
PHYSICAL REVIEW E 103, 052303 (2021)

Impact of presymptomatic transmission on epidemic spreading in contact networks:
A dynamic message-passing analysis
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Infectious diseases that incorporate presymptomatic transmission are challenging to monitor, model, predict,
and contain. We address this scenario by studying a variant of a stochastic susceptible-exposed-infected-
recovered model on arbitrary network instances using an analytical framework based on the method of dynamic
message passing. This framework provides a good estimate of the probabilistic evolution of the spread on
both static and contact networks, offering a significantly improved accuracy with respect to individual-based
mean-field approaches while requiring a much lower computational cost compared to numerical simulations.
It facilitates the derivation of epidemic thresholds, which are phase boundaries separating parameter regimes
where infections can be effectively contained from those where they cannot. These have clear implications on
different containment strategies through topological (reducing contacts) and infection parameter changes (e.g.,
social distancing and wearing face masks), with relevance to the recent COVID-19 pandemic.
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I. INTRODUCTION

Rapid spreading of infectious diseases has had a dev-
astating impact on societies throughout human history but
has become more critical in modern society due to dense
population in urban areas and the increase in human mo-
bility facilitated by global transportation networks. A recent
threat is the spread of the COVID-19 disease caused by the
SARS-CoV-2 virus, which has led to a pandemic with severe
impact on public health and the global economy. One promi-
nent feature of this disease is that the presymptomatic and
asymptomatic viral carriers can spread the disease as well,
which poses a big challenge to contact tracing and disease
containment [1–4]. Therefore, it is crucial to understand the
significance of these undetected transmissions and estimate
their impact. Of particular importance are parameter regimes
where pre- and asymptomatic infections result in a complete
breakdown of our ability to identify infected individuals and
contain the spread.

Numerous studies that investigate the spread of the
COVID-19 disease aim at predicting the causes of the
spreading processes and examine the effectiveness of non-
pharmaceutical intervention strategies [5–7]. It is common to
model the evolution of the population mass of each group
(e.g., susceptible, exposed, infected, and recovered) by deter-
ministic differential equations [4,5,8]. While being simplistic
and tractable, such a method assumes homogeneous mixing of
the population (in a city or within an age group) and neglects
the social contact network structures of the specific instance
investigated [9]. Large-scale agent-based simulations are also
widely used, which provide a more detailed picture of the
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spreading processes but are very computationally demanding
and suffer from a lack of principled understanding [10–13]. To
obtain a reliable statistical description of the process, one has
to increase the number of samples significantly as the system
size increases, which makes the computation prohibitive for
large systems. Analytical treatments to the epidemic spread-
ing processes on heterogeneous contact networks are valuable
both in providing solutions in specific instances and in ex-
ploring the typical macroscopic behavior of an ensemble of
systems with similar characteristics; the latter also results in
generic and intuitive understanding.

In this paper, we analyze diseases spreading with presymp-
tomatic transmission such as COVID-19 by studying a variant
of stochastic susceptible-exposed-infected-recovered (SEIR)
model on contact networks, in which nodes in exposed states
can also spread the disease without showing symptoms. For
simplicity, the contact networks are viewed as static, serving
as substrates on which the disease spreads. We derive the
dynamic message-passing (DMP) equations for this model,
which provide a good approximation to the complex stochas-
tic spreading dynamics on general networks and facilitates
theoretical analyses [14–18]. Based on this framework, we de-
rive the epidemic thresholds and their dependence on different
intervention methods. The emphasis of this paper is to provide
a more accurate description of the complex spreading dynam-
ics through DMP to obtain a more intuitive physical picture
and to clarify the effects of some containment strategies.

The remainder of the paper is organized as follows. We
introduce the SEIR model in Sec. II and derive the dynamical
equations in Sec. III. We then perform a linear stability anal-
ysis of the dynamical equations in Sec. IV, based on which
the epidemic thresholds are obtained and analyzed in Sec. V.
In Sec. VII, we show that nonbacktracking (NB) centrality
can be used to predict the outbreak profile. In Sec. VIII, we
investigate the effects of reducing contacts on slowing down
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the spread of the disease. Finally, we summarize our findings
and discuss some limitations and outlook.

II. THE MODEL

The contact network is represented by a graph G(V, E ),
where V is the set of nodes and E is the set of edges. We
assume that the network has only one connected component.
Each individual resides on a node, assuming one of four states,
susceptible (S), exposed (E ), infected (I) and recovered (R)
at any particular time step. We assume that a node in the
exposed state has contracted the disease but has not developed
symptoms yet. Unlike the usual SEIR model [19], the exposed
nodes can also spread the disease. The dynamical process of
the modified SEIR model in discrete time is defined in the
form of transition probabilities of states of neighboring nodes
(say i and j) and the state evolution of an individual node i,

S(i) + E ( j)
α ji−→ E (i) + E ( j), (1)

S(i) + I ( j)
β ji−→ E (i) + I ( j), (2)

E (i)
νi−→ I (i), (3)

I (i)
μi−→ R(i), (4)

where α ji(β ji) is the probability that node j being in the
exposed(infected) state transmits the disease to its susceptible
neighboring node i at a certain time step. We assume that
each time step corresponds to one day, keeping in mind that
a finer timescale can also be considered. At each time step,
an existing exposed node i becomes infected (i.e., develops
symptoms) with probability νi, while an existing infected node
i recovers with probability μi. Therefore, the average periods
of incubation and recovery are 1/νi and 1/μi, respectively. At
a certain time step, the symptom-development and recovery
processes are assumed to occur after possible transmission
activities. Since we will contrast the properties of the SEIR
and SIR models, we also introduce the transition probabilities
of the latter,

S(i) + I ( j)
β ji−→ I (i) + I ( j), (5)

I (i)
μi−→ R(i), (6)

which has been widely studied in the literature [9]. We re-
mark that both models are Markovian processes, implying an
exponential distribution for both symptom-development and
recovery times, which may not be fully realistic for many
diseases including COVID-19 [9,20]. Nevertheless, they both
represent relevant models that provide insights, offer an ap-
proximate and effective description of the spreading process,
and are amenable to analysis.

The epidemiological parameters depend on the nature of
the disease and the intervention strategies being imposed; they
are usually estimated based on observations and can be subject
to a high degree of uncertainty. As for COVID-19, the average
incubation period is about 5.2 days [3,21]. Infectiousness is
estimated to start from 2.3 days before the onset of symp-
toms [3], while it is argued [22] that infectiousness can start
much earlier (one needs to look back at five days to catch

97% of presymptomatic infections). The time needed for the
symptoms to disappear depends on the disease severity of the
patient. In Ref. [3], it is inferred that infectiousness declines
rapidly within seven days. In Ref. [23], it is found (from
patients with mostly mild COVID-19) that viral subgenomic
RNA, which provide evidence of replicative intermediates
of the virus, were detectable up to eight days after the on-
set of symptoms. In this paper, we define the recovered (R)
state where the exposed and/or infected individual effectively
looses infectiousness, irrespective of whether the symptoms
persist or not. Therefore, an infected individual who has been
put into isolation and can no longer infect others is also cate-
gorized to be in state R. To address the COVID-19 disease, we
set νi = 1/5, μi = 1/8 according to these previous findings.

The transmission probabilities α ji, β ji are more difficult to
estimate. Based on estimates from previous studies [2], we
set α ji = β ji/2 in some experiments but will also consider
other parameter combinations in establishing the epidemic
threshold phase diagram. For simplicity, we also assume that
the parameters are homogeneous, i.e., αi j = α, βi j = β, νi =
ν, μi = μ, while any infection and/or recovery parameter
distributions can also be accommodated. Various intervention
strategies have different impacts on these epidemiological
parameters.

Our model can be easily extended to accommodate other
aspects of disease modeling. Some studies report cases where
infected individuals remain asymptomatic throughout the
course of the infection; however, these cases seem to have a
much lower secondary attack rate [24,25]. To keep the analy-
sis simple, we do not consider asymptomatic individuals who
do not become infected prior to recovery but briefly discuss
how the frameworks used could accommodate such cases in
Appendix B. We also discuss the extension to a model with
an additional compartment where the exposed individual is
noncontagious for a period of time, and derive the correspond-
ing DMP equations in Appendix C. Despite the simplicity
assumptions made, the proposed SEIR model captures the
essential characteristics of presymptomatic transmission and
constitutes an effective approximation of the realistic spread-
ing dynamics.

III. THEORETICAL FRAMEWORKS

A. Individual-based mean-field approach

Since the exact solutions of the stochastic spreading
processes Eqs. (1)–(4) are difficult to obtain, various approxi-
mation methods have been developed to tackle such complex
dynamics [9]. A simple method is the individual-based mean-
field (IBMF) approach [9,26], which expresses the evolution
of the marginal distribution Pi

σ (t ) that each node i belongs to
state σ by assuming the independence on the probabilities of
neighboring nodes.

Consider the SEIR model defined in Sec. II. For node i
being in the susceptible state S, it will remain in state S in the
next time step if none of its neighbors transmits an infection
signal to node i. In the IBMF framework, this occurs with
probability

∏
k∈∂i [1 − αkiPk

E (t ) − βkiPk
I (t )], where ∂i denotes

the set of nodes adjacent to node i. Therefore the evolution of
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the marginal probability node i in state S is given by

Pi
S (t + 1) = Pi

S (t )
∏
k∈∂i

[
1 − αkiP

k
E (t ) − βkiP

k
I (t )

]
. (7)

The probability of node i in the exposed state E increases
if there is an infection signal from its neighbors, while it
decreases with rate νi (probability of transforming into state
I) as infection symptoms appear. The corresponding IBMF
dynamical equation is

Pi
E (t + 1) = (1 − νi )P

i
E (t )

+ Pi
S (t )

{
1 −

∏
k∈∂i

[
1 − αkiP

k
E (t ) − βkiP

k
I (t )

]}
,

(8)

Similarly, the evolution of Pi
I (t ) and Pi

R(t ) are given by

Pi
I (t + 1) = (1 − μi )P

i
I (t ) + νiP

i
E (t ), (9)

Pi
R(t + 1) = Pi

R(t ) + μiP
i
I (t ). (10)

This approach has been used to investigate similar models
addressing the COVID-19 pandemic [27,28]. However, the
drastic simplification based on the independence assumption
of probabilities may lead to large approximation errors [26].
One source of errors comes from the mutual infection effect
due to this decorrelation assumption [17,29]. For instance,
suppose that a node i, having probability Pi

E (t ) in the exposed
state, infects its susceptible neighboring node k at time t ,
then node k can also reinfect node i at time t + 1 with some
probability, which is an artifact of neglecting the correlation
between nodes i and k. Such effects need to be correctly
accounted for to improve accuracy.

B. Dynamic message-passing approach

The DMP approach, an algorithm that originates from sta-
tistical physics literature [14–16], avoids the mutual infection
effect by considering the irreversible complete trajectories of
the system. Formally, the DMP equations can be derived from
the belief propagation equations of dynamical trajectories,
which is especially useful when the correct set of dynamical
variables are difficult to determine straightforwardly [16,30].
In this section, we provide an intuitive derivation of the DMP
equations of the SEIR model, while we give the more formal
derivation based on belief propagation in Appendix A.

Similar to the IBMF approach, the DMP method aims at
deriving the evolution of the marginal distributions. Consider
the marginal probability Pi

S (t ) of node i being at state S at time
t , given by

Pi
S (t ) = Pi

S (0)
∏
k∈∂i

θ k→i(t ), (11)

where θ k→i(t ) is the probability that node i has not con-
tracted the disease from node k up to time t . We have made
the assumption that the probability which node i has not
contracted the disease from its neighbors up to time t fac-
torizes as

∏
k∈∂i θ

k→i(t ). This assumption is valid in tree
graphs but constitutes a good approximation in many loopy
networks [16].

