating over (x, x′),
evaluates to

(1 − σ )2s f (h, h′)

+(1 − σ )s(1 − (1 − σ )s)(〈 f (·, h′)〉 + 〈 f (h, ·)〉)

+(1 − (1 − σ )s)2〈 f 〉, (A5)

where 〈 f (·, h)〉 = 〈 f (h, ·)〉 = ∫
X f (h, x)ν(x)dx and 〈 f 〉 =∫

X 2 f (x, x′)ν(x)ν(x′)dxdx′. Finally, plugging Eq. (A5) back
into Eq. (A2), using ps = ω(1 − ω)s and summing the geo-
metric series that appear [

∑
s�0 ys = 1/(1 − y)], we obtain

f̄ (h, h′) = α2 f (h, h′)

+ (α1 − α2)(〈 f (·, h′)〉 + 〈 f (h, ·)〉)

+ (1 − 2α1 + α2)〈 f 〉, (A6)

where αb = αb(σ, ω) for b ∈ {1, 2} are given by

αb(σ, ω) = ω

1 − (1 − ω)(1 − σ )b
. (A7)

As an aside, we note that the average degree of the network is
independent of (σ, ω). This can be seen by averaging Eq. (A2)
over h and h′ and making use of

∫
X Ps(x|h)ν(h)dh = ν(x)

(which is true because Ps(x|h) describes the stationary dis-
tribution, regardless of whether we consider walk dynamics
or jump dynamics). The result is 〈 f 〉, regardless of σ and ω.
This can be seen more directly in the case of jump dynamics
by averaging Eq. (A6) over h and h′.

APPENDIX B: TEMPORAL RGG EFFECTIVE
CONNECTION PROBABILITY

This section contains calculations of the effective connec-
tion probability for RGGs on the unit interval with periodic
boundaries and jump dynamics. This result could be obtained
from Eq. (A6) but we show here an alternate derivation. The
effective connection probability as a function of distances is
defined as the probability of two nodes being connected given
that they are a distance d(t )

i j = x apart, as t → ∞:

f̄ (x) = lim
t→∞P

(
A(t )

i j = 1
∣∣d(t )

i j = x
)
. (B1)

To calculate the above, we introduce the probability density
on distances between node pairs s time steps prior to when
the distance value is x, denoted Ps(y|x). We make use of the
fact that d(t )

i j can evolve in either of two ways: with probability
(1 − σ )2 each time step, neither i nor j jumps, and thus the
density is preserved. Otherwise, one or both do jump and
their distance becomes completely randomized. The station-
ary density of distance x is the uniform on [0, 1/2], i.e., equal
to 2 for all x ∈ [0, 1/2]. In a single time advancement, jump
dynamics thus yields

P1(y|x) = (1 − σ )21x(y) + 2(1 − (1 − σ )2). (B2)

Iterating the above logic, Ps(y|x) has two contributions: Either
neither node jumps at any time or at least one node jumps at
least once. Therefore,

Ps(y|x) = (1 − σ )2s1x(y) + 2(1 − (1 − σ )2s). (B3)

We can compute f̄ (x) via averaging the affinity f (hi, h j ) =
1{d(t )

i j � r} over the distance variable. That is,

f̄ (x) =
∑
s�0

psE
[
1
{
d(t−s)

i j � r
}∣∣d(t )

i j = x
]
, (B4)

where the expectation term is

E
[
1
{
d(t−s)

i j � r
}∣∣d(t )

i j = x
]

=
∫ 1/2

0
Ps(y|x)1{y � r}dy

=
∫ r

0
((1 − σ )2s1x(y) + 2(1 − (1 − σ )2s))dy

= (1 − σ )2s1{x � r} + 2r(1 − (1 − σ )2s). (B5)

Let s ∈ {0, 1, ...} be the delay since any given edge-indicator
was last resampled. Recall that s has distribution ps = ω(1 −
ω)s. Then, using the above, we find

f̄ (x) = ω
∑
s�0

(1 − ω)s(1 − σ )2s1{x � r}

+ω
∑
s�0

(1 − ω)s2r(1 − (1 − σ )2s)

