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Effects of degree distributions in random networks of type-I neurons
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We consider large networks of theta neurons and use the Ott-Antonsen ansatz to derive degree-based
mean-field equations governing the expected dynamics of the networks. Assuming random connectivity, we
investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory
or inhibitory synaptically coupled networks and gap junction coupled networks. For synaptically coupled
networks, the dynamics are independent of the out-degree distribution. Broadening the in-degree distribution
destroys oscillations in inhibitory networks and decreases the range of bistability in excitatory networks. For
gap junction coupled neurons, broadening the degree distribution varies the values of parameters at which there
is an onset of collective oscillations. Many of the results are shown to also occur in networks of more realistic
neurons.
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I. INTRODUCTION

It is well known that the structure of a network can have
a significant effect on its dynamics. One type of network of
great interest is that of networks of neurons, and much effort
has gone into investigating this issue [1–5]. In networks of
neurons, the nodes are normally thought of as individual neu-
rons, while the edges describe connections between neurons.
These connections can be directed (in the case of synaptic
connections [6]) or undirected (in the case of gap junction
connections [7,8]). One of the important properties of a node
in a network is its degree: a node’s in-degree is the number
of connections to it, and a node’s out-degree is the number of
connections from it. In the case of undirected connections, a
node simply has a degree, as there is no distinction between
incoming or outgoing connections. Previous work on under-
standing the dynamics of networks of neurons has considered
the effects of correlations between the in- and out-degrees
of individual neurons [3,4,9–12] and of degree assortativity,
in which the probability that two neurons are connected is
influenced by the degrees of the two neurons [2,13–15].

In this paper, we consider the effects of varying the widths
of the distributions of in-degrees and out-degrees on large,
randomly connected networks of type-I neurons, i.e., neurons
whose onset of firing is through a saddle-node-on-invariant-
circle (SNIC) bifurcation. The analysis is done of networks
of theta neurons, as these are the normal form of the SNIC
bifurcation. They also have the property of being amenable
to the use of the Ott-Antonsen ansatz [16,17], a now well-
used method for deriving equations governing the evolution of
order-parameter-like quantities, valid for large networks with
particular forms of heterogeneity [18–22].

A common assumption in creating random networks of
neurons is that there is a fixed probability of connecting any
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two neurons [23,24]. Such networks are often referred to as
Erdös-Rényi networks, and they have a binomial distribution
of degrees, with the ratio of mean degree to standard deviation
of degrees going to zero as the network size goes to infinity.
However, real networks of neurons are observed to have prop-
erties incompatible with this assumption [25].

Previous work on investigating the effects of degree distri-
butions includes that of Roxin [1]. He found in an inhibitory
network of leaky integrate-and-fire neurons that broadening
the distribution of in-degrees suppressed macroscopic oscilla-
tions. This result was reproduced in a simplified rate model
which included the heterogeneity in neuronal input due to
the in-degree of cells. He also considered a network with
both excitatory and inhibitory neurons, and he investigated
the effects of varying the in- and out-degree distributions
of the recurrent excitatory connections. In other work, the
authors of Ref. [26] studied the effects of degree distribution
in feedforward networks.

We consider synaptic coupling in Sec. II and gap junction
coupling in Sec. III. Both sections start with a derivation
of the relevant equations using the Ott-Antonsen ansatz and
then give some numerical results. Most results use Lorentzian
distributions of heterogeneous parameters, and in Sec. IV
we briefly discuss results using normal and uniform dis-
tributions. We conclude in Sec. V. Appendix contains a
description of the network of Morris-Lecar neurons used
to verify some of the results derived for networks of theta
neurons.

II. SYNAPTIC COUPLING

We first consider networks of theta neurons coupled by
synaptic input currents with a timescale τ . Alternative formu-
lations could model synaptic input by using dynamic synapses
[27] or input current pulses with both a rise time and a decay
time [6].
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A. Model and theory

We consider a network of N theta neurons, each of which
has dynamics described by

dθi

dt
= 1 − cos θi + (1 + cos θi )[ηi + Ii(t )] (1)

for i = 1, . . . , N , where the input current to neuron i is

Ii(t ) = K

〈k〉
N∑

j=1

Ai ju j (t ) (2)

and the synaptic variables have dynamics given by

τ
du j

dt
=

∑
m∈Z

δ
(
t − T m

j

) − u j, (3)

where T m
j is the mth firing time of neuron j, defined to happen

every time θ j increases through π , and δ(·) is the Dirac delta.
Thus every time θ j increases through π , u j is instantaneously
incremented by an amount 1/τ , and between firing times it
decays as ∼e−t/τ . K is the strength of connections between
neurons (which may be positive or negative), 〈k〉 is the average
in-degree in the network, and A describes the connectivity
of the network, i.e., Ai j = 1 if there is a connection from
neuron j to neuron i and Ai j = 0 otherwise. We have 〈k〉 =∑

i, j Ai, j/N . The ηi are randomly chosen from a Lorentzian

g(η) = �/π

(η − η0)2 + �2
(4)

with center η0 and half-width-at-half-maximum (HWHM)
�, which introduces heterogeneity to the network. The
Lorentzian is chosen so that analytical progress can be made.
We discuss results for other distributions below.