The message θ k→i decreases if node k transmits the infec-
tion signal to node i, which occurs with probability αki if node
k is in state E or with probability βki if node k is in state I .
Therefore, it follows the update rule

θ k→i(t + 1) = θ k→i(t ) − αkiψ
k→i(t ) − βkiφ

k→i(t ), (12)

where ψk→i(t ) is the probability that k is in state E but has
not transmitted the infection signal to node i, and φk→i(t ) is
the cavity probability (on a graph where node i is absent—a
cavity) that k is in state I but has not transmitted the infection
signal to node i up to time t .

The message φk→i decreases if node k transmits the infec-
tion signal to node i or changes from state I into state R; note
that the two processes can occur at the same time step. On the
other hand, it increases if node k changes from state E into I .
Therefore, it is updated according to

φk→i(t + 1) = (1 − βki )(1 − μk )φk→i(t )

+ (1 − αki )νkψ
k→i(t ). (13)

Similarly, the message ψk→i(t ) decreases if node k trans-
mits the infection signal to node i or changes from state E into
state I , while it increases if node k changes from state S into E .
In computing the probability increment due to the latter case,
one needs to exclude the contribution from node i to node k in
the previous time steps to avoid the effect of mutual infection.
This is achieved through defining

Pk→i
S (t ) = Pk

S (0)
∏

l∈∂k\i

θ l→k (t ), (14)

which is computed in the cavity graph, assuming that node
i has been removed. Then the message ψk→i(t ) follows the
update rule:

ψk→i(t + 1) = (1 − αki )(1 − νk )ψk→i(t )

+ [
Pk→i

S (t ) − Pk→i
S (t + 1)

]
. (15)

Upon computing the messages
{θ k→i(t ), φk→i(t ), ψk→i(t ), Pi→ j

S (t )} from the update rules,
the marginal probability Pi

S (t ) can be obtained by Eq. (11).
The marginal probabilities of other states can also be
determined as

Pi
R(t + 1) = Pi

R(t ) + μiP
i
I (t ), (16)

Pi
I (t + 1) = (1 − μi )P

i
I (t ) + νiP

i
E (t ), (17)

Pi
E (t + 1) = 1 − Pi

S (t + 1) − Pi
I (t + 1) − Pi

R(t + 1). (18)

We assume that the nodes are either in susceptible or exposed
states at time t = 0, such that the initial conditions are solely
determined by Pi

S (0) as

ψ i→ j (0) = 1 − Pi
S (0), (19)

θ i→ j (0) = φi→ j (0) = 0, (20)

Pi
E (0) = 1 − Pi

S (0), (21)

Pi
I (0) = Pi

R(0) = 0. (22)
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(a) (b)

FIG. 1. (a) Structure of a contact network in the workplace taken
from the SocioPatterns data (WP2015). The color of a node repre-
sents the department that the individual belongs to. (b) Evolution
of the average population of each state. The parameters used are
ν = 0.2, μ = 0.125, β = 0.016, α = β/2. At time t = 0, there are
five exposed nodes. The trajectories predicted by the DMP approach
(represented by lines) match well with those from MC simulations
(averaged over 104 realizations, represented by dots).

If node i is selected as the initial exposed node, the initial con-
dition is simply set as Pi

E (0) = 1, Pi
S (0) = Pi

I (0) = Pi
R(0) = 0.

Based on the initial data, the messages are solved by updating
the DMP Eqs. (12)–(15) forward in time, after which the
marginal probabilities are determined by Eqs. (11) and (16)–
(18). The computational complexity of the DMP algorithm
is linear in the number of time steps and number of edges
as O(|E |T ). Therefore, the DMP approach saves a significant
amount of computational resources compared to Monte Carlo
(MC) simulations, which require many realizations to obtain
reliable results. On the other hand, it is more demanding
than the IBMF approach which deals with nodewise variables
rather than edgewise variables. Nevertheless, if the network
is sparse, i.e., the average degree 〈d〉 = 2|E |/N � N , then
the DMP approach has the same order of computational com-
plexity as the IBMF approach. This is relevant to the case of
disease spreading as the number of close contacts each person
has is limited [31], except for superspreaders.

C. Evaluation on contact networks

Here we evaluate the effectiveness of the developed
theories on contact networks, which are either artificially gen-
erated or adapted from some realistic human contact data. The
realistic contact networks are taken from data sets obtained
in the SocioPatterns collaboration [32], where the temporal
face-to-face human contacts are projected to static contact
networks as described in Appendix D.

Many realistic contact networks exhibit community struc-
tures. For instance, in workplaces, people usually interact
more frequently with other people from the same department
compared to those from other departments; in schools, stu-
dents from the same class also interact more frequently. An
exemplar contact network in the workplace (WP2015) from
the SocioPatterns data is depicted in Fig. 1(a). We run the
DMP algorithm for this contact network by randomly select-
ing five nodes as the initial exposed nodes and iterating for
T = 100 time steps. The evolution of the population of each
compartment is shown in Fig. 1(b). The number of exposed or
infected cases first rises and then decreases, and eventually
dies out when herd immunity is reached. The trajectories

(a) (b)

(c) (d)

FIG. 2. Comparison between theory and MC simulation (aver-
aged over 104 realizations). The underlying network is a random
regular graph with N = 100, d = 10. The parameters used are T =
30, ν = 0.2, μ = 0.125, β = 0.03, α = β/2. At time t = 0, there is
only one exposed node. The accuracy of the DMP approximation is
much better than the IBMF approach.

predicted by the DMP approach match well with those from
MC simulations in this case.

As another example, we evaluate the efficacy of our frame-
work on random regular graphs, where all nodes have the
same degree and are connected randomly. Only one node
is selected as the initial exposed node and the system is
simulated for T = 30 time steps. The results are shown in
Fig. 2, exhibiting a much better approximation accuracy of
the DMP approach compared to IBMF. Due to the effect of
mutual infection, both IBMF and DMP tend to overestimate
the outbreak.

In Fig. 3, we systematically compare the results between
theories and MC simulation, showing that DMP provides a
much better approximation than the IBMF approach. It is
found that the prediction errors of both theoretical approaches
generally increase with the epidemiological parameter β and
also depend on the number of initial exposed nodes. Intu-
itively, large values of β lead to larger growth rates of the

(a) (b)

FIG. 3. Comparison between theory and MC simulation for
different parameters, where the prediction error is calculated as

1
NT

∑
σ∈{S,E ,I}

∑
i,t |Pi

simul,σ (t ) − Pi
theory,σ (t )|. The parameters used are

T = 30, ν = 0.2, μ = 0.125, α = β/2. Each data point is averaged
over five instances with different sets of randomly selected initial
exposed nodes. (a) Random regular graph with N = 100, d = 10.
(b) Contact network in the workplace taken from the SocioPatterns
data (WP2015). The prediction errors depend on the number of initial
exposed nodes and the epidemiological parameter β.
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infections, in which case a small approximation error in early
time steps could be amplified in late times. For large β, the
prediction errors typically decrease as the number of initial
exposed nodes increases. One possible reason is that the in-
fections spread out from a unique source are correlated, so the
independence assumption in the IBMF and DMP approaches
deteriorates [33], e.g., the assumption that the messages in
Eq. (11) factorize does not hold strictly. On the other hand,
if there are multiple initial seeds that trigger the outbreak, the
infection signals into a node will be less correlated, which
partly preserves the decorrelation assumption.

The network topology also impacts the approximation ac-
curacy of the theories, as shown in Appendix E. As mentioned
before, DMP avoids mutual infection by excluding one-step
backtracking interaction; it does not take into account mutual
infections due to backtracking of multiple steps, which can
be non-negligible in networks with many short loops. In Ap-
pendix E, we find that the approximation accuracy deteriorates
significantly when the localization of NB centrality is present,
an effect we will discuss below.

IV. LINEARIZED DYNAMICS AND STABILITY

A. Linearized dynamics of the DMP equations

The fate of the spreading processes depends on the epi-
demiological parameters. For large transmission probabilities
β and α, the disease can spread out to a large fraction of the
network, while it tends to die out quickly for small transmis-
sion probabilities. There exist thresholds for these parameters,
above which the epidemic outbreaks occur. One commonly
used method to determine epidemic thresholds is to examine
whether the disease-free state is linearly stable to small per-
turbations [9,34].

Specifically, the initial disease-free state is perturbed in-
finitesimally as Pi

S (0) = 1 − εi; if such perturbation diverges,
then the outbreak tend to spread out globally. At the initial
stage, the message θ k→i(t ), which denotes the probability
node k has not passed the infection signal to node i, can also be
expressed as θ k→i(t ) = 1 − δk→i(t ). At time t + 1, we have

θ k→i(t + 1) = 1 − δk→i(t + 1)

= 1 − δk→i(t ) − αkiψ
k→i(t ) − βkiφ

k→i(t ),
(23)

which implies

δk→i(t + 1) = δk→i(t ) + αkiψ
k→i(t ) + βkiφ

k→i(t ), (24)

where δk→i(t ), ψk→i(t ) and φk→i(t ) have small values. Ex-
panding Eq. (14) and keeping first order of ψk→i(t ) and
φk→i(t ) leads to

Pi→ j
S (t + 1) ≈Pi→ j

S (t ) −
∑

k∈∂i\ j

[αkiψ
k→i(t ) + βkiφ

k→i(t )].

(25)

Then ψk→i(t + 1) in Eq. (15) can be approximated as

ψ i→ j (t + 1) ≈ (1 − αi j )(1 − νi )ψ
i→ j (t )

+
∑

k∈∂i\ j

[αkiψ
k→i(t ) + βkiφ

k→i(t )]. (26)

Equations (26) and (13) constitute a linear dynamical system
of the messages {φi→ j (t ), ψ i→ j (t )}.

In the following, we use homogeneous parameters αi j =
α, βi j = β, νi = ν, μi = μ. To make the linearized dynamical
equations more compact, we introduce the 2|E | × 2|E | NB
matrix with elements

Bi→ j,k→l = δil (1 − δ jk ), (27)

which are nonzero if and only if the directed edge i → j
follows right after edge k → l , i.e., in a configuration like
k → l (=i) → j, but edge i → j does not backtrack to node
k [35]. Then Eqs. (26) and (13) can be written in the matrix
form as (

ψ(t + 1)
φ(t + 1)

)
= J

(
ψ(t )
φ(t )

)
, (28)

where the J is the Jacobian matrix of the dynamical system
defined as

J =
(

(1 − α)(1 − ν)I + αB βB
(1 − α)νI (1 − β )(1 − μ)I

)
, (29)

where I is the 2|E |-dimensional identity matrix. The spectral
radius ρ(J ) of the Jacobian J determines the growth rate of
the fastest mode of the linearized dynamics. The appearance
of the NB matrix B in the linearized dynamical equation is
rooted in the fact that the one-step backtracking infection is
excluded in the DMP equations [e.g., through Eq. (14)], there-
fore it also appears in other algorithms for complex networks
based on linearizing belief propagation, such as applications
in community detection [36] and percolation [37].

B. Spectral properties of the Jacobian

The condition that ρ(J ) � 1 corresponds to an exponen-
tial growth of the linearized dynamics in Eq. (28), which
implies that the disease is likely to spread out globally. The
solution of ρ(J ) = 1 marks the phase boundary of the epi-
demiological parameters. Since the matrix elements of J are
non-negative, the Perron-Frobenius theorem asserts that (i) its
leading eigenvalue λmax

J (defined as the eigenvalue having the
largest real part) equals its spectral radius ρ(J ) and therefore
is real and non-negative and (ii) there exists an eigenvector
with non-negative and nonzero elements corresponding to
λmax
J [38].