= α21{x � r} + (1 − α2)2r, (B6)

with α2 = α2(σ, ω) arising from having evaluated sums of
geometric series of the form

∑
s�0((1 − ω)(1 − σ )2)s:

α2(σ, ω) = ω

1 − (1 − ω)(1 − σ )2
. (B7)

APPENDIX C: EFFECTIVE CONNECTION PROBABILITY
IN TERMS OF PRODUCTS OF HIDDEN VARIABLES

This section describes effective connection probabilities
arising in temporal HSCMs, as studied in Sec. V C. The
static-model affinity f is a function of the product of HVs,
motivating study of the effective connection probability f̄ as
a function of the product of HVs as well.

Consider one-dimensional HVs {h j} j∈[n] each distributed
uniformly on X = [0, 1]. This is applicable to HSCMs via
the CDF transform of arbitrary 1D probability densities: If
h has density ν, then u = F (h) = ∫ h

h−
ν(h′)dh′ is distributed

uniformly on [0,1] (h− is the minimum value of h). Denote
Ps(φ|ψ ) as the probability density of φ = h(t−s)

i h(t−s)
j for some

arbitrary pair i j given that h(t )
i h(t )

j = ψ . Then,

f̄ (ψ ) = ω
∑
s�0

(1 − ω)s
∫ 1

0
Ps(φ|ψ ) f (φ)dφ. (C1)

For products of HVs each independently undergoing jump
dynamics, we have

Ps(φ|ψ ) = (1 − σ )2s1ψ (φ)

+ (1 − (1 − σ )s)(1 − σ )s p1(φ|ψ )

+ (1 − (1 − σ )s)2
μ(φ), (C2)

052307-15



HARTLE, PAPADOPOULOS, AND KRIOUKOV PHYSICAL REVIEW E 103, 052307 (2021)

with μ(φ) denoting the product density of HVs and p1(φ|ψ )
the product HV density conditioned on a single jump. Then,

f̄ (ψ ) = α f (ψ ) + ω
∑
s�0

((1 − σ )(1 − ω))s(1 − (1 − σ )s)

×
∫ 1

0
f (φ)p1(φ|ψ )dφ

+ω
∑
s�0

(1 − ω)s(1 − (1 − σ )s)2
∫ 1

0
f (φ)μ(φ)dφ.

(C3)

Note that
∫ 1

0 f (φ)μ(φ)dφ = 〈 f 〉 = 〈k〉/n. Then, evaluating
sums,

f̄ (ψ ) = α2 f (ψ ) + (α1 − α2) f1(ψ ) + (1 − 2α1 + α2)〈 f 〉,
(C4)

with αb = ω/(1 − (1 − ω)(1 − σ )b), and the quantity f1(ψ )
being defined as

f1(ψ ) =
∫

f (φ)p1(φ|ψ )dφ, (C5)

where p1(φ|ψ ) is the distribution of the product of a uniform
random variable and of one factor of a product, given that the
value of that product is ψ . In the following, we walk through
the remaining required calculations to obtain f1(ψ ).

1. Finding p(x|xy = ψ)

Suppose that x and y are sampled uniformly on [0,1].
Now condition on the fact that their product, xy, takes on the
particular value xy = ψ . Then, what is the probability density
of x alone? Note first that it must reside in [ψ, 1], since ψ

is the product of two numbers each in the range [0,1], i.e.,
each reducing the value of the product. Within the acceptable
range, the density is obtained as follows:

p(x|xy = ψ ) ∝
∫ 1

0
1ψ (xy)dy

∝ 1

x

∫ 1

0
1ψ/x(y)dy

= 1/x, (C6)

where the ratio ψ/x is guaranteed to be in the range [0,1] since
x � ψ . Combining the above with the range of acceptable
values of x given xy = ψ , we have proportionality

p(x|xy = ψ ) = c
1{x ∈ [ψ, 1]}

x
, (C7)

and c is determined by normalization:

1 =
∫ 1

0
p(x|xy = ψ )dx = c

∫ 1

ψ

dx

x
= c ln(1/ψ )

⇒ c = 1

ln(1/ψ )
. (C8)

Therefore,

p(x|xy = ψ ) = 1{x ∈ [ψ, 1]}
x ln(1/ψ )

, (C9)

as is confirmed numerically in Fig. 8.