If the input current Ii is constant, the theta neuron shows
one of two types of behavior. For ηi + Ii < 0, (1) has two fixed
points, one stable and one unstable. For ηi + Ii > 0, (1) has
no fixed points and θi increases with time, showing periodic
oscillations with frequency

√
ηi + Ii/π [28]. The bifurcation

at ηi + Ii = 0 is a SNIC bifurcation. Note that under the
transformation V = tan (θ/2), a network of theta neurons is
exactly equivalent to a network of quadratic integrate-and-fire
neurons with infinite threshold and reset values [29]. We now
proceed to analyze the network dynamics, using ideas similar
to those in [9,13,21,22,30].

We assume that the network is characterized by two func-
tions: first the degree distribution P(k), normalized to sum to
1, where k = (kin, kout ), and kin and kout are the in- and out-
degrees of a neuron with degree k, respectively, and second
the assortativity function a(k′ → k) giving the probability of
a connection from a neuron with degree k′ to one with degree
k, given that such neurons exist. We also make the mean-field
assumption that the dynamics of a neuron depend only on
its degree k, thus effectively averaging the dynamics of all
neurons with the same degree.

In the limit of large N and large in- and out-degrees, the
network is described by the distribution f (θ, η|k, t ), where
f (θ, η|k, t )dθ dη is the probability that a neuron with degree
k has phase in [θ, θ + dθ ] and a value of η in [η, η + dη] at

time t . This distribution satisfies the continuity equation

∂ f

∂t
+ ∂

∂θ
(v f ) = 0, (5)

where [from (1)–(3)]

v(θ, k, η, t ) = 1 − cos θ + (1 + cos θ )[η + I (k, t )], (6)

I (k, t ) = KN

〈k〉
∑

k′
P(k′)a(k′ → k)u(k′, t ), (7)

and

τ
du(k, t )

dt
= F̂ (k, t ) − u(k, t ), (8)

where F̂ (k, t ) is the firing rate of neurons with degree k at
time t .

The Ott-Antonsen ansatz gives the dynamics for the order
parameter for neurons with degree k [9,13,18]:

∂b(k, t )

∂t
= −i[b(k, t ) − 1]2

2
+ [b(k, t ) + 1]2

2

×
[
−� + iη0 + i

KN

〈k〉
∑

k′
P(k′)a(k′ → k)u(k′, t )

]
,

(9)

where b(k, t ) is the expected value of eiθ for neurons with
degree k, i.e.,

b(k, t ) =
∫ ∞

−∞

∫ 2π

0
f (θ, η|k, t )eiθ dθ dη. (10)

The firing rate of neurons with degree k at time t is the
expected value of the flux through θ = π [31,32], i.e.,

F̂ (k, t ) =
∫ ∞

−∞
f (π, η|k, t )dη = 1

π
Re

(
1 − b̄(k, t )

1 + b̄(k, t )

)
, (11)

where the overline indicates complex conjugate. We define
F (b(k, t )) ≡ F̂ (k, t ).

With neutral assortativity [21],

a(k′ → k) = k′
outkin

N〈k〉 , (12)

and with independent in- and out-degrees, the degree distribu-
tion P(k′) factorizes as P(k′) = pin(k′

in )pout(k′
out), where pin

and pout are the marginal distributions of the relevant degrees,
so

KN

〈k〉
∑

k′
P(k′)a(k′ → k)u(k′, t )

= Kkin

〈k〉2

∑
k′

in

∑
k′

out

pin(k′
in)pout(k

′
out)k

′
outu(k′

in, k′
out, t ). (13)

This quantity is independent of kout and contributes to the
“input” to neurons with degree k. Thus b(k, t ) must also be
independent of kout and so must F (b(k, t )) and u(k, t ). Thus
(13) simplifies to

KN

〈k〉
∑

k′
P(k′)a(k′ → k)u(k′, t ) = Kkin

〈k〉
∑
k′

in

pin(k′
in)u(k′

in, t )

(14)
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and we see that the distribution of out-degrees does not af-
fect the expected dynamics. This was observed by Roxin
in [1], although he observed that broadening the out-degree
distribution increases the amplitude of the cross-correlation
of synaptic currents, something we do not consider here.