Consider the eigenvalue equation of the Jacobian matrix J ,

J
(

u
v

)
= λJ

(
u
v

)
, (30)

which can be simplified to

v = (1 − α)ν

λJ − (1 − β )(1 − μ)
u, (31)

Bu = λJ − (1 − α)(1 − ν)

α + β (1−α)ν
λJ −(1−β )(1−μ)

u. (32)

It implies that [λJ − (1 − α)(1 − ν)]/[α + β (1−α)ν
λJ −(1−β )(1−μ) ]

is an eigenvalue of the NB matrix B with eigenvector u,
denoted as λB. The Perron-Frobenius theorem also guarantees
that the leading eigenvalue λmax

B of B is real and non-negative.
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It can be shown that the leading eigenvalue λmax
J is related to

λmax
B as shown in Appendix F:

λmax
J = 1

2

[
(1 − α)(1 − ν) + (1 − β )(1 − μ) + αλmax

B

]
+ 1

2

[(
(1 − α)(1 − ν) − (1 − β )(1 − μ) + αλmax

B

)2

+ 4(1 − α)νβλmax
B

]1/2
. (33)

In this way, we relate the dynamical properties of the SEIR
model to the epidemiological parameters and network struc-
ture properties, where the latter is subtly conveyed through the
eigenvalue λmax

B . This is in contrast to the growth rate given by
the commonly used basic reproduction number R0, defined as
the expected number of secondary cases caused by a single
randomly selected exposed individual when the rest of the
population is susceptible. In the SEIR model considered here,
the R0 is estimated to be (see Appendix G)

R0 = 〈d〉
(

α

ν
+ β

μ

)
, (34)

which only depends on the averaged degree 〈d〉, but neglects
possible higher order structures of the contact networks. It
has long been recognized that the R0 measure is deficient in
network epidemiology [9,26].

Another useful measure is the effective reproduction num-
ber R(t ), which has a similar definition to R0 but is based on
the expected secondary infections to the remaining susceptible
population at time t [19]. The network structure and dynam-
ical model play a role in determining R(t ), as the real-time
susceptible population needs to be estimated, which is difficult
to carry out analytically. In general, applying R(t ) requires
solving the dynamics and it is more suitable as an indicator
for monitoring the spread (e.g., as in Ref. [39]), which differs
from the role of R0 or the epidemic threshold as predictors.

The computation of the leading eigenvalue λmax
B can be

demanding as the NB matrix is of size 2|E | × 2|E |, which is
a large matrix if the underlying network is relatively dense.
It has been observed that the spectrum of B can be obtained
from a much smaller matrix of size 2N × 2N [36,40],

M =
(

0 D − IN

−IN A

)
, (35)

where IN is the N-dimensional identity matrix, D is the diag-
onal matrix of node degrees with elements Di j = diδi j , and
A is the adjacency matrix with elements satisfying Ai j = 1
if (i, j) ∈ E and Ai j = 0 otherwise. Intuitively speaking, the
reduction of complexity comes from compressing the edge-
based data, e.g., φi→ j (t ) and ψ i→ j (t ), to node-based data
[36] as shown in Appendix H. This allows us to work with
networks of relatively large sizes.

V. EPIDEMIC THRESHOLD

A. Determining the critical points

Equation (33) gives rise to the epidemic threshold as
predicted by the DMP approach through the solution of
λmax
J (β, α, ν, μ, λmax

B ) = 1, keeping in mind that λmax
J =

ρ(J ).

The same derivation can also be applied to the IBMF equa-
tions, as shown in Appendix H, leading to

λmax
J MF = 1

2

[
(1 − ν) + (1 − μ) + αλmax

A

]
+ 1

2

[(
(1−ν)−(1 − μ) + αλmax

A

)2 + 4νβλmax
A

]1/2
,

(36)

which relates the maximal eigenvalue λmax
J MF of the Jaco-

bian matrix J MF of the IBMF equations in Sec. III A
and the adjacency matrix A of the network. Solving
λmax
J MF (β, α, ν, μ, λmax

A ) = 1 yields the epidemic threshold as
predicted by the IBMF approach.

The epidemic thresholds obtained by the two theoretical
approaches are to be contrasted with those obtained from
numerical simulations, where the large time limit is taken such
that the outbreaks saturate and the final state of each node i
is either susceptible or recovered. The fraction of nodes that
have been infected is an order parameter r = ∑

i Pi
R(∞)/N ,

defining the phase transition from localized infections to
global epidemics. Since statistical fluctuation is large near
criticality, one can estimate the critical point through the vari-
ability measure [41],

Cr =
√

〈r2〉 − 〈r〉2

〈r〉 , (37)

which peaks at the critical point.

B. Phase transition in random regular graphs

As an example, we consider random regular graphs of
degree d = 10, where the leading eigenvalues of the matrices
A and B have exact expressions as λmax

A = d = 10, λmax
B =

d − 1 = 9, irrespective of the network size, as described in
Appendix H. We also fix the values of ν and μ, let α = β/2,
and consider the phase transition by varying β. It is shown
in Fig. 4(a) that a significant fraction of the system nodes are
affected by the epidemic outbreak above the critical point βc.
In Fig. 4(b), we pinpoint the critical point βc from MC simu-
lations through the variability measure Cr and compare them
to those obtained via the IBMF and DMP approaches, where
it is observed that the DMP approach provides a much better
estimation. In Appendix H, we observed that the epidemic has
a small probability to die out even for large β, a behavior
that also appears in the SIR model [41] and may impact the
estimation of βc through simulations [29]. This is not cap-
tured by theories which only consider averaged quantities. It
would be an interesting future direction to study the deviations
from the mean behaviors [42] and possible heterogeneous
structures [43].

VI. EXPLORING PHASE DIAGRAMS AND THE IMPACT
OF INTERVENTION STRATEGIES

In this section, we explore phase diagrams in different sce-
narios via the DMP approach and examine the impact of some
intervention strategies. Any specific intervention strategy will
have an effect on the system parameters and therefore influ-
ence the dynamics. Here, we primarily examine their impact
on epidemic thresholds in the asymptotic limit. In particular,
we expect that various social distancing measures effectively
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(a) (b)

FIG. 4. Phase transition behavior of the SEIR model in random
regular graphs of degree d = 10. The parameters are ν = 0.2, μ =
0.125, α = β/2, while λmax

A = 10, λmax
B = 9. The systems are initi-

ated with five exposed nodes and are simulated for a sufficiently
long time such that every node that has contracted the disease has
recovered. In both (a) and (b), the three vertical lines correspond to
the critical points βc obtained via different approaches, and different
lines correspond to networks of different sizes. In both the IBMF
and the DMP approaches, βc is the same for networks of different
sizes as the degree is fixed. In MC simulation, βc is obtained through
the largest network (N = 6400) considered. (a) Order parameter
r = ∑

i Pi
R(∞)/N as a function of β, obtained in MC simulations.

(b) Variability of the order parameter, i.e., Cr =
√

〈r2〉 − 〈r〉2/〈r〉, as
a function of β. Since the variability Cr obtained in simulations (data
points in circle markers) is subject to fluctuations, we apply curve
fitting to the experimental data using Gaussian processes with a radial
basis function kernel (the fitted curves are shown in solid lines) [44].
The maximum point of Cr in the fitted curve (diamond-shape marker)
is marked as the critical point obtained from MC simulations. Inset
of (b) shows that the critical point βc obtained in MC simulations
approaches the one obtained by the DMP approach as the network
size increases.

reduce β and α. Some intervention strategies may influence
the transmission probabilities β and α in different manners,
so we consider the phase diagrams in parameter subspace
spanned by β and α, rather than keeping a fixed ratio between
them.

The critical line separating the parameter regions of lo-
calized infections and global outbreaks, obtained by solving
λmax
J (β, α, ν, μ, λmax

B ) = 1 for α, has the following expres-
sion:

αc(β ) = ν
[
β
(
λmax

B + μ − 1
) − μ

]/[
β(1 − μ)(1 − ν)

+ βλmax
B (μ + ν − 1) − μ

(
λmax

B + ν − 1
)]

. (38)

While there is no presymptomatic transmission in the
SIR model defined by Eqs. (5) and (6), we can compare
with the expression obtained for the critical transmission
probability [29]:

βSIR
c = μ

λmax
B + μ − 1

. (39)

As a comparison, we sketch the phase boundaries αc(β ) of the
SEIR model and β = βSIR

c of the SIR model for certain ν, μ,
and λmax

B in Fig. 5(a). The epidemic will not spread globally
when the parameters are in both regions I and II in the SIR
model. In contrast, the disease will die out only in region I
in the SEIR model. Particular caution is needed in region II,
where β is small enough so it is safe for the SIR model but the
presymptomatic transmission is sufficiently significant [i.e.,
α > αc(β )] to cause a global epidemic.

(a) (b)

(c) (d)

FIG. 5. Phase diagrams of the SEIR model in the (β, α) plane.
In panels (b)–(d), the critical lines are obtained by solving Eq. (38).
(a) The parameters used are ν = 0.2, μ = 0.125, λmax

B = 9. The
phase boundary separating region I from the others is given by
Eq. (38), while the line separating regions II and III is β = βSIR

c ,
where βSIR

c is given by Eq. (39). The transmission probabilities
β, α can be reduced by imposing measures such as maintaining
social distance and wearing face mask. (b) The parameters used are
ν = 0.2, λmax

B = 9. The arrow points to the direction of change in
phase boundary due to increasing μ, which enlarges the disease-free
region and can be realized by identifying and isolating nodes in state
I more effectively. (c) The parameters used are ν = 0.2, μ = 0.125.
The arrow points to the direction of change in phase boundary due
to increasing λmax

B , which can be realized by reducing contacts (self-
isolation, lockdown). (d) The parameters used are μ = 0.125, λmax

B =
9. Different ν values correspond to diseases with different incubation
periods.

A. Cases for α = 0 and β = 0

Consider the special case α = 0, solving αc(β ) = 0 gives

βSEIR
c |α=0 = μ

λmax
B + μ − 1

, (40)

which coincides with βSIR
c . It indicates that the intersection of

the two critical lines occurs at α = 0 [as shown in Fig. 5(a)]
is a general phenomenon. Physically, this special case corre-
sponds to the traditional SEIR model where the exposed nodes
are not infectious, which has the same epidemic thresholds
with the SIR model, irrespective of the incubation period 1/ν.

Similarly, consider the special case β = 0, then

αSEIR
c |β=0 = ν

λmax
B + ν − 1

, (41)

which is effectively the critical point of an SIR model viewing
the state I as recovered, as expected. Equations (40) and (41)
explain some of the behaviors in Figs. 5(b)–5(d), as explained
below.

B. Effect of increasing μ and quick isolation
of symptomatic individuals

When ν and λmax
B are fixed, varying μ will only affect the

intersects of the phase boundary on the β axis (βSEIR
c |α=0
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depends on μ) but not the α axis (αSEIR
c |β=0 is independent

of μ), as seen in Fig. 5(b). Physically, since different values
of μ represent different recovery rates, increasing μ can be
effectively realized by isolating all nodes in state I before they
recover. If such a policy can be executed strictly and timely,
it corresponds to a large μ that can significantly expand the
parameter region of the epidemic-free phase, leaving a lot of
flexibility in implementing social distancing measures (i.e.,
many usual social interactions can still be allowed). Never-
theless, if the presymptomatic transmission probability α is
large enough, e.g., α > αSEIR

c |β=0, then isolating the patients
in state I alone is insufficient to slow down the spread; in this
case, identifying nodes in state E through contact tracing or
mass testing, and/or implementing stricter social distancing
measure become necessary.

C. Diseases with different incubation periods

Similarly, when μ and λmax
B are fixed, varying ν will only

impact on the intersects of the phase boundaries with the α

axis but not those with the β axis, as seen in Fig. 5(d). Physi-
cally, different ν values correspond to diseases with different
incubation periods. For smaller ν, the exposed nodes have a
longer time to infect their neighbors, which makes it more
difficult to combat the epidemic spreading.