FIG. 8. The probability density of the value of one member x of
a product xy conditioned on xy = ψ . In the absence of the condition-
ality, both x and y are distributed uniformly on [0,1].

2. Finding p1(φ|ψ)

Now suppose that one variable, say y, undergoes a random
jump (i.e., is resampled) and thus becomes a new uniform
variable on [0,1]. The equality xy = ψ no longer holds,
but since it did hold prior to the jump, the variable x re-
mains distributed according to p(x|xy = ψ ). Therefore the
new product’s value, which we denote by φ = xy′ (where y′
is the postjump version of y), has a density p1(φ|ψ ) of the
following form:

p1(φ|ψ ) =
∫ 1

0
1{y′ ∈ [0, 1]}p

(
φ

y′

∣∣∣∣xy = ψ

)
1

y′ dy′

=
∫ 1

0

1{φ/y′ ∈ [ψ, 1]}
(φ/y′) ln(1/ψ )

dy′

y′

= 1

φ ln(1/ψ )

∫ 1

0
1{φ/y′ ∈ [ψ, 1]}dy′. (C10)

Continuing with a change of variables,

p1(φ|ψ ) = 1

ln(1/ψ )

∫ 1/φ

0
1{y′/φ ∈ [1, 1/ψ]}d (y′/φ)

= min(1/φ, 1/ψ ) − 1

ln(1/ψ )
. (C11)

The above is validated numerically in Fig. 9.

3. Calculating f̄1(ψ)

We now average the affinity over p1(φ|ψ ), to get the con-
tribution to the effective connection probability coming from
one HV jumping. This goes as

f̄1(ψ ) =
∫ 1

0
f (φ)p1(φ|ψ )dφ

=
∫ 1

0
f (φ)

min(1/φ, 1/ψ ) − 1

ln(1/ψ )
dφ

= 1

ln(1/ψ )

(
1

ψ

∫ ψ

0
f (φ)dφ +

∫ 1

ψ

f (φ)

φ
dφ − 1

)
.

(C12)
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FIG. 9. The probability density of the value φ of the product
φ = xy′, where y′ is uniformly sampled after having previously had
random value y and where xy was conditioned to have value xy = ψ .
Without any conditioning, all three x, y, y′ have marginal density
uniform on [0,1].

Using Eq. (C12), we can compute f̄ (ψ ) for a given f (ψ )
via Eq. (C4).

APPENDIX D: WALK DYNAMICS

Here we describe walk dynamics in detail. Throughout this
paper, walk dynamics in one dimension is simulated by first
mapping random variables to the unit interval (by the inverse-
CDF method [186]), doing a random walk on [0,1], then
mapping back. For any one-dimensional probability density
ν(x) where x ∈ R+, we define random variable u(x) = Fν (x),
where Fν (x) = ∫ x

0 ν(y)dy. The probability density of u(x) is
the uniform on [0,1]. A random walk on [0,1] is constructed
via addition of uniform noise in the range [−2σ, 2σ ], param-
eterized by σ ∈ [0, 1]. That is, after rescaling we have HV
dynamics:

Ph(u′|u) = 1{|u′ − u| � 2σ }
4σ

. (D1)

Note that the choice of [−2σ, 2σ ] results in a mean jump
length equal to σ , neglecting boundary conditions; when im-
plementing boundary conditions, one needs only to adjust the
probability density Ph(u′|u) according to the circumstance.
See Appendix E for the case of reflecting boundaries.

Drawing h(1) from ν, we initialize u(1) = Fν (h(1) ) and it-
eratively time advance as per the above to obtain {u(t )}T

t=1.
We then simply transform back via h(t ) = F−1

ν (u(t ) ) to obtain
one-dimensional dynamics whose stationary distribution is ν.