We have

τ
du(kin, t )

dt
= F (b(kin, t )) − u(kin, t ), (15)

and defining

s(t ) ≡
∑
kin

pin(kin)u(kin, t ) (16)

we see that s satisfies

τ
ds

dt
=

∑
kin

pin(kin)F (b(kin, t )) − s (17)

and the dynamics of b are given by

∂b(kin, t )

∂t
= −i[b(kin, t ) − 1]2

2
+ [b(kin, t ) + 1]2

2

×
[
−� + iη0 + iKkins

〈k〉
]
. (18)

Equations (17) and (18) form a set of Nkin + 1 ordinary differ-
ential equations (ODEs) governing the network’s dynamics,
where Nkin is the number of distinct in-degrees in the network.
In the next section, we give some numerical results showing
the possible dynamics of this set of equations.

B. Results

We first consider inhibitory coupling, i.e., K < 0.

1. Inhibitory coupling

Consider the parameter values η0 = 1, � = 0.05, τ =
1, K = −2, 〈k〉 = 100. Having η0 > 0 indicates that when
uncoupled, most neurons would be firing rather than quies-
cent. We choose pin to be uniform with mean 〈k〉 = 100 and
write its support as [100 − σ, 100 + σ ]. For σ = 5 (a nar-
row distribution) we obtain global oscillations; see Fig. 1(a).
However, when the in-degree distribution is made broader
(σ = 50), the oscillations die out; see Fig. 1(b). Note the inde-
pendence of the dynamics on the distribution of out-degrees,
pout(kout), as expected.

To numerically solve (17) and (18), we treat kin as a con-
tinuous variable and discretize the support of pin using 100
evenly spaced points, and use pin = 1/100 at each of those
points, effectively using the midpoint rule. To create the net-
work used in (1)–(3), we randomly sample N in-degrees from
pin(kin) and N out-degrees from pout(kout), choosing until the
sum of the in-degrees equals the sum of the out-degrees, and
then we use the configuration model to connect the network
[33]. Any self-connections or multiple connections are then
removed by random rewiring, keeping the degrees fixed. To
solve (1)–(3), we used Euler’s method with a step size of
0.001.

The destruction of oscillations seen in Fig. 1 seems to be
due to a Hopf bifurcation. Using pseudo-arclength continu-
ation to follow the stable fixed point of (17) and (18) as σ

0 10 20 30 40 50

time

0

0.2

0.4

0.6

0.8

s

(a)

0 10 20 30 40 50

time

0

0.2

0.4

0.6

0.8

s

(b)

FIG. 1. (a) s for the reduced model (17) and (18) (blue curve)
and for the full model (1)–(3) (dots) for pout being uniform on
[10,190], [50,150], and [90,110] (different colors). pin is uniform
on [95,105] (i.e., σ = 5). A different realization of the ηi was used
for the different networks. (b) As for (a), but now pin is uniform on
[50,150] (σ = 50). For (1)–(3), N = 500 neurons were used and the
initial conditions were θi = ui = 0, and for (17) and (18) we used
b = 1 and s = 0.

is decreased, we find a Hopf bifurcation at σ ≈ 31.4, and
continuing that bifurcation as both σ and τ are varied, we
obtain the curve in Fig. 2. For any τ for which an oscillation
occurs, increasing σ will destroy the oscillations, and for
small σ , a value of τ that is either too large or too small will
also destroy oscillations. (We varied τ here just as an example;
we could equally well vary other parameters such as η0 or
�.) The destruction of oscillations in an inhibitory network
by broadening the in-degree distribution was also observed
by Roxin [1]. He analyzed a heuristic rate model containing
a fixed delay (since he used delayed synapses) and found a
Hopf bifurcation in that model, in agreement with the results
shown here.

To investigate the generality of our result, we now consider
a beta distribution of in-degrees, with equal parameters greater
than 1, shifted to have mean 100 and support on [50,150], i.e.,

pin(kin) =
{

Cxα−1(1 − x)α−1, 0 � x � 1,

0 otherwise,
(19)

where x = (kin − 50)/100, and C is a normalization factor.
Increasing α narrows the distribution, as shown in the inset of
Fig. 3. Varying α and τ , we find a curve of Hopf bifurcations,
shown in Fig. 3, which shows the same qualitative behavior as
for the uniform distribution.