D. Approximation of the phase boundary

Finally, although the phase boundary αc(β ) of the SEIR
model is in general nonlinear, the cases considered in Fig. 5
exhibit an almost linear relation, except for a very small λmax

B .
This can be seen more explicitly in the limit of large λmax

B ,
where one of the sufficient conditions is that the network has
a large average degree (e.g., λmax

B = d − 1 in random regular
graphs) and requires the transmission probability β and α to
be small enough for the disease to die out. Under the condition
of large λmax

B and small β, Eq. (38) can be approximated as

αc(β ) ≈ −ν
(
λmax

B + μ − 1
)

μ
(
λmax

B + ν − 1
)β + ν

λmax
B + ν − 1

,

≈ − ν

μ
β + ν

λmax
B

. (42)

Equation (42) explains the phenomena shown in Fig. 5(c), that
when ν and μ are fixed but λmax

B is reduced, the epidemic-free
region expands but the slope of the phase boundary remains
roughly unchanged. Physically, reducing λmax

B can be achieved
by limiting the number of contacts between nodes, as will be
shown in Sec. VIII.

A similar linear relation of the phase boundary can be
obtained by the condition R0 = 1, where R0 satisfies Eq. (34),
yielding

αR0
c (β ) = − ν

μ
β + ν

〈d〉 , (43)

which coincides with Eq. (42) if we identify λmax
B as 〈d〉. It

turns out that the condition λmax
B = 〈d〉 holds approximately

for Poisson random graphs [45], as will also be shown in
Sec. VIII. Therefore, the critical line obtained via the basic
reproduction number is a good estimation in dense Poisson

random graphs but may become a poor approximation other-
wise.

VII. PREDICTION OF OUTBREAK PROFILE
BY THE NONBACKTRACKING CENTRALITY

Similar to the eigenvalues, the eigenvectors of the Jacobian
matrix also provide valuable information on the dynamics.
Consider the eigendecomposition of the Jacobian as J =∑

a λa
J ξa(ξ−1)a, and note that the messages can be decom-

posed using the eigenvectors as bases, i.e., (ψ(t ),φ(t )) =∑
a ca(t )ξa. In light of the linearized dynamics, the compo-

nent cmax(t ) corresponding to the leading eigenvalue λmax
J , will

dominate when λmax
J > 1 as the system evolves. Therefore,

we can use the leading eigenvector ξmax of the Jacobian J to
predict the outcome (ψ(T ),φ(T )) of the dynamics.

According to Eq. (31), the two components of ξmax =
(ũ, ṽ) are proportional to each other, i.e., ṽ ∝ ũ. Thus, it is
sufficient to examine one component only. In what follows,
we consider ũ, which is the leading eigenvector of the NB
matrix B according to Eqs. (32) and (33). Furthermore, we
are ultimately interested in the marginal probabilities, which
relate to the incoming messages to each node as seen in
Eq. (11). In the linearized dynamics, the probability of new
infection of node i is given by

Pi
S (t ) − Pi

S (t + 1) ≈
∑
k∈∂i

[αψk→i(t ) + βφk→i(t )]. (44)

Therefore, we need to consider the incoming vector of the
leading eigenmode ũ,

ũin
i :=

∑
k∈∂i

ũk→i, (45)

which is known as the NB centrality [45]. Interestingly, in
addition to the leading eigenvalue λmax

B , the NB centrality ũin

can be obtained through the much smaller matrix M [36] as
shown in Appendix H. The NB centrality has been shown
to play an important role in percolation and SIR model in
networks [37,43,46].

Based on Eq. (44), the probability of new infection∑
k∈∂i [αψk→i(t ) + βφk→i(t )] can be identified as the incom-

ing vectors of the messages as αψ in
i (t ) + βφin

i (t ), which will
be increasingly more aligned with ũin

i as time evolves. Thus,
we can use ũin to predict the relative strengths of the outbreak,
indicated by {1 − Pi

S (t )}. Figure 6(a) demonstrates that, for
β large enough, the evolution of correlation coefficient ρ

between ũin and the profile of the outbreak on the WP2015
network generally increases with time. For small β = 0.002,
the correlation remains low as the disease will die out. For a
rather large β = 0.016, the correlation coefficient ρ increases
rapidly in the initial stage of the development of the spreading
and then decreases to a lower level. This is because for a
very large β, most nodes are likely to be infected eventually,
irrespective of the spatial structure of the network. As shown
in Fig. 6(b), such relation between ρ and β is also observed
in other networks, including a graph generated by a stochastic
block model (SBM) and a scale-free network (SF) with degree
exponent γ = 2 (details of the networks will be discussed in
Sec. VIII).
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(a) (b)

FIG. 6. Correlation coefficient ρ between the nonbacktracking
centrality uin

i and the outbreak profile, measured by the probability
that each node i has been infected, i.e., 1 − Pi

S (t ). The parameters
are ν = 0.2, μ = 0.125. At time t = 0, there are five initial exposed
nodes. (a) Correlation coefficient ρ of the spread on the WP2015
network as a function of time. (b) Correlation coefficient ρ as a
function of β in different networks in the large time limit, where the
spreading processes have saturated. Each data point is averaged over
five instances with different sets of randomly selected initial exposed
nodes.

Similarly, the IBMF approach dictates that the leading
eigenvector of the adjacency matrix A (known as the eigenvec-
tor centrality [45]) is a predictor of the outbreak profile [28].
Comparison between different centrality measures is briefly
discussed in Appendix E, where the NB centrality generally
provides a better prediction than the eigenvector centrality.
As was mentioned before, the DMP approach only avoids the
effect of mutual infection due to one-step backtracking, and
the approximation accuracy can deteriorate if counteracting
the effect of one-step backtracking is insufficient. This is of
particular concern when the NB centrality ũin displays the
localization phenomenon, where the centrality values of a few
nodes are much larger than the others [45,47]. In Appendix E,
we demonstrated the degradation of the approximation power
of the DMP equations and the NB centrality in random net-
works with a relatively large planted clique (i.e., a complete
subgraph), which possesses the localization property [45]; we
also observed a poor approximation accuracy in one of the
contact networks from the SocioPatterns data, recorded in a
high school in 2013 (HS2013) [48], where the NB centrality
ũin is more localized on a few communities.

VIII. EFFECT OF REDUCING CONTACTS

In addition to the social distancing rules that lower the
transmission probabilities β and α, reducing social contacts
between individuals is also an effective measure to slow down
the spread of the disease. We examine its effects in the static
contact networks considered here by removing edges between
nodes. Such a measure will change the network structure and
reduce the leading eigenvalue λmax

B of the matrix B, which
can enlarge the epidemic-free region in the parameter space
as shown in Fig. 5(c). In general, the leading eigenvalue λmax

B
can depend intricately on the network structure. In the special
case of configuration model where the node degrees follow a
given distribution P(d ) and the nodes are wired randomly, it
is found in Refs. [36,45] that λmax

B can be approximated as

λmax
B ≈ 〈d2〉 − 〈d〉

〈d〉 , (46)

(a) (b)

(c) (d)

FIG. 7. Leading eigenvalue λmax
B of the nonbacktracking matrix

B versus average degree 〈d〉 of the network. The rightmost dot of a
curve represents the original network, while other dots correspond to
the networks obtained by removing existing edges while keeping the
largest connected component. Edges are removed randomly in pan-
els (a)–(c), while edges adjacent to high-degree nodes are removed
preferentially in panel (d). (a) ER random graph and networks gen-
erated through SBM with N = 200. (b) Contact networks extracted
from data in the SocioPatterns collaboration, including a network
in a primary school (PS2014) [50], in a high school (HS2013)
[48], and workplaces (WP2013, WP2015) [51,52]. (c) Scale-free
networks generated from the configuration model. The network size
is N = 400 and the node degree is limited with d < dmax = 100.
(d) Scale-free network with γ = 2 [same as the one in panel (c)]. In
the edge-removal process, a node i is first selected according to the

probability pi = dh
i∑

i dh
i
, h > 0, which is biased toward high-degree

nodes; then one of the edges adjacent to node i is randomly selected
and removed. Different fractions of removed edges result in networks
of different average degrees 〈d〉.

which already indicates that even in the high degree limit, the
epidemic thresholds obtained by R0 in Eq. (43) do not gen-
erally coincide with those obtained in the DMP approach in
Eq. (42). Specifically, the second moment of the degree distri-
bution is also relevant for epidemic thresholds in uncorrelated
random networks [9], which is not captured by Eq. (43). A
more refined approximation taking into account the relation
of degrees of neighboring nodes is given in Ref. [47]. The ac-
curacy of these approximations depends on the validity of the
uncorrelated random network assumption and/or the presence
of localization of NB centrality [47] (see also Appendix H 4).

Due to the dilution of connections between nodes, a net-
work may become disconnected, resulting in fragmented
components [49]; if such cases happen, we keep the
largest connected component in the following experiment. In
Fig. 7(a), Erdős–Rényi (ER) random graphs and networks
generated via a SBM are considered. A network generated
by SBM has four communities, where each community com-
prises 50 nodes; node i in community a is connected to
cab nodes of community b on average. Here, we consider
cab = 4,∀a �= b and caa = 10,∀a �= 1, while different values
of c11 are considered. When c11 = 10, all four communities
are statistically equivalent, and the node degrees follow a
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Poisson distribution, similar to the ER random graphs.
For such Poisson random graphs, λmax

B ≈ 〈d〉 according to
Eq. (46), which is justified experimentally by the numerical
results of Fig. 7(a). On the other hand, λmax

B deviates from 〈d〉
in SBM networks with c11 > 0. The networks become sparser
when edges are removed randomly, and λmax

B decreases lin-
early with 〈d〉. A quasilinear decreasing trend is also observed
in the random edge removal experiments in contact networks
from the SocioPatterns collaboration as shown in Fig. 7(b),
as well as in scale-free networks where the node degrees
follow the power-law distribution P(d ) = d−γ /

∑dmax

d=dmin d−γ ,
as shown in Fig. 7(c).

In Fig. 7(c), the leading eigenvalues λmax
B of scale-free

networks can deviate significantly from 〈d〉, especially for
more heterogeneous networks with a small γ value. There-
fore, predicting the cause of the spread through R0 becomes
very unreliable in scale-free networks, an effect which has
been observed in network epidemiology studies [9]. Physi-
cally, there exist a small number of hubs (i.e., nodes with very
large degrees) in scale-free networks, which can be viewed
as superspreaders that significantly facilitate the spread of the
disease. In light of this, restricting contacts of these high-
degree nodes preferentially can effectively reduce λmax

B as
shown in Fig. 7(d), and consequently lower the epidemic
thresholds.

IX. DISCUSSION AND OUTLOOK

In this paper, we studied the SEIR model with presymp-
tomatic transmissions, a feature of the COVID-19 disease,
in both artificial and realistic contact networks through the
DMP method. The DMP approach provides a much better
approximation compared to the IBMF approach while being
much less computationally demanding than MC simulations,
which is the most prominent feature of this method. The
linear stability analysis of the DMP equations gives rise to
the epidemic thresholds and phase diagrams of the models,
where their dependence on epidemiological parameters and
the network structure are elucidated. A larger presymptomatic
transmission probability value α leads to a lower critical point
βc, which makes the strategy of blocking only symptomatic
transmission less effective. We also show that different inter-
vention strategies impact the epidemic thresholds in different
manners. The influence of network structure on the epidemic
thresholds is represented by the leading eigenvalue λmax

B of
the NB matrix B, which encodes more subtle structural in-
formation in contrast to the average number of contacts 〈d〉

appearing in the basic reproduction number R0. Additionally,
we demonstrated that the NB centrality ũin related to the
leading eigenvector of matrix B can effectively predict the
relative strength of the outbreak.

On the other hand, it is worthwhile mentioning some lim-
itations of the DMP method. First, as the DMP approach
is based on the decorrelation assumption of the infection
signals, it may become a less accurate approximation when
the correlations between trajectories are non-negligible, which
can happen when there is a single initial exposed node seed-
ing the dynamics and/or there are many short loops in the
network. Second, the approximation accuracy of the DMP
approach also deteriorates when counteracting the one-step
backtracking reaction is insufficient to avoid the effect of
mutual infection; this effect has been observed in networks
where the NB centrality exhibits a localization phenomenon
as shown in Appendix E. It is an interesting future direc-
tion to further characterize the condition of NB centrality
localization, its impact on spreading processes, and possible
improvements [47].