In dimensions greater than one, walk dynamics can be
simulated by first taking the multidimensional inverse-CDF
transform, mapping the space X to a unit cube. Walk dynam-
ics can then be performed with whatever custom boundary
conditions are required on that unit cube (boundary conditions
that correspond to those of X ) and the results can then be
mapped back to the original space X . For example, in the H2

model (Appendix F), increments of change in the angular and
radial coordinates were chosen to be independent; this option
was taken for simplicity but nonindependent cases would also
be interesting to explore. Any transitional probability density

preserving the uniform on the unit cube would fall within the
same framework.

APPENDIX E: WALK DYNAMICS WITH REFLECTING
BOUNDARY CONDITIONS

In this Appendix we study walk dynamics on X = [0, 1]
with reflecting boundary conditions under uniform noise. In
particular, we show that the stationary density is uniform on
[0,1]. In turn, that implies that arbitrary 1D dynamics with
density ν(h) can be made into a random walk of this type, by
mapping initial h values to [0,1] via the inverse-CDF trans-
form, performing the reflecting random walk on [0,1], then
transforming the random walk trajectories back to the original
space (see Appendix D).

Let X = [0, 1] be the HV space and denote by x ←↩

U [0, 1] the value of a HV. Then let x̂ ∈ [−r, 1 + r] be an inter-
mediate variable defined as x̂ = x + u, where u ←↩ U [−r, r]
is the uniform additive noise which we use to simulate walk-
dynamics. Lastly, let x′ = Z (x̂) be the reflected variable,
where the function Z encodes the reflecting boundary condi-
tions. Note that values of x′ in the ranges [0, r] and [1 − r, 1]
are obtained from one of two different of values of x̂: the case
when reflected and the case when not reflected. To transform
the density of x̂ into that of x′, we write x′ as a function of ẑ,
as x′ = Z (x̂) and use the generalized change-of-variables for-
mula for probability densities [187]. We denote the densities
of x, x̂, x′ as P(x), P̂(x̂), and P′(x′), respectively. The density
of x̂ given x is

P̂(x̂|x) = 1{x̂ ∈ [x − r, x + r]}
2r

= 1{x ∈ [x̂ − r, x̂ + r]}
2r

.

(E1)
Since x is uniform on [0,1] the density of x̂ is then

P̂(x̂) =
∫ 1

0
P̂(x̂|x)dx

= 1

2r

∫ 1

0
1{x ∈ [x̂ − r, x̂ + r]}dx

= 1

2r
|[0, 1] ∪ [x̂ − r, x̂ + r]| (E2)

or

P̂(x̂) = 1

2r

⎧⎨
⎩

x̂ + r, x̂ < r
2r x̂ ∈ [r, 1 − r]

1 + r − x̂, x̂ > 1 − r,
(E3)

where the x̂-dependent coefficients of the first and third terms
arise from reflections of the form x̂ − (−r) and 1 − (x̂ − 1).
We seek a function Z : [−r, 1 + r] → [0, 1] that encodes the
reflection properties of the walk dynamics. The necessary Z is
given by

Z (x̂) =
⎧⎨
⎩

−x̂, x̂ < 0
x̂, x̂ ∈ [0, 1]

2 − x̂, x̂ > 1.

(E4)
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The values of x̂ mapping to a given value of x′, namely, those
making up the inverse of Z , are given by

{x̂ : Z (x̂) = x′} =
⎧⎨
⎩

{−x′, x′}, x′ < r
{x′}, x′ ∈ [r, 1 − r]

{x′, 2 − x′}, x′ > 1 − r.
(E5)

Let us compute the derivative of Z (x̂), neglecting the measure-
zero points of 0 and 1:

dZ (x̂)

dx̂
=

⎧⎨
⎩

−1, x̂ < 0
1, x̂ ∈ (0, 1)

−1, x̂ > 1.

(E6)

We now transform to find the density after one step of dynam-
ics, as

P′(x′) =
∑

x̂:Z (x̂)=x′

∣∣∣∣dZ (x̂)

dx̂

∣∣∣∣
−1

P̂(x̂)

=
⎧⎨
⎩

P̂(−x′) + P̂(x′), x′ < r
P̂(x′), x′ ∈ [r, 1 − r]

P̂(x′) + P̂(2 − x′), x′ > 1 − r

= 1. (E7)

Therefore, the stationary distribution is uniform.