To further demonstrate the generality of our results, we
now consider a network of 500 Morris-Lecar neurons [34],
known to undergo a SNIC bifurcation as the input cur-
rent is increased [9]. The network equations are given in
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FIG. 2. Hopf bifurcation curve for a fixed point of (17) and (18).
A stable periodic orbit exists to the left of the curve, and a stable
fixed point exists to the right. Other parameters are η0 = 1, � =
0.05, K = −2, 〈k〉 = 100. pin is uniform on [100 − σ, 100 + σ ].

Appendix. The in-degree distribution is uniform on [100 −
σ, 100 + σ ] and the out-degree is uniform on [50,150]. For
each different value of σ we generate a network as ex-
plained above, and for each network we vary τ , the synaptic
timescale, integrating for 50 s at each value of τ . Defining
ŝ = N−1 ∑N

i=1 si, we discard data from the first 45 s and cal-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0
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FIG. 3. A beta distribution of in-degrees. A Hopf bifurcation
curve for a fixed point of (17) and (18). A stable periodic orbit exists
to the left of the curve, and a stable fixed point exists to the right.
Other parameters are η0 = 1, � = 0.05, K = −2, 〈k〉 = 100. The
inset shows the beta distribution on [50,150] with α = 3, 20.
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FIG. 4. Results for a Morris-Lecar model. τ is the synaptic
timescale, and the in-degree distribution is uniform on [100 −
σ, 100 + σ ]. Color shows the standard deviation of ŝ over 5 s of
simulated time, having discarded the first 45 s. The same ηi were
used for each simulation. We used N = 500 neurons.

culate the standard deviation of ŝ over the last 5 s, plotting
that in Fig. 4. Large values indicate oscillations, while small
values indicate an approximate steady state. We see results
consistent with those in Figs. 2 and 3. Thus we conclude that
broadening the in-degree distribution of an inhibitory network
of type-I neurons acts to destroy global oscillatory behavior.
This is presumably due to having a wider range of dynamics
for neurons with different in-degrees, making them harder
to synchronize. We now consider excitatory coupling, i.e.,
K > 0.

2. Excitatory coupling

Consider the parameter values � = 0.05, τ = 1, K =
5, 〈k〉 = 100. Varying η0, we expect a region of bistabil-
ity between a high-activity steady state and a low-activity
steady state, as is often found in excitatory networks [35].
This is found, as shown in Fig. 5, where saddle-node bifur-
cations mark the boundaries of the bistable region. Varying
the width of the in-degree distribution (σ ) varies the width of
the bistable region. In particular, widening the in-degree dis-
tribution narrows the width of the bistable region. Following
the saddle-node bifurcations seen in Fig. 5, we obtain Fig. 6.
Similar behavior was seen for a beta distribution of in-degrees
(not shown).

We reproduced this behavior in a network of N =
500 Morris-Lecar neurons with parameters as given in
Appendix. For networks with σ = 10 and 90, we quasistati-
cally varied I0, integrating for 10 s at each value. We define s̄ to
be the mean of ŝ over the last 2 s of simulation, and we plot this
in Fig. 7. The results are qualitatively the same as in Fig. 5:
s̄ is lower when σ = 90 than when σ = 10, and the leftmost
saddle-node bifurcation is moved more than the rightmost one
when σ is varied. The threshold for firing for single neuron is
I0 ≈ 39.69, so the jumps occur at values of I0 less than this,
consistent with the results in Fig. 6. Thus we conclude that
for an excitatory network of type-I neurons, broadening the
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FIG. 5. s at fixed points of (17) and (18) for σ = 10 (red) and
σ = 90 (blue). Solid curves are stable, dashed unstable. Parameters:
� = 0.05, τ = 1, K = 5, 〈k〉 = 100, uniform in-degree on [100 −
σ, 100 + σ ].

in-degree distribution narrows the range of values of the mean
input for which the network is bistable. The effects of varying
other parameters could equally well be investigated using the
techniques shown here.

III. GAP JUNCTIONS

We now consider theta neurons coupled by gap junctions
[7,36]. Gap junctional coupling is well known to induce
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FIG. 6. Curves of saddle-node bifurcations of fixed points of
(17) and (18). The network is bistable between the curves and
has a single attractor outside this region. Figure 5 corresponds to
horizontal “slices” through this figure at σ = 10 and 90. Param-
eters: � = 0.05, τ = 1, K = 5, 〈k〉 = 100, uniform in-degree on
[100 − σ, 100 + σ ].
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FIG. 7. Approximate steady states for a Morris-Lecar model. For
each of the two networks, I0 was quasistatically increased up and
then down. Both networks show bistability for a range of I0 values,
and vertical jumps at apparent saddle-node bifurcations. Compare
with Fig. 5. Parameters: 〈k〉 = 100, uniform in-degree on [100 −
σ, 100 + σ ], out-degree is uniform on [50,150]. The same ηi were
used for each simulation.

synchrony in networks of neurons [8,37,38]. The quadratic
integrate-and-fire (QIF) neuron [39] with an infinite firing
threshold and reset to V = −∞ is equivalent under the trans-
formation V = tan (θ/2) to a theta neuron [40], and since
gap junction coupling is through voltage differences, it is
easier to start with a network of QIF neurons. Our analysis
is similar to that in [31]; also see [41–43]. A theta neuron is
an excitable system, so our results add to those on coupled
excitable systems [44–47].