The theoretical frameworks were mostly applied to con-
tact networks in some specific scenarios or those exhibiting
particular characteristics, such as the presence of community
structure or high-degree hubs. The applications on a wider
scale (e.g., in a city) require considering additional network
characteristics, such as the mixing pattern of different age
groups [31], the household structure, and so on [53]. Ad-
ditional states, such as hospitalized and dead, can also be
considered to model the pressure on public-health services
and social cost. Since presymptomatic transmissions make
it more difficult to contain the disease by dealing with the
symptomatic cases only, an extension of particular interest
is to examine the effectiveness and limitation of (manual or
digital) contact tracing [39,54,55], mass testing, and other
strategies which can identify exposed individuals that have not
shown symptoms. The DMP equations developed here will
also benefit future works which aim at optimal deployment of
resources (e.g., vaccines) to contain the spread of epidemics
with presymptomatic transmissions [30,33,56].
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APPENDIX A: DERIVING DMP EQUATIONS FROM DYNAMIC BELIEF PROPAGATION

1. Belief propagation equations of trajectories

In this Appendix, we derive the DMP equations from the principled dynamic belief propagation established in Ref. [16]. It
is based on the message mi→ j (�σi|�σ j ), which is the cavity probability of the dynamical trajectory �σi = [σ 0

i , ..., σ T
i ] (where σ t

i ∈
{S, E , I, R}) of node i in the cavity graph in which node j has been removed. Since the transition between states is irreversible
(only permitted in the order S → E → I → R), the trajectory �σi can be parametrized by three transition times (τi, ωi, εi ) as
�σi = |S0SSEτi EEIωi IIIRεi RRT 〉.

The dynamic belief propagation for the modified SEIR model takes the following form:

mi→ j (τi, ωi, εi|τ j, ω j, ε j ) =
∑

{τk ,ωk ,εk}k∈∂i\ j

WSEIR

∏
k∈∂i\ j

mk→i(τk, ωk, εk|τi, ωi, εi ), (A1)
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where WSEIR is the transition kernel:

WSEIR =
{

Pi
E (0)I(τi = 0) + Pi

S (0)I(τi > 0)
τi−2∏
t ′=0

∏
k∈∂i

(1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1))

×
[

1 −
∏
k∈∂i

(1 − αkiI(τk � τi − 1)I(ωk � τi ) − βkiI(ωk � τi − 1)I(εk � τi ))

]}

×
[ ωi−2∏

t ′′=τi

(1 − νi )

]
νi

[ εi−2∏
t ′′′=ωi

(1 − μi )

]
μiI(τi < ωi < εi )

∏
k∈∂i

I(τk < ωk < εk ). (A2)

The marginal of a trajectory of node i is computed as

mi(τi, ωi, εi ) =
∑

{τk ,ωk ,εk}k∈∂i

WSEIR

∏
k∈∂i

mk→i(τk, ωk, εk|τi, ωi, εi ). (A3)

The cavity probability of a trajectory has the following properties:

mi→ j (τi, ωi, εi + 1|·) = (1 − μi )m
i→ j (τi, ωi, εi|·), (A4)

mi→ j (τi, ωi + 1, εi|·) = 1 − νi

1 − μi
mi→ j (τi, ωi, εi|·)I(εi > ωi + 1), (A5)

mi→ j (τi, ωi + 1, εi + 1|·) = (1 − νi )m
i→ j (τi, ωi, εi|·), (A6)

where similar relations hold for mi(τi, ωi, εi ). In addition, if τ j � τi, we have

mi→ j (τi, ωi, εi|τ j, ·, ·) = mi→ j (τi, ωi, εi|T, ω j, ε j ), ∀T � τi. (A7)

2. Deriving the messages and probability of being in state S

The cavity probability of node i being in state S at time t is obtained by tracing over the probability of trajectories mi→ j in
the cavity graph (assuming node j is absent by setting τ j = T ),

Pi→ j
S (t ) =

∑
τi,ωi,εi

I(t < τi < ωi < εi )m
i→ j (τi, ωi, εi|T, ·, ·), (A8)

where a similar relation holds between Pi
S (t ) and mi(τi, ωi, εi ).

Using the above definition, we compute the cavity probability Pi→ j
S (t + 1) as

Pi→ j
S (t + 1) =

∑
τi>t+1

∑
ωi>τi

∑
εi>ωi

mi→ j (τi, ωi, εi|T, ·, ·)

=
∑

τi>t+1

∑
ωi>τi

∑
εi>ωi

∑
{τk ,ωk ,εk}k∈∂i\ j

WSEIR

∏
k∈∂i\ j

mk→i(τk, ωk, εk|τi, ωi, εi )

= Pi
S (0)

∏
k∈∂i\ j

{ ∑
τk ,ωk ,εk

I(τk < ωk < εk )mk→i(τk, ωk, εk|T, ·, ·)

×
t∏

t ′=0

[1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1)]

}

=: Pi
S (0)

∏
k∈∂i\ j

θ k→i(t + 1), (A9)
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where we have replaced
∏

k∈∂i\ j mk→i(τk, ωk, εk|τi, ωi, εi ) in the second line by
∏

k∈∂i\ j mk→i(τk, ωk, εk|T, ·, ·) [a property
imposed by the transition kernel and Eq. (A7)] and traced over the τi, ωi, εi [16]; the message θ k→i(t + 1) is defined as

θ k→i(t + 1) :=
∑

τk ,ωk ,εk

I(τk < ωk < εk )mk→i(τk, ωk, εk|T, ·, ·)

×
t∏

t ′=0

(1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1)), (A10)

which has the physical meaning of the cavity probability that node k (in either exposed or infected state) has not transmitted the
infection signal to node i up to time t + 1. To eliminate the explicit dependence on the microscopic trajectories, we compute the
iteration scheme of θ k→i(t + 1) as

θ k→i(t + 1) − θ k→i(t ) =
∑

τk ,ωk ,εk

I(τk < ωk < εk )mk→i(τk, ωk, εk|·)

×
t−1∏
t ′=0

(1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1))

× (−αkiI(τk � t )I(ωk � t + 1) − βkiI(ωk � t )I(εk � t + 1))

=: − αkiψ
k→i(t ) − βkiφ

k→i(t ), (A11)

φk→i(t ) :=
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−1∏
t ′=0

(1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1))

× mk→i(τk, ωk, εk|·)I(ωk � t )I(εk � t + 1), (A12)

ψk→i(t ) :=
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−1∏
t ′=0

(1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1))

× mk→i(τk, ωk, εk|·)I(τk � t )I(ωk � t + 1)

=
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−1∏
t ′=0

(1 − αkiI(τk � t ′))mk→i(τk, ωk, εk|·)I(τk � t )I(ωk � t + 1), (A13)

where we have introduced the message φk→i(t ) (the cavity probability that k is in state I but has not transmitted the infection
signal) and ψk→i(t ) (the cavity probability that k is in state E but has not transmitted the infection signal).

The message φk→i(t ) is computed as

φk→i(t ) =
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−2∏
t ′=0

(1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1))

× (1 − αkiI(τk � t − 1)I(ωk � t ) − βkiI(ωk � t − 1)I(εk � t ))

× mk→i(τk, ωk, εk|·)[I(ωk � t − 1)I(εk � t + 1) + I(εk � t + 1)δωk ,t ]

=
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−2∏
t ′=0

(1 − αkiI(τk � t ′)I(ωk � t ′ + 1) − βkiI(ωk � t ′)I(εk � t ′ + 1))

× mk→i(τk, ωk, εk|·)(1 − βki )I(ωk � t − 1)I(εk � t + 1)

+
∑
τk ,εk

I(τk < t < εk )
t−2∏
t ′=0

(1 − αkiI(τk � t ′))mk→i(τk, t, εk|·)(1 − αkiI(τk � t − 1))

= (1 − βki )(1 − μk )φk→i(t − 1) +
∑
τk ,εk

I(τk < t < εk )
t−1∏
t ′=0

(1 − αkiI(τk � t ′))mk→i(τk, t, εk|·), (A14)

where the second term in the last line needs to be simplified.
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To proceed further, we first compute the update rule of ψk→i(t ) as

ψk→i(t ) =
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−2∏
t ′=0

(1 − αkiI(τk � t ′))

× (1 − αkiI(τk � t − 1))mk→i(τk, ωk, εk|·)[I(τk � t − 1)I(ωk � t + 1) + δτk ,tI(ωk � t + 1)]

= (1 − αki )
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−2∏
t ′=0

(1 − αkiI(τk � t ′))

× mk→i(τk, ωk, εk|·)I(τk � t − 1)I(ωk � t + 1) +
∑
ωk ,εk

I(t < ωk < εk )mk→i(t, ωk, εk|·) let ωk=ω′
k+1,εk=ε′

k+1�����������⇒

= (1 − αki )
∑

τk ,ω
′
k ,ε

′
k

I(τk < ω′
k < ε′

k )
t−2∏
t ′=0

(1 − αkiI(τk � t ′))

× (1 − νk )mk→i(τk, ωk, εk|·)I(τk � t − 1)I(ω′
k � t ) +

∑
ωk ,εk

I(t < ωk < εk )mk→i(t, ωk, εk|·)

= (1 − αki )(1 − νk )ψk→i(t − 1) +
∑
ωk ,εk

I(t < ωk < εk )mk→i(t, ωk, εk|·)

= (1 − αki )(1 − νk )ψk→i(t − 1) − (
Pk→i

S (t ) − Pk→i
S (t − 1)

)
. (A15)

We observed that the message ψk→i(t ) can also be expressed in another form:

ψk→i(t ) =
∑

τk ,ωk ,εk

I(τk < ωk < εk )
t−2∏
t ′=0

(1 − αkiI(τk � t ′))

× (1 − αkiI(τk � t − 1))mk→i(τk, ωk, εk|·)
× [I(τk � t − 1)I(ωk � t ) + δτk ,tI(ωk � t ) − δωk ,tI(τk � t − 1)]

= (1 − αki )ψ
k→i(t − 1) +

∑
ωk ,εk

I(t < ωk < εk )mk→i(t, ωk, εk|·)

−
∑
τk ,εk

I(τk < t < εk )
t−1∏
t ′=0

(1 − αkiI(τk � t ′))mk→i(τk, t, εk|·)

= (1 − αki )ψ
k→i(t − 1) − (

Pk→i
S (t ) − Pk→i

S (t − 1)
)

−
∑
τk ,εk

I(τk < t < εk )
t−1∏
t ′=0

(1 − αkiI(τk � t ′))mk→i(τk, t, εk|·). (A16)

Comparing Eqs. (A15) and (A16) yields

∑
τk ,εk

I(τk < t < εk )
t−1∏
t ′=0

(1 − αkiI(τk � t ′))mk→i(τk, t, εk|·) = (1 − αki )νkψ
k→i(t − 1). (A17)

Inserting Eq. (A17) into Eq. (A14) gives the update rule of φk→i(t ),

φk→i(t ) = (1 − βki )(1 − μk )φk→i(t − 1) + (1 − αki )νkψ
k→i(t − 1), (A18)

which closes the update rules of the messages θ i→ j, φi→ j, ψ i→ j and Pi→ j
S . Collecting the incoming messages to node i gives

rise to the marginal probability of node i being in state S:

Pi
S (t ) = Pi

S (0)
∏
k∈∂i

θ k→i(t ). (A19)
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3. Probabilities of being in state E, I, R

Finally, we consider the marginal probabilities of node i in state E , I, R, defined as

Pi
E (t ) =

∑
τi,ωi,εi

I(τi � t < ωi < εi )m
i(τi, ωi, εi ), (A20)

Pi
I (t ) =

∑
τi,ωi,εi

I(τi < ωi � t < εi )m
i(τi, ωi, εi ), (A21)