APPENDIX F: HYPERBOLIC WALK DYNAMICS

To sample h̃ = (r̃, θ̃ ) and also to sample h(1)
j (a coordinate

from the initial time step, i.e., the static H2 model), we first
draw two independent random variables Ur and Uθ , each from
the uniform distribution on [0,1]. These are then set equal to
the cumulative density functions of νrad and νang, evaluated at
r̃ and θ̃ , respectively:

Uθ =
∫ θ̃

0
νang(θ )dθ = θ̃

2π
,

Ur =
∫ r̃

0
νrad(r)dr = cosh

(
γ−1

2 r̃
) − 1

cosh
(

γ−1
2 R

) − 1
. (F1)

From the above, we can solve to obtain h̃ in terms of (Ur,Uθ ):

θ̃ = 2πUθ ,

r̃ = 2

γ − 1
cosh−1

(
1 +

(
cosh

(
γ − 1

2
R

)
− 1

)
Ur

)
.

(F2)

In the temporal setting, those initial variables are set to
U (1)

θ and U (1)
r , after which we perform walk dynamics on the

transformed variables to obtain (U (t )
θ ,U (t )

r ) for t ∈ {2, ..., T }.
Walk dynamics occurs independently for the two variables,
with periodic boundary conditions for angular coordinates and
reflecting boundary conditions for radial coordinates.

Note that we use reflecting boundary conditions for the
radial coordinate, rather than, for example, periodic boundary
conditions or reflecting boundary conditions with an associ-
ated angular reversal at any time step that a node reflects from
the origin of the radial coordinate (as would also seem like
a natural choice for the disk). The reason to not incorporate
such angular flipping is due to the interpretation of the angular

coordinates as similarity-encoding variables [188]. From that
perspective, it is more realistic to have nodes reflect off of
the disk’s origin and retain their similarity coordinates rather
than to pass through the origin and reverse their similarity
coordinates.

APPENDIX G: STATIONARITY WITH LINK RESPONSE

In this Appendix, we show that the static-model graph
probability distribution is preserved via the effect of link re-
sponse as described in Sec. VI. Specifically, we show that∫

H

(∑
G∈G

P (G|H )PG→G′
H,H ′

)
ρ(H )dH = P (G′|H ′), (G1)

where PG(t )→G(t+1)

H (t ),H (t+1) = PG(G(t+1)|G(t ), H (t+1), H (t ) ). We for
now set ω = 0 and later argue that link resampling
does not influence the results in question. First, we note
that the transition probability given (H, H ′) is separa-

ble: PG→G′
H,H ′ = ∏

1�i< j�n P
Ai j→A′

i j

i j , with transition probability

Pα→β
i j = P (A′

i j = β|Ai j = α, h′
i, h′

j, hi, h j ). Denoting fi j =
f (hi, h j ) and f ′

i j = f (h′
i, h′

j ), we evaluate the different tran-
sition probabilities:

P1→1
i j = 1{ f ′

i j � fi j} + (1 − q−
i j )1{ f ′

i j < fi j},
P0→0

i j = 1{ f ′
i j < fi j} + (1 − q+

i j )1{ f ′
i j � fi j}, (G2)

with q−
i j = 1 − f ′

i j/ fi j , q+
i j = 1 − (1 − f ′

i j )/(1 − fi j ) as de-
fined in Sec. VI. The remaining probabilities are obtained by
normalization:

P1→0
i j = 1 − P1→1

i j = q−
i j1{ f ′

i j < fi j},
P0→1

i j = 1 − P0→0
i j = q+

i j1{ f ′
i j � fi j}. (G3)

Noting that PG→G′
H,H ′ and P (G|H ) are both separable into a

product over i j : 1 � i < j � n, we write

P (G|H )PG→G′
H,H ′ =

∏
1�i< j�n

f
Ai j

i j (1 − fi j )
1−Ai j P

Ai j→A′
i j

i j . (G4)