A. Model and theory

Consider a network of N gap-junction coupled QIF neu-
rons governed by

dVj

dt
= η j + V 2

j + g

〈k〉
N∑

l=1

Ajl (Vl − Vj ) (20)

for j = 1, . . . , N together with the rule that if Vj (t−) = ∞,
then Vj (t+) = −∞, and neuron j is said to fire at this time t .
A describes the connectivity of the network, where Ajl = 1 if
neurons j and l are connected and zero otherwise. Since gap
junctional coupling is not directional, we have Ajl = Al j . k j

is the degree of the jth neuron, i.e., k j = ∑
l A jl , 〈k〉 is the

mean degree, as above, and g is the strength of coupling (non-
negative). The η j are randomly chosen from a distribution
h(η).

We rewrite (20) as

dVj

dt
= η j + V 2

j − gk jVj

〈k〉 + g

〈k〉
N∑

l=1

AjlVl . (21)
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Now let Vj = tan (θ j/2). Then

dVj

dt
= dθ j/dt

2 cos2 (θ j/2)
= η j + tan2 (θ j/2) − gk j

〈k〉 tan (θ j/2) + g

〈k〉
N∑

l=1

Ajl tan (θl/2) (22)

so

dθ j

dt
= 1 − cos θ j + (1 + cos θ j )

[
η j − gk j

〈k〉 tan (θ j/2) + g

〈k〉
N∑

l=1

Ajl tan (θl/2)

]
. (23)

Noting that

tan (θ/2) = sin θ

1 + cos θ
, (24)

we have

dθ j

dt
= 1 − cos θ j − gk j

〈k〉 sin θ j + (1 + cos θ j )

[
η j + g

〈k〉
N∑

l=1

Ajl tan (θl/2)

]
. (25)

When a neuron fires, at θ = π , the term involving tan becomes
infinite. To avoid this problem, we follow [8] and replace
tan (θ/2) in (25) by

q(θ ) ≡ sin θ

1 + cos θ + ε
, (26)

where 0 < ε � 1, thereby removing the singularity. We take
the limit ε → 0 below.

We analyze the system in a similar way as in Sec. II.
The system is described by the probability density function
f (η, θ |k, t ), which satisfies [48–50]

∂ f

∂t
+ ∂

∂θ
( f v) = 0, (27)

where

v(η, θ, k, t ) ≡ 1 − cos θ − gkin

〈k〉 sin θ + (1 + cos θ )

× [η + gT (k, t )], (28)

where

T (k, t ) ≡ N

〈k〉
∑

k′
P(k′)a(k′ → k)Q(k′, t ), (29)

Q(k′, t ) =
∫ ∞

−∞

∫ 2π

0
f (η, θ |k′, t )q(θ )dθ dη, (30)

and k = (kin, kout ), P(k′) is the distribution of degrees of a
neuron, and a(k′ → k) is the probability of a connection from
a neuron with degree k′ to one with degree k. But connections
are undirected, so a neuron just has a degree. Thus we write

T (k, t ) = N

〈k〉
∑

k′
P(k′)a(k′ → k)Q(k′, t ), (31)

where P(k) is the degree distribution, and

Q(k′, t ) =
∫ ∞

−∞

∫ 2π

0
f (η, θ |k′, t )q(θ )dθ dη (32)

is the expected value of q(θ ) for neurons with degree k′ at time
t . From [31], assuming that h(η) is a Lorentzian with median

η0 and half-width at half-maximum (HWHM) �, we have

∂b(k, t )

∂t
= (iη0 − �)(1 + b)2 − i(1 − b)2

2

+ i(1 + b)2gT + g(1 − b2)

2
, (33)

where T (k, t ) and Q(k′, t ) are as above, and

b(k, t ) =
∫ ∞

−∞

∫ 2π

0
f (η, θ |k, t )eiθ dθ dη (34)

is the complex-valued order parameter for neurons with de-
gree k at time t .