Pi
R(t ) =

∑
τi,ωi,εi

I(τi < ωi < εi � t )mi(τi, ωi, εi ). (A22)

We first compute

Pi
R(t + 1) =

∑
τi,ωi,εi

I(τi < ωi < εi � t + 1)mi(τi, ωi, εi )

= Pi
R(t ) +

∑
τi,ωi

I(τi < ωi � t )mi(τi, ωi, t + 1) (A23)

and notice that

(1 − μi )P
i
I (t ) = (1 − μi )

∑
τi,ωi,εi

I(τi < ωi � t < εi )m
i(τi, ωi, εi )

=
∑

τi,ωi,εi

I(τi < ωi � t < εi )m
i(τi, ωi, εi + 1)

let ε′
i=εi+1�����⇒

=
∑

τi,ωi,ε
′
i

I(τi < ωi � t < ε′
i − 1)mi(τi, ωi, ε

′
i )

=
∑

τi,ωi,ε
′
i

[I(τi < ωi � t < ε′
i ) − δε′

i,t+1I(τi < ωi � t )]mi(τi, ωi, ε
′
i )

= Pi
I (t ) −

∑
τi,ωi

I(τi < ωi � t )mi(τi, ωi, t + 1), (A24)

μiP
i
I (t ) =

∑
τi,ωi

I(τi < ωi � t )mi(τi, ωi, t + 1), (A25)

where we have made use of the property Eq. (A4). Inserting Eq. (A25) into Eq. (A23) gives rise to

Pi
R(t + 1) = Pi

R(t ) + μiP
i
I (t ). (A26)

Similarly, we compute

Pi
I (t + 1) =

∑
τi,ωi,εi

I(τi < ωi � t + 1 < εi )m
i(τi, ωi, εi ),

= (1 − μi )P
i
I (t ) +

∑
τi,εi

I(τi � t )I(εi > t + 1)mi(τi, t + 1, εi ), (A27)

and make use of the property Eq. (A6) to compute

(1 − νi )P
i
E (t ) = (1 − νi )

∑
τi,ωi,εi

I(τi � t < ωi < εi )m
i(τi, ωi, εi )

=
∑

τi,ωi,εi

I(τi � t < ωi < εi )m
i(τi, ωi + 1, εi + 1)

let ω′
i=ωi+1,ε′

i=εi+1�����������⇒

=
∑

τi,ω
′
i,ε

′
i

I(τi � t < ω′
i − 1)I(ω′

i < ε′
i )m

i(τi, ω
′
i, ε

′
i )

=
∑

τi,ω
′
i,εi

[I(τi � t < ω′
i ) − δω′

i,t+1I(τi � t )]I(ω′
i < ε′

i )m
i(τi, ω

′
i, ε

′
i )

= Pi
E (t ) −

∑
τi,ε

′
i

I(τi � t )I(εi > t + 1)mi(τi, t + 1, ε′
i ), (A28)

νiP
i
E (t ) =

∑
τi,εi

I(τi � t )I(εi > t + 1)mi(τi, t + 1, εi ). (A29)
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Inserting Eq. (A29) into Eq. (A27) gives rise to

Pi
I (t + 1) = (1 − μi )P

i
I (t ) + νiP

i
E (t ). (A30)

Upon obtaining Pi
S (t + 1), Pi

I (t + 1), Pi
R(t + 1), the proba-

bility Pi
E (t + 1) is given by the normalization condition

Pi
E (t + 1) = 1 − Pi

S (t + 1) − Pi
I (t + 1) − Pi

R(t + 1), (A31)

which closes the DMP equations.

APPENDIX B: MODELING ASYMPTOMATIC
TRANSMISSION

As for the COVID-19 epidemic, there are patients who
remain asymptomatic prior to recovery. Here we discuss how
to accommodate potential disease transmissions due to hav-
ing asymptomatic individuals in our framework. Patients who
do not exhibit symptoms at the time of exposure but devel-
oped symptoms at a later time are termed presymptomatic as
described in the main text. There are many possible scenar-
ios to model asymptomatic infections. One example is that
each individual has a certain probability to become either
asymptomatic or presymptomatic upon contracting the virus,
in which case an additional asymptomatic state is required to
model such stochastic transitions. The DMP equations can be
derived accordingly, but will differ from those in this study.

Another perspective is based on the observation that
whether an exposed individual will develop symptoms or
not seems to vary from person to person, based on age and
preexisting medical condition, e.g., children are more likely
to have mild or no symptoms [24]. In light of this, one can
assign each node i a label �i (either probabilistically or ac-
cording to additional existing information information), such
that �i = 1 if the individual is expected to develop symptoms
when exposed and �i = 0 otherwise. Nodes with different
labels may have different epidemiological parameters. The
disease transmission dynamics still obeys the transition rules
of Sec. II, and the DMP equations in Sec. III B also apply. The
only difference is that when a node i is in state I , one should
interpret it as infected with symptoms if �i = 1, or asymp-
tomatic if �i = 0. In this way, our theoretical framework can
readily accommodate asymptomatic transmission, except that
a weighted-version of NB is needed to accommodate different
characteristics of symptomatic and asymptomatic individuals.

APPENDIX C: MODELING NONCONTAGIOUS
PRESYMPTOMATIC PERIOD IN SCEIR MODEL

Another extension of the model is to take into account a
possible noncontagious pre-symptomatic state when the viral
load is too small to infect others. To accommodate this effect,
we introduce an additional compartment called contracted (C)
and define the corresponding SCEIR model. In this model, an
individual in state S (say node i) who contracts the virus will
first assume state C (noncontagious and nonsymptomatic),
after which that person will turn into state E (contagious and
nonsymptomatic) with rate λi, and subsequently to states I and
R with rates νi and μi, respectively. Similar to the SEIR model,
we also denote the transmission probabilities from node j in
state E (state I) to a susceptible node i as α ji (β ji).

Following a similar derivation from dynamic belief prop-
agation as above, the DMP equations for the SCEIR model
admit the following form:

Pi→ j
S (t + 1) = Pi

S (0)
∑

k∈∂i\ j

θ k→i(t + 1), (C1)

θ k→i(t + 1) = θ k→i(t ) − αkiψ
k→i(t ) − βkiφ

k→i(t ),

(C2)

ψk→i(t + 1) = (1 − αki )(1 − νk )ψk→i(t ) + λkPk→i
C (t ),

(C3)

φk→i(t + 1)

= (1 − βki )(1 − μk )φk→i(t ) + (1 − αki )νkψ
k→i(t ),

(C4)

Pk→i
C (t + 1) = (1 − λk )Pk→i

C (t ) − [
Pk→i

S (t + 1) − Pk→i
S (t )

]
,

(C5)

where the messages {Pi→ j
S , θ k→i, ψk→i, φk→i} bear the same

physical meanings as those in the SEIR model, while Pk→i
C (t )

is the cavity probability that node k is in state C in the ab-
sence of node i. Upon obtaining these messages, the marginal
probabilities of a node in each state can be computed as

Pi
S (t + 1) = Pi

S (0)
∑
k∈∂i

θ k→i(t + 1), (C6)

Pi
C (t + 1) = (1 − λi )P

i
C (t ) − [

Pi
S (t + 1) − Pi

S (t )
]
, (C7)

Pi
R(t + 1) = Pi

R(t ) + μiP
i
I (t ), (C8)

Pi
I (t + 1) = (1 − μi )P

i
I (t ) + νiP

i
E (t ), (C9)

Pi
E (t + 1)

= 1 − Pi
S (t + 1) − Pi

C (t + 1) − Pi
I (t + 1) − Pi

R(t + 1),

(C10)

which starts from a certain initial condition Pi
σ (0), σ ∈

{S,C, E , I, R}.

APPENDIX D: CONTACT NETWORKS

1. Realistic networks

The realistic contact networks are taken from data sets
obtained from the SocioPatterns collaboration website [32],
where the face-to-face contacts were recorded through wear-
able sensors over a certain period. Each data set contains a
lists of active contacts between two individuals lasting for 20
seconds and the membership information of each individual
(belonging to a class or department). To build the contact
network, we first aggregate the contacts between any two
individuals i and j, and consider the link between node i and
node j as active if the cumulative contact duration between
them in the recording period is not less than 60 seconds. A
more precise treatment is to retain the information of contact
duration in the transmission probabilities β ji, α ji. However,
this results in a graph with a weighted NB matrix, which
complicates the analysis. For simplicity, we only preserve the

052303-15



BO LI AND DAVID SAAD PHYSICAL REVIEW E 103, 052303 (2021)

topological information of the resulting networks, keeping in
mind that the contact duration information can also be incor-
porated in our framework. In this paper, we consider contact
networks in a primary school (PS2014) [50], a high school
(HS2013) [48], and workplaces (WP2013, WP2015) [51,52].

2. Artificial networks

Artificially generated networks are also considered in this
paper, including ER random graphs, random networks with
community structures, scale-free networks, and random net-
works with planted subgraph structures.

a. Random networks with community structure

Random networks with community structures are gener-
ated through the SBM. It is specified by a list of population of
each block (n1, n2, ..., nr ) and a r × r symmetric probability
matrix Pab, where r is the number of blocks. Suppose node i
is assigned to block a and node j is assigned to block b, then
nodes i and j are connected with probability Pab. The average
number of neighbors of node i (assigned to block a) belonging
to block b is given by

cab =
{

Paa(na − 1) if a = b
Pabnb otherwise. (D1)

b. Scale-free networks

The scale-free networks are generated through the con-
figuration model. We first generate a degree sequence
(d1, d2, ..., dN ) of size N where each element follows the
power-law distribution

P(di ) = d−γ
i∑dmax

d j=dmin d−γ
j

, (D2)

where dmin and dmax are the minimum and maximum of
the admissible degrees. In this paper, we set dmin = 5 and
dmax = 100, considering the maximal number of people that
one contacts cannot be arbitrarily large. After assigning a
degree to each node, we randomly connect different nodes
such that each node i has di connections. The resulting graph
may have a few self-loops and multiple edges between two
nodes, which are simply removed to form a simple graph.

c. Random networks with planted subgraph structures

We also look at random networks with planted subgraph
structures, primarily for the purpose of examining the effect of
localization. Following Ref. [45], we consider the ER random
graph (with average degree 〈d〉) with a planted hub (of degree
dh), which is constructed by adding a hub to the existing
ER network through creating connections from the hub to
dh randomly selected nodes. When dh is large enough, i.e.,
dh > 〈d〉(〈d〉 + 1), it is argued that the eigenvector central-
ity (i.e., the leading eigenvector of the adjacency matrix) is
localized at the hub, while the NB centrality does not suffer
from localization [45]. The intuition behind the localization
of eigenvector centrality is that the hub and its neighbors are
reinforcing each other, similar to the mutual infection effect of
the IBMF approach to epidemic spreading. The NB centrality
avoids this problem due to the hub by forbidding one-step
backtracking.

On the other hand, it is noticed in Ref. [45] that a relatively
large clique (i.e., a complete subgraph) can cause the NB
centrality to localize as well. Therefore, we consider the ER
random graph (with average degree 〈d〉) with a planted clique
(of size Nclique), which is constructed by randomly selecting
Nclique nodes of the existing ER network to form a complete
subgraph. For the original ER graph, the leading eigenvalue
of the NB matrix B is given by λmax

B ≈ 〈d〉. In the presence of
the clique, the leading eigenvalue satisfies λmax

B > Nclique − 2,
which can easily exceed 〈d〉 for large Nclique, so the NB
centrality is dictated by the clique [45]. There are also other
subgraph structures that can cause the NB centrality to lo-
calize, such as dense subgraphs and overlapping hubs [47].
The intuition behind the localization of the NB centrality is
that there is a subgraph sharing many neighbors, and avoiding
one-step backtracking is insufficient to counteract the self-
reinforcement among them.