The sum over all graphs G of this product becomes a product
over all pairs i j of a sum over Ai j ∈ {0, 1}:∑

G∈G

∏
1�i< j�n

y(Ai j ) =
∏

1�i< j�n

∑
Ai j∈{0,1}

y(Ai j ). (G5)

Using the above, and Eq. (5), the parenthesized term in
Eq. (G1) is equal to∏

i j:A′
i j=0

(
fi jP

1→0
i j + (1 − fi j )P

0→0
i j

)

×
∏

i j:A′
i j=1

(
fi jP

1→1
i j + (1 − fi j )P

0→1
i j

)
. (G6)

Applying Eqs. (G2) and (G3) and using the expressions for
q±

i j , as well as the facts that 1{ f ′
i j � fi j} + 1{ f ′

i j < fi j} = 1
and

∫
H ρ(H )dH = 1, Equation (G1) becomes∏

i j:A′
i j=1

f ′
i j

∏
i j:A′

i j=0

(1 − f ′
i j ) = P (G′|H ′). (G7)
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The left-hand side of the above is exactly the static model’s
graph probability distribution given a HV configuration [see
Eq. (5) of the main text]. Thus the SVHM is the station-
ary distribution of time advancements with the link-response
mechanism.

To show that these results hold even upon inclusion of
the link-resampling mechanism (allowing ω > 0), consider
the following reasoning. Regardless of what the link-response
step yielded, each node-pair undergoing link resampling at
rate ω will result in either (a) linking according to the con-
nection probability of the newly updated HV configuration
(with probability ω) or (b) linking as before (ω = 0), without
altering the connection probability. Given the fact that station-
arity holds without link resampling, in the latter case we also
have a connection probability equal to that of the updated HV
configuration.

Thus, upon inclusion of the link-response mechanism
whereby both H (t+1) and H (t ) impact the transition from G(t )

to G(t+1), we have temporal extensions of arbitrary SHVMs
that exactly satisfy the equilibrium property, while retaining
the persistence property. Such a link-response mechanism
may better reflect reality in cases where connectivity among
nodes changes directly in response to changes in their internal
characteristics.

APPENDIX H: DISCRETE HIDDEN VARIABLES

We consider THVMs formulated with discrete HVs and
describe their relation to continous-HV models.

We take, for example, the case of SBMs, described in
Sec. V A entirely in terms of discrete HVs, namely, group

indices which are naturally thought of as discrete. We then
have a set of discrete HVs {q j} j∈[n], each distributed into a
discrete set [m] = {1, ..., m} according to a probability distri-
bution � : [m] → [0, 1] and connecting via a discrete affinity
function fq,q′ .

In a dual continuous-HV system which maps to the above-
described discrete system, suppose each node j’s HV hj has
uniform density on [0,1] and pairwise affinities are encoded
in a piecewise constant graphon function according to oc-
cupancy of points in nonoverlapping subregions {Lw}w∈[m] ⊆
[0, 1]m such that |Lw| = �w and such that

f (h, h′) =
∑

(w,z)∈[m]2

fw,z1{h ∈ Lw, h′ ∈ Lz}. (H1)

Discrete node labels can also be written directly in terms of
continuous HV values as

qi =
∑

q∈[m]

q1{hi ∈ Lq}. (H2)

The probability distribution � thus arises from integration
of the uniform density on [0,1], namely, ν(h) = 1, over
the regions {Lq}q∈[m] corresponding to specific group-labels
q ∈ [m]:

�q =
∫
X

ν(h)1{h ∈ Lq}dh =
∫

Lq

dh = |Lq|. (H3)

In the temporal setting, we can again relate discrete HVs to
continuous ones. To reproduce the HV-resampling dynamics
for temporal SBMs, we can simply have continuous HVs
undergo jump dynamics in [0,1]. Jumping to a random point
in [0,1] amounts to jumping into a random subset Lq with
probability �q = |Lq|.
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[97] M. I. Roberts and B. Şengül, Exceptional times of the critical
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