By expanding q(θ ) in a Fourier series, it was shown in [31]
that

Q(k′, t ) =
∞∑

m=1

[cmb(k′, t )m + c.c.], (35)

where “c.c.” is the complex conjugate of the previous term,
and

cm = i[(
√

2ε + ε2 − 1 − ε)m+1 − (
√

2ε + ε2 − 1 − ε)m−1]

2
√

2ε + ε2
.

(36)
Recently, Ref. [42] showed that

lim
ε→0

cm = i(−1)m (37)

and thus

Q(k′, t ) = i
∞∑

m=1

(−1)m[b(k′, t )m − b̄(k′, t )m]

= 2 Im[b(k′, t )]

[1 + b(k′, t )][1 + b̄(k′, t )]
, (38)

where we have summed the geometric series.
Defining

w ≡ 1 − b̄

1 + b̄
(39)
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[so b = (1 − w̄)/(1 + w̄)], we find that w satisfies

∂w(k, t )

∂t
= iη0 + � − i[w(k, t )]2 + igT (k, t ) − gw(k, t ),

(40)

and writing w = πφ + iV , where φ and V are real, we find
that Q(k′, t ) = V (k′, t ), and the real and imaginary parts of
(40) give

∂φ(k, t )

dt
= �

π
+ 2φ(k, t )V (k, t ) − gφ(k, t ), (41)

∂V (k, t )

dt
= η0 − π2[φ(k, t )]2 + [V (k, t )]2

+ g[T (k, t ) − V (k, t )], (42)

where

T (k, t ) = N

〈k〉
∑

k′
P(k′)a(k′ → k)V (k′, t ). (43)

The interpretation of φ and V is that φ(k, t ) is the expected
firing frequency of neurons with degree k at time t , and V (k, t )
is the mean voltage of QIF neurons with degree k at time t ,
where voltage V and θ are related through V = tan (θ/2) [32].
Note that (41) and (42) are completely equivalent to (33).

Assuming neutral assortativity, we have

a(k′ → k) = k′k
N〈k〉 (44)

so that

T (k, t ) = k

〈k〉2

∑
k′

k′P(k′)V (k′, t ). (45)

Note that if all neurons have the same degree, then T = V ,
so the last term in (42) vanishes, and (41) and (42) reduce to
a pair of ODEs. A special case of this is all-to-all coupling,
which was studied in [42]. Also, (45) is invariant under the
scaling k → αk, P(k) → P(k/α), i.e., only the degree rela-
tive to the mean degree is of relevance.

B. Results

First consider a network with � = 0.01 and g = 0.4, with
〈k〉 = 100. As above, we consider a uniform distribution of
degrees on [100 − σ, 100 + σ ]. Consistent with [41,42], we
find that when increasing η0, the transition to periodic firing
is through a SNIC bifurcation, as shown in Fig. 8. Increasing
the width of the degree distribution increases the value of η0

at which collective oscillations start. Note that even for σ = 0
(i.e., identical degrees), η0 can be small and positive yet the
network is quiescent, as also found by [41,42]. Note also the
small range of η0 values as σ is varied.

Now consider a more heterogeneous network with � =
0.05 and η0 = 0.2, i.e., well above threshold so that most
neurons would fire if uncoupled, again with 〈k〉 = 100 and
a uniform degree distribution on [100 − σ, 100 + σ ]. Consis-
tent with the results in [41,42], we find that upon increasing
g (the strength of coupling), the transition to firing is through
a Hopf bifurcation, as shown in Fig. 9. Increasing the width
of the degree distribution decreases the value of g at which
collective oscillations start. This bifurcation is reminiscent of

0 0.5 1 1.5 2 2.5 3

0 10-3

0

20

40

60

80

FIG. 8. SNIC bifurcation curve of a fixed point of (41) and (42).
A stable fixed point exists to the left of the curve, and stable periodic
oscillations exist to the right. Parameters: � = 0.01, g = 0.4, 〈k〉 =
100, P(k) is a uniform distribution on [100 − σ, 100 + σ ].

that which occurs in all-to-all connected networks of Winfree
oscillators [51]: increasing the coupling strength causes the
onset of oscillations through a Hopf bifurcation [30,52,53].
As is also seen in networks of Winfree oscillators, decreasing
� (the level of heterogeneity) has the same effect as increasing
g, producing oscillations via a Hopf bifurcation (not shown).

We tried to reproduce the trend in Fig. 8 using a network
of gap junction coupled Morris-Lecar neurons, the equations
of which are given in Appendix. We chose the Ii from a
Lorentzian with HWHM � = 0.01 and coupling strength ε =
0.3. We were unable to reproduce the trend. This is likely due
to the sensitivity of the network to the value of I0: notice the
very small range of η0 values in Fig. 8. The variation in val-
ues of I0 at which the bifurcation occurred between different
networks (with different σ ) was too large to determine any
significant trend.