APPENDIX E: ADDITIONAL EXPERIMENTS

1. Approximation accuracy of the theory on different networks

In this Appendix, we give more examples of spreading
processes experiments to support the findings in the main
text. In Fig. 8, it is shown that the approximation accuracy of
the theories improves as the number of initial exposed nodes

(a) (b) (c)

FIG. 8. Evolution of the average number of individuals in state E or I , i.e.,
∑

i[P
i
E (t ) + Pi

I (t )] vs t . The underlying network is a random
regular graph with N = 100, d = 10. The parameters are T = 100, ν = 0.2, μ = 0.125, β = 0.03, α = β/2. The initial exposed nodes are
randomly selected. (a) One initial exposed node. (b) Two initial exposed nodes. (a) Five initial exposed nodes. In general, when there are more
initial seeds, the approximation accuracy of the theory becomes better.
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(a) (b) (c)

(d) (e) (f)

FIG. 9.
∑

i[P
i
E (t ) + Pi

I (t )] vs t . The networks are ER random graphs of size N = 200 with different average degrees and/or different
planted subgraph structures. The systems start with five initial exposed nodes. The parameters are T = 100, ν = 0.2, μ = 0.125, α = β/2,
while β is selected such that in the final time T = 100, approximately 70% of the population has contracted the disease. Comparing panels
(a), (d), (e), (f), it is observed that the IBMF approach becomes a better approximation when the network is denser (i.e., 〈d〉 is larger). In panel
(b), a planted hub of degree dh = 40 is created in the networks; the DMP approach is still a rather good approximation in this case. In panel
(c), a planted clique (or complete subgraph) of size Nclique = 20 is created in the networks; the approximation accuracy of the DMP approach
is comparable poorer than other networks.

increases; we expect that it also depends on the locations of
the initial seeds.

In Fig. 9, we examine the theoretical results on ER ran-
dom networks with different average degrees and/or different
planted subgraph structures. We remark that there is no abso-
lute fair comparison among different networks, as they have
different dependencies on the epidemiological parameters
(e.g., as in Fig. 3 of the main text). Here, we fix the values of
ν, μ and let α = β/2, and choose β such that approximately
70% of the population have contracted the disease in the final
time T = 100. Figure 9 demonstrates that the IBMF approach
becomes a better approximation when the network is denser.
This implies that the DMP approach is superior to the IBMF
approach, especially in sparsely connected networks. When
the average degree becomes higher, the trajectories obtained
by the IBMF equations are approaching those by the DMP
equations. In the limit of very dense random networks, the
mass-action approximation becomes a good approximation
[9]. As mentioned before, a planted hub of relatively large
degree can cause the leading eigenvector of the adjacency
matrix A to localize [45], which impairs the accuracy of the
IBMF approach. We show in Fig. 9(b) that such a planted
hub does not have a noticeable effect on the approximation
accuracy of the DMP approach. However, a planted clique
which can cause the NB centrality to localize [45,47], does
impair the approximation accuracy of the DMP approach, as
shown in Fig. 9(c).

In Fig. 9, we examine the theories on the networks
extracted from contact data obtained in the SocioPatterns
collaboration. The approximation accuracy of the HS2013

network is much poorer than the other networks, which may
be attributed to the weakly localization of the NB centrality as
shown in Fig. 13.

2. Evolution and distribution of the epidemic outbreak

In Fig. 4 of the main text, the normalized outbreak size at
large time r = ∑

i Pi
R(∞)/N was used to identify the critical

point βc of the SEIR model. In Fig. 10(a), we show the
transient evolution of the normalized outbreak size, which is
defined by the fraction of nodes that has contracted the disease
as 1 − ∑

i Pi
S (t )/N . The normalized outbreak size increases

only gently near criticality, while it grows rapidly above the
critical point βc.

(a) (b)

FIG. 10. Evolution and distribution of the epidemic outbreak on
a random regular graph with N = 6400, d = 10 in MC simulation.
The systems start with five initial exposed nodes. The parameters
are ν = 0.2, μ = 0.125, α = β/2. The critical point is given by βc ≈
0.0115. (a) Fraction of nodes that has contracted the disease, defined
as 1 − ∑

i Pi
S (t )/N , as a function of time. (b) Distribution of outbreak

size at large time, i.e.,
∑

i Pi
R(∞).
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(a) (b) (c)

FIG. 11. Correlation coefficient ρ between various centrality measures and the outbreak profile 1 − PS (t ), as a function of time. Here,
eig(A) stands for the eigenvector centrality and ũin is the NB centrality. The networks and the parameter settings correspond to those in
Figs. 9(a)–9(c).

As the epidemic outbreaks are triggered by a few initial
seeds, there is always a small probability that the disease
will die out before spreading out further (e.g., the infected
node transforming into state R much faster than average or
the infection signal not being transmitted to neighbors). This
can also happen when β > βc, indicating that there are some
instances where the outbreak size is small although the system
is in the global-epidemic phase, as shown in Fig. 10(b). This
phenomenon has been observed in the SIR model [29,41].
While the theoretical frameworks only concern the average
behaviors, they do not capture such variability of trajectories
due to stochastic fluctuations. A detailed theoretical investi-
gation into these aspects will be an interesting topic for future
studies.

3. Nonbacktracking centrality

As mentioned in the main text and in Sec. E 1, the degrada-
tion in accuracy of the approximation of the theory (IBMF or
DMP method) is correlated with the localization phenomenon
of the corresponding centrality measure, where the centrality
values of a few nodes are much larger than the others. We have
showcased this in Fig. 9 by considering some planted sub-
graph structures in a random network. We further examine the
prediction of the centrality measures on the outbreak profiles
in these planted random networks. In Fig. 11(a), it is shown
that in the ER graph, both the eigenvector centrality and the
NB centrality (coming from the linear approximation of the
IBMF and DMP approaches), as well as the degree, are good
predictors of the outbreak profile, despite the poor approxima-
tion of the full nonlinear IBMF approach in Fig. 9(a). On the
other hand, a planted hub causing the eigenvecter centrality
to localized, degrades its prediction accuracy as shown in
Fig. 11(b), while the NB centrality appears to be a much better
predictor. In the presence of a clique, the NB centrality also
predicts the outbreak poorly as shown in Fig. 11(c) due to the
localization phenomenon.

In all three cases, the degree appears to be a good predictor
of the outbreak profile; in random networks, having more
neighbors usually implies a higher chance to contract the
disease. However, this does not hold in general, e.g., consider
a hub connected to many dangling nodes but linked to the bulk
of the network through only a few edges, such a hub node is
not likely to be at high risk as indicated by its degree.

It has been shown in Fig. 12 that the approximation ac-
curacy of the HS2013 network is much poorer than the other
networks from the SocioPatterns data sets. In Fig. 13, we show
the NB centralities on the corresponding networks. Com-
paring to other networks, the NB centrality ũin of HS2013
concentrates on two communities, which may cause the ap-
proximation of the DMP equations to be less accurate.

APPENDIX F: ADDITIONAL DETAILS ON THE
DERIVATION OF EPIDEMIC THRESHOLD

1. Perron-Frobenius theorem

For a non-negative matrix X which satisfies Xi j � 0, the
Perron-Frobenius theorem asserts that (i) the spectral radius
ρ(X ) is an eigenvalue of X , which implies that the lead-
ing eigenvalue of X (defined as the eigenvalue having the
largest real part) satisfies λmax

X = ρ(X ), which is real and
non-negative, and (ii) there is a nonnegative and nonzero

(a) (b)

(c) (d)

FIG. 12.
∑

i Pi
E (t ) + Pi

I (t ) vs t . The networks are extracted from
contact data obtained in the SocioPatterns collaboration. The sys-
tems start with five initial exposed nodes. The parameters are T =
100, ν = 0.2, μ = 0.125, α = β/2, while β is selected such that in
the final time T = 100, approximately 70% of the population has
contracted the disease. The approximation accuracy of the HS2013
network is much poorer than the other networks.
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(a) (b)

(c) (d)

FIG. 13. NB centrality ũin of contact networks from the So-
cioPatterns data. The marker size of node i is proportional to the NB
centrality value ũin

i .

vector u (satisfying ui � 0, u �= 0) such that Xu = ρ(X )u;
more properties of the leading eigenvalue and eigenvector can
be deduced if the matrix X is irreducible [38].

2. Leading eigenvalue of the Jacobian of the DMP equations

In the main text, we have shown that the eigenvalue of
the Jacobian J and the eigenvalue of the NB matrix has the
relation

λB = λJ − (1 − α)(1 − ν)

α + β (1−α)ν
λJ −(1−β )(1−μ)

, (F1)

which can be solved for λJ , leading to

λ±
J = 1

2 [(1 − α)(1 − ν) + (1 − β )(1 − μ) + αλB

±
√

[(1 − α)(1 − ν) − (1 − β )(1 − μ) + αλB]2 + 4(1 − α)νβλB]. (F2)

From this relation, one can figure out the principal eigenvalue of J . Noticing that λmax
J = ρ(J ) � 0, λmax

B = ρ(B) � 0 due to
the Perron-Frobenius theorem, we can focus on λ+

J and λB ∈ R since the eigenmode with a fastest growth rate will not be
realized by negative or complex eigenvalue of J . We also assume that ρ(J ) and ρ(B) are nonzero. To simplify the notation,

denote a = (1 − α)(1 − ν), b = (1 − α)ν, c = (1 − β )(1 − μ), all of which are nonnegative, such that λ+
J (λB) = 1

2 [a + c +
αλB +

√
(a − c + αλB)2 + 4bβλB]. We first consider the case λB > 0,

dλ+
J

dλB
= α

2

[
1 + (a − c + αλB) + 2bβ

α√
(a − c + αλB)2 + 4bβλB

]

>
α

2

[
1 + (a − c + αλB)√

(a − c + αλB)2 + 4bβλB

]

> 0, (F3)

where we have made use of the fact that 2bβ
α

> 0 and | (a−c+αλB )√
(a−c+αλB )2+4bβλB

| < 1 by assuming λB > 0. It implies that

maxλB>0 λ+
J (λB) = λ+

J (λmax
B ). Furthermore, it can be easily shown that λ+

J (x) � λ+
J (−x) for x � 0, which leads to the

fact that ∀λB < 0, λ+
J (λB) < λ+

J (|λB|) < λ+
J (λmax

B ). Hence, we can conclude that the maximal eigenvalue of J is given by
λmax
J = λ+

J (λmax
B ), i.e.,

λmax
J = 1

2

[
(1 − α)(1 − ν) + (1 − β )(1 − μ) + αλmax

B

]

+ 1

2

√(
(1 − α)(1 − ν) − (1 − β )(1 − μ) + αλmax

B

)2 + 4(1 − α)νβλmax
B . (F4)

The epidemic threshold is obtained by solving
λmax
J (β, α, ν, μ, λmax

B ) = 1. The resulting phase boundaries
are in general nonlinear, which is more prominent in networks
with sparse structures (especially relevant when contact and
travel restrictions are enforced) and for disease with a long
incubation period. We illustrate this in an example in Fig. 14.

3. Epidemic threshold by the IBMF approach

Similar to the DMP approach, we can also derive the
epidemic thresholds through the IBMF approach. The initial
disease-free state is perturbed infinitesimally as Pi

S (0) = 1 −
εi, in which case the probabilities Pi

E (t ) and Pi
I (t ) are also of

order εi in the initial stage. We expand Eq. (8) and neglect
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FIG. 14. Phase boundary of the SEIR model in the (β, α)-plane.
The parameters used are ν = 0.05, λmax

B = 2.

terms of higher order of εi, leading to

Pi
E (t + 1) ≈ (1 − νi )P

i
E (t ) + Pi

S (t )
∑
k∈∂i

[
αkiP

k
E (t ) + βkiP

k
I (t )

]
.

(F5)
Equations (F5) and (9) constitute a linear dynamical system
of the probabilities {Pi

E (t ), Pi
I (t )}. They can be written in the

matrix form as (
PE (t + 1)
PI (t + 1)

)
= J MF

(
PE (t )
PI (t )

)
, (F6)

where the 2N × 2N Jacobian matrix J MF is defined as

J MF =
(

(1 − ν)I + αA βA
νI (1 − μ)I

)
, (F7)

where I is the identity matrix and A is the adjacency matrix of
the graph. The spectral radius ρ(J MF) determines the growth
rate of the fastest mode of Eq. (F6). Due to the Perron-
Frobenius theorem, ρ(J MF) equals the leading eigenvalue
λmax
J MF of J MF, which is related to the leading eigenvalue λmax

A
of the adjacency matrix of the graph. A similar argument as in
the DMP approach results in

λmax
J MF = 1

2

[
(1 − ν) + (1 − μ) + αλmax

A

]

+ 1
2

√(
(1 − ν) − (1 − μ) + αλmax

A

)2 + 4νβλmax
A .

(F8)

The epidemic threshold is obtained by solving
λmax
J MF (β, α, ν, μ, λmax

A ) = 1.

APPENDIX G: BASIC REPRODUCTION NUMBER OF THE
SEIR MODEL

In this Appendix, we provide a simple estimation of the
basic reproduction number R0 for the SEIR model under
investigation, which is defined as the expected number of

secondary infections from a single infection in a population
where all subjects are susceptible. We assume at time t = 0,
a node randomly chosen from the network is exposed to the
virus. The exposed node has 〈d〉 susceptible neighbors on av-
erage; the average number of neighbors it infects is computed
as

R0 = 〈d〉
∞∑

t=1

[
(1 − ν)t−1α +

t∑
ω=2

(1 − ν)ω−2ν(1 − μ)t−ωβ

]
,

(G1)
where ω is the time that the initial exposed node turns into the
infectious state and we have assumed that at the same step,
the process E → I or I → R occurs after the infection being
transmitted. The above expression can be simplified as

R0 = 〈d〉
∞∑

t=1

⎧⎨
⎩(1 − ν)t−1α +

(1 − μ)t−2
[
1 − (

1−ν
1−μ

)t−1]
1 − 1−ν

1−μ

νβ

⎫⎬
⎭

= 〈d〉
∞∑

t=1

{
(1 − ν)t−1α + (1 − μ)t−1 − (1 − ν)t−1

ν − μ
νβ

}

= 〈d〉
[
α

ν
+ νβ

ν − μ

(
1

μ
− 1

ν

)]

= 〈d〉
(

α

ν
+ β

μ

)
. (G2)

The R0 defined in this way only captures the average number
of contacts through 〈d〉, but neglects higher order structures
of the contact networks which could be very heterogeneous.

APPENDIX H: THE LEADING EIGENVALUE AND
EIGENVECTOR OF MATRIX B

1. Reduction from matrix B to matrix M

In the main text, we claimed that the spectrum of the 2|E | ×
2|E | NB matrix can be obtained from a much smaller 2N ×
2N matrix M defined as

M =
(

0 D − IN

−IN A

)
, (H1)

where IN is the N-dimensional identity matrix. The reduction
to Eq. (H1) is a manifest of the Ihara-Bass formula [57],
where an intuitive derivation of the reduction can be found in
Ref. [36]. The Ihara-Bass formula has also been generalized
to weight graphs and linked to Bethe free energy in belief
propagation [40], which is relevant in our study when hetero-
geneous transmission probabilities {βi j, αi j} are considered.

For completeness, we provide a derivation using the matrix
notation in this section. To this end, we define the N × 2|E |
source matrix S and target matrix T

Sie =
{

1 if node i is the source of directed edge e, i.e., ∃ j, e = i → j
0 otherwise, (H2)

Tie =
{

1 if node i is the target of directed edge e, i.e., ∃ j, e = j → i
0 otherwise, (H3)

and a 2|E | × 2|E | auxiliary matrix

J =
(

0 I2|E|
I2|E| 0

)
, (H4)
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where I2|E| is the 2|E |-dimensional identity matrix. We fur-
ther index the set of directed edges according to the order
(e1, ...e|E|, e|E|+1, ...e2|E|) such that for n � |E |, en = i → j,
one has en+|E| = j → i. Under this notation, the NB matrix B
can be written as

B = S�T − J. (H5)

It can also be easily verified that

ST � = T S� = A, SS� = T T � = D, (H6)

SJ = T , T J = S. (H7)

The key element of the derivation in Ref. [36] is that for
a given 2|E |-dimensional u, one defines the corresponding N-
dimensional incoming and outgoing vectors

uin
i =

∑
j∈∂i

u j→i, uout
i =

∑
j∈∂i

ui→ j, (H8)

which can be expressed in the matrix form as

uin = T u, uout = Su. (H9)

Consider the vectors (Bu)out and (Bu)in, written in the matrix
form as

SBu = S (S�T − J )u = SS�T u − SJu

= DT u − T u = (D − IN )(T u), (H10)

T Bu = T (S�T − J )u = T S�T u − T Ju

= A(T u) − (Su), (H11)

where we have made used of the relations in Eqs. (H6) and
(H7). The above expressions can be written as(

S 0
0 T

)
Bu =

(
0 D − IN

−IN A

)(
Su
T u

)
=: M

(
Su
T u

)
,

(H12)
where we identify the matrix M defined in Eq. (H1). Now
suppose u is an eigenvector of B with eigenvalue λB, then
Eq. (H12) leads to

M

(
Su
T u

)
= λB

(
Su
T u

)
, (H13)

which implies that (Su
T u) or (uout

uin ) is the eigenvector of M with
eigenvalue λB. Therefore, we can work with the much smaller
matrix M for computing the spectrum of the NB matrix B.

Physically, this reduction comes from compressing the
edge-based data {ui→ j} to node-based data {uout

i , uin
i }. In the

context of spreading processes, they correspond to edge-based
messages and node-based marginal probabilities, e.g., the cav-
ity probability Pi→ j

S in the linearized dynamics satisfies

Pi→ j
S (t + 1) ≈ Pi→ j

S (t ) −
∑

k∈∂i\ j

[αψk→i(t ) + βφk→i(t )],

(H14)
while the marginal probability satisfies

Pi
S (t + 1) ≈ Pi

S (t ) −
∑
k∈∂i

[αψk→i(t ) + βφk→i(t )], (H15)

where the probability of new infection
∑

k∈∂i [αψk→i(t ) +
βφk→i(t )] corresponds to the incoming vectors of the mes-
sages as αψin(t ) + βφin(t ).

2. Eigenvalues and eigenvectors of matrix M

Consider the eigenvalue equation of M,(
0 D − IN

−IN A

)(
uout

uin

)
= λM

(
uout

uin

)
, (H16)

or explicitly {
(D − IN )uin = λMuout

−uout + Auin = λMuin.
(H17)

The above equations can be reduced to a nonlinear eigenvalue
problem, [

λ2
MI − λMA + (D − I )

]
uin = 0, (H18)

and implies a relation between the outgoing-component uout

and the incoming-component uin of the eigenmode as

uout
i = di − 1

λM
uin

i . (H19)

In the main text, it is argued that the leading eigenvector
of the matrix B (denoted as ũ), and the corresponding in-
coming vector ũin = T ũ (i.e., the NB centrality), are useful
in predicting the outcome of the epidemics. From the anal-
ysis in this section, both the leading eigenvalue λmax

B and
the NB centrality ũin can be obtained through the matrix
M, which significantly reduces the computational complexity.
The Perron-Frobenius theorem guarantees that the leading
eigenvector ũ of the matrix B can be chosen to be non-
negative, so does the NB centrality ũin.

3. Exact expression in random regular graphs

The leading eigenvalue of the matrix M can be computed
exactly for random regular graphs. We first notice that the
smallest eigenvalue of the Laplacian matrix L = D − A of a
graph is λmin

L = 0 [58]. For regular graphs with degree d , we
have D = dI , and therefore L commutes with A. It suggests
that the largest eigenvalue of A is

λmax
A = d. (H20)

Equation (H18) can be expressed as

Auin =
(

λM + d − 1

λM

)
uin, (H21)

which implies that (λM + d−1
λM

) is an eigenvalue of the ad-

jacency matrix A with eigenvalue uin, denoted as λA. The
eigenvalue λM of M is related to λA as

λM = 1
2

[
λA ±

√
λ2

A − 4(d − 1)
]
. (H22)

Therefore, the leading eigenvalue λmax
M of M, which is equal

to the leading eigenvalue λmax
B , is identified as

λmax
M = λmax

B = 1
2

[
λmax

A +
√(

λmax
A

)2 − 4(d − 1)
]

= d − 1. (H23)
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TABLE I. Approximation of the leading eigenvalue λmax
B of the

NB matrix.

Network N 〈d〉 λmax
B λmax,an

B λmax,un
B rd

ER(〈d〉 ≈ 20) 200 20.09 20 20.02 20 −0.0182
SBM, c11 = 10 200 21.94 21.79 21.8 21.8 −0.0041
SBM, c11 = 20 200 24.64 26.19 25.38 25.8 0.2419
SBM, c11 = 30 200 27.15 33.26 29.9 31.59 0.4274
WP2013 91 8.55 10.17 10.26 10.08 −0.0525
WP2015 213 21.22 24.49 24.2 24.34 0.0432
PS2014 242 36.65 42.18 40.64 41.57 0.1993
HS2013 326 20.47 25.19 23.38 23.64 0.0774
SF, γ = 2 400 13.29 24.43 25.9 24.48 −0.0773
SF, γ = 2.5 400 10.18 16.75 17.87 16.83 −0.06
SF, γ = 3 400 8.4 11.27 12.14 11.36 −0.0653
SF, γ = 3.5 400 7.48 8.55 8.88 8.67 −0.0347
ER(〈d〉 ≈ 5) 200 5.2 5.02 5.1 5.04 −0.0582
ER(〈d〉 ≈ 5) + hub 200 5.54 6.05 6.48 6.08 −0.0575
ER(〈d〉 ≈ 5) + clique 200 7.05 18.15 11.09 15.31 0.6146

4. Approximations of the λmax
B in uncorrelated random networks

For uncorrelated random networks, approximate expres-
sions of the leading eigenvalue λmax

B can be derived, which
can be useful for estimating epidemics properties in large
networks. In the annealed approximation where only the in-
formation of the degree distribution P(d ) is retained, λmax

B is
approximated as [36,45]

λmax,an
B ≈ 〈d2〉 − 〈d〉

〈d〉 . (H24)

In a more refined approximation assuming uncorrelated net-
works but taking into neighborhood information, λmax

B is

approximated as [47]

λmax,un
B ≈

∑
i j (di − 1)Ai j (d j − 1)∑

i di(di − 1)
. (H25)

To examine the validity of the uncorrelated random
network assumption, we consider the degree correlation co-
efficient [49],

rd = 1

σ 2

dmax∑
k,l=1

kl (ekl − qkql ), (H26)

where ekl is the element of the degree correlation matrix (i.e.,
the probability of finding an edge connecting two nodes of
degree k and degree l), qk = kP(k)

〈d〉 (with P(k) being the degree
distribution) is the probability of finding an edge whose one
end has degree k, and σ 2 = ∑dmax

k=1 k2qk − (
∑dmax

k=1 k2qk )
2

is the
variance of the measure q. The neutrality condition rd = 0
needs to be (at least roughly) satisfied for a network to be
uncorrelated.

In Table I, we examine the approximations offered by
Eqs. (H24) and (H25) for the networks considered in this
work. In general, λmax,un

B provides a better approximation than
λmax,an

B , both of which predict λmax
B quite well when rd is low.

The two cases with a relatively poor approximation (espe-
cially for λmax,an

B ) are the SBM network with c11 = 30 and
the ER network with a clique. These two networks exhibit
high values of the degree correlation coefficient rd , violating
the assumption of uncorrelated random network. On the other
hand, the existence of dense subgraph structures can cause
localization of the NB centrality, which also makes the ap-
proximation inaccurate. In light of this, it has been proposed
in Ref. [47] to identify some characteristic subgraph structures
for an improved approximation of λmax

B .
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