However, we can reproduce the movement of the Hopf
bifurcation as σ is varied in a network of Morris-Lecar neu-
rons; see Fig. 9. We consider N = 2500 and 〈k〉 = 100 with a
uniform degree distribution on [100 − σ, 100 + σ ]. We obtain

0.17 0.18 0.19 0.2 0.21 0.22 0.23

g

0

20

40

60

80

FIG. 9. Hopf bifurcation curve of a fixed point of (41) and (42).
A stable fixed point exists to the left, and stable periodic oscillations
exist to the right. Parameters: � = 0.05, 〈k〉 = 100, η0 = 0.2, P(k)
is uniform distribution on [100 − σ, 100 + σ ].
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FIG. 10. Evidence of a supercritical Hopf bifurcation in a net-
work of gap-junction coupled Morris-Lecar neurons. On the vertical
axis we plot the standard deviation of ŝ (the mean of the si) over a
period of 10 s, having discarded the first 10 s as transients.

evidence of a supercritical Hopf bifurcation as ε is increased,
as shown in Fig. 10. On the vertical axis, we plot the standard
deviation of ŝ over a period of 10 s, having discarded the first
10 s as transients. As expected, increasing σ decreases the
value of g at which the bifurcation occurs.

IV. GAUSSIAN OR UNIFORM DISTRIBUTION OF ηi

All of the results so far have involved a Lorentzian distri-
bution of a heterogeneous parameter, either the input currents
to theta neurons or to Morris-Lecar neurons. In this section,
we investigate whether we obtain qualitatively similar results
for other distributions.

Using either a Gaussian or uniform distribution of Ii in
a Morris-Lecar network, we obtained qualitatively the same
results as in Figs. 4 and 7 for synaptic coupling (results not
shown). We investigated the effects shown in Fig. 8 in a net-
work of gap-junction coupled Morris-Lecar neurons for both
uniform and normally distributed Ii. The results are shown
in Fig. 11. For each value of σ , we created a network and
a realization of the Ii, and then we used a bisection in I0

to approximately determine the transition from quiescence to
periodic firing (with large period). For broader distributions
[panel (a)] we obtained the same trend as in Fig. 8, while for
narrower distributions we seem to obtain the opposite trend
[panel (b)]. Note that the threshold for firing for a single
neuron is I0 ≈ 39.693 455, so all bifurcations occur for I0 less
than this, in contrast with the results in Fig. 8. Such an effect
has been seen before in excitable systems [44], indicating that
the Lorentzian distribution of heterogeneity, while providing
analytical insight, may not give generic results.

We reproduced the results in Fig. 9 with the Ii taken from
a unit Gaussian (normal distribution), as shown in Fig. 12(a).
Choosing the Ii from a uniform distribution on [−1, 1], we
obtain the results in Fig. 12(b). Quasistatically sweeping ε

up and down for σ = 10, we found a region of bistability
between an approximate steady state and a macroscopic oscil-
lation, suggesting that the Hopf bifurcation seen is subcritical.
For clarity, we only show the results of increasing ε for both

39.6 39.605 39.61 39.615 39.62 39.625 39.63

I
0

0

20

40

60

80

100
(a)

39.676 39.678 39.68 39.682 39.684 39.686 39.688 39.69

I
0

0

20

40

60

80

100
(b)

FIG. 11. SNIC bifurcations for gap-junction coupled Morris-
Lecar neurons. (a) Ii chosen from a uniform distribution on
[−1/2, 1/2] (blue circles, solid curve) or a normal distribution with
center zero and standard deviation 1/3 (red triangle, dashed curve).
(b) Ii chosen from a uniform distribution on [−1/8, 1/8] (blue
circles, solid curve) or a normal distribution with center zero and
standard deviation 1/10 (red triangle, dashed curve). The curves
result from fitting the values of I0 as a cubic function of σ and are a
guide to the eye. Parameters: N = 2500, ε = 0.3.

networks. The effect of varying the width of the in-degree
distribution is the same: broadening the distribution moves the
Hopf bifurcation to a lower value of ε.

V. SUMMARY

We have derived approximate equations describing the ex-
pected dynamics of large networks of theta neurons, under the
assumption that the heterogeneous parameter has a Lorentzian
distribution. We have chosen the case of neutral assortativity
within the networks and independent in- and out-degrees, con-
centrating on the effects of varying the widths of the in- and
out-degree distributions. We have investigated both synaptic
and gap junctional coupling. Numerical bifurcation analysis
has enabled us to determine the effects of varying the degree
distributions on the networks’ dynamics.

For synaptically coupled inhibitory neurons, broadening
the in-degree distribution destroys macroscopic oscillations,
while for excitatory networks it narrows the range of values
of mean input for which the network is bistable. The dy-
namics are independent of the out-degree distribution. For

052305-8



EFFECTS OF DEGREE DISTRIBUTIONS IN RANDOM … PHYSICAL REVIEW E 103, 052305 (2021)

0.2 0.25 0.3 0.35
0

0.01

0.02

0.03

0.04

0.05

st
d.

 d
ev

.

(a)

=80
=10

0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

st
d.

 d
ev

.

(b)

=80
=10

FIG. 12. Evidence of Hopf bifurcations in networks of gap-
junction coupled Morris-Lecar neurons. (a) Ii taken from a unit
Gaussian distribution. The Hopf bifurcations appear to be supercrit-
ical. (b) Ii taken from a uniform distribution on [−1, 1]. The Hopf
bifurcation for σ = 10 appears to be subcritical, as explained in
the text. For each panel, on the vertical axis we plot the standard
deviation of ŝ (the mean of si) over a period of 10 s, having discarded
the first 10 s as transients. N = 2500.

gap junctional coupling, broadening the degree distribution
causes SNIC or Hopf bifurcations associated with the onset
of collective firing to move in parameter space. Most of the
results are confirmed to occur in networks of more realistic
neurons with different distributions of heterogeneity, but the
use of Lorentzian distributions may not always give generic
results.

This work could be generalized in several ways. One is
to extend it to cover coupled populations of excitatory and
inhibitory neurons [1,27,54]. This would naturally result in
more parameters to explore, as distributions of degrees re-
lating to up to four types of connection would need to be
specified. Another area of interest is the inclusion of noise in
the neurons’ dynamics. Noise is known to play a significant
role in neural dynamics [6,55], yet its presence would invali-
date the use of the Ott-Antonsen ansatz, which lies behind the
derivations in this paper. Goldobin et al. have made progress
in this area, developing perturbation theory away from the
noise-free case [56–60], and Ratas and Pyragas have applied
these ideas to networks of theta neurons [61].
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APPENDIX: MORRIS-LECAR EQUATIONS

1. Synaptic coupling

For synaptic coupling, the equations for N neurons are

C
dVi

dt
= gL(VL − Vi ) + gCam∞(Vi)(VCa − Vi )

+ gK ni(VK − Vi) + I0 + Ii + ε

〈k〉
N∑

j=1

Ai js j, (A1)

dni

dt
= λ0[w∞(Vi) − ni]

τn(Vi)
, (A2)

τ
dsi

dt
= s∞(Vi ) − si, (A3)

where

m∞(V ) = 0.5{1 + tanh [(V − V1)/V2]}, (A4)

w∞(V ) = 0.5{1 + tanh [(V − V3)/V4]}, (A5)

τn(V ) = 1

cosh [(V − V3)/(2V4)]
, (A6)

s∞(V ) = 1 + tanh (V/10). (A7)

Parameters are V1 = −1.2, V2 = 18, V3 = 12, V4 =
17.4, λ0 = 1/15 ms−1, gL = 2, gK = 8, gCa = 4, VL =
−60, VCa = 120, VK = −80, C = 20 μF/cm2, and these
are unchanged throughout the paper. Voltages are in mV, and
conductances are in mS/cm2. These are taken from [34], but
we have added synaptic dynamics. The threshold for firing
for a single neuron is I0 ≈ 39.693 455.

For Fig. 4 we set ε = −1 mS/cm2, I0 = 41. The Ii were
taken from a Lorentzian with mean zero and HWHM 0.01.
For Fig. 7 we set ε = 25 mS/cm2, τ = 20, N = 500. The Ii

were taken from a Lorentzian with mean zero and HWHM
0.01.

2. Gap-junction coupling

For gap-junctional coupling, we use

C
dVi

dt
= gL(VL − Vi ) + gCam∞(Vi)(VCa − Vi )

+ gK ni(VK − Vi ) + I0 + Ii + ε

〈k〉
N∑

j=1

Ai j (Vj − Vi ),

(A8)
dni

dt
= λ0[w∞(Vi) − ni]

τn(Vi)
, (A9)

where m∞(V ), w∞(V ), and τn(V ) and all other parameters
are as above. For Fig. 10 we set I0 = 40 and choose the Ii

from a Lorentzian with mean zero and HWHM 0.5.
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