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Heider and coevolutionary balance: From discrete to continuous phase transition
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Structural balance in social complex networks has been modeled with two types of triplet interactions. First
is the interaction that only considers the dynamic role for links or relationships (Heider balance), and second is
the interaction that considers both individual opinions (nodes) and relationships in network dynamics (coevolu-
tionary balance). The question is, as the temperature varies, which is a measure of the average irrationality of
individuals in a society, how structural balance can be created or destroyed by each of these triplet interactions.
We use statistical mechanics methods and observe through analytical calculation and numerical simulation that
unlike the Heider balance triplet interaction which has a discrete phase transition, the coevolutionary balance has
a continuous phase transition. The critical temperature of the presented model changes with the root square of
the network size, which is a linear dependence in the thermal Heider balance.
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I. INTRODUCTION

Structural balance theory is a key measure for the analysis
of complex networks by investigating the impact of local
interactions on the global structure [1]. This theory has been
studied frequently in the context of social networks [2–4], in-
ternational relations [5–7], biology [8–10], and ecology [11].
In the analytical approach, researchers have proposed two
types of local triplet interactions: (i) The interaction in which
only links between individuals affect the network’s temporal
behavior, which is known as Heider balance or social balance,
and (ii) the interaction in which the node and links are in-
volved in the network dynamics, which we call coevolutionary
balance.

The first type of triplet interaction, initially introduced
by Heider [1], just considers a role for relationships. Since
its proposal, this model and its extension to graph theory
[12], called Heider balance, have been studied frequently in
the context of social networks [13–18]. This model simply
considers triplet interaction between individuals (nodes) that
have friendly (unfriendly) relationships (links). The axioms
behind this interaction simply are “a friend of a friend is
also a friend” and “an enemy of my enemy is my friend” in
social networks. A triad is called balanced (unbalanced) if it
contains an even (odd) number of unfriendly links (Fig. 1).
The unbalanced triads hold social tension and have a ten-
dency to become balanced. The network evolves with this
dynamic until no more frustration exists (heaven or bipolar)
or is trapped in jammed states [19]. In the heaven state, all
relationships between individuals are friendly, while in the
bipolar state, the network consists of two subnetworks with
friendly (unfriendly) relations within (between) subnetworks.
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In jammed states, the system is trapped in a local minimum of
the energy landscape. Modified models of the Heider balance
have been investigated in two scenarios: (i) applying equi-
librium statistical mechanics methods to find characteristics
of equilibrium states [20–25], and (ii) using nonequilibrium
statistical mechanics and the master equation to find stationary
state properties and the time to reach them [26–31]. Fur-
thermore, Leskovec et al. have conducted a comprehensive
comparison of this model and real social data [32].

The second type of local interaction takes the state of both
nodes and links in a coupled dynamics, that is, the state of
nodes affects the state of links and vice versa. In the social
science literature, this interaction consists of two parts: (i)
individuals form their beliefs based on the opinion of their
neighbors, i.e., “opinion formation” [33,34], and (ii) network
connections are organized between individuals with similar
beliefs, i.e., “homophily” [35–37]. Researchers have been
working on a combination of the two. Holm et al. discussed
the nonequilibrium phase transition for such a coevolution
model by considering a binary variable for links and a small
number of opinions for nodes [38]. This phase transition de-
pends on a single parameter that controls the balance of the
two processes. Saeedian et al. discussed such a coevolution
model by considering friendly (+) and unfriendly (−) choices
for links. They investigated the absorbing phase transition
with coupled rate differential equations based on specific up-
date rules [39,40]. The convergence to the structural balance
of triplet node-link interaction, with the aid of Hebb’s prin-
ciple for link adaptation, is discussed numerically by Singh
et al. [41]. They have found that the time required for this con-
vergence has a large dispersion. Furthermore, the mean-field
analysis of coupled dynamics of social balance and three-state
individual opinion is investigated in a fully connected network
by Singh et al. [42].

Recently, the combination of these two types of interac-
tions has also been investigated. Górski et al. [43] developed a
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FIG. 1. Balanced and unbalanced configurations of the Heider
balance theory and the proposed model. Empty circles have value
+1 and filled circles have −1. Solid (dashed) lines are friendly
(unfriendly) links and have value +1 (−1).

framework that unifies the principles of structural balance and
homophily and investigated it using nonequilibrium statistical
mechanical methods. In this model, people in a society have
different opinions, and the closer people’s opinions are to each
other, the stronger their social connection becomes (larger
weight). The authors conclude that there is a competition be-
tween homophily and structural balance and this competition
is quite evident in societies with a limited number of opinions.
Moreover, researchers have chosen the equilibrium path and,
by defining an overall social tension, have investigated the
equilibrium states of a social system through simulation [44].
This study has proved that individuals’ opinions in certain
circumstances cause the fragmentation of society that may
lead to radicalization.

Since the properties of the first type of interaction with
equilibrium and nonequilibrium methods of statistical me-
chanics have been well investigated [22,26], the lack of
investigation and comparison with equilibrium methods for
the second type is noticed. In this paper, by defining an overall
social tension of society (energy function which should be
minimized) and considering the dynamic role for both indi-
viduals opinions and social relationships (nodes and links), we
were able to investigate its analytical properties with statistical
mechanics methods (Fig. 1). The concept of temperature is
considered as a measure of the average irrationality of in-
dividuals in society. We use an exponential random graph
[45–50] as our mathematical framework and mean-field ap-
proximation for determining the averaged quantities (Sec. II).
In Sec. III, the comparison between the analytical result of
the proposed model and thermal Heider balance [22] is pre-
sented. Moreover, the order of the phase transition and the
dependence of the critical temperature on the network’s size
are discussed. Finally, we examine the analytical result via
simulations (Sec. IV).

II. MODEL

As discussed above, we have considered the overall social
tension of society as

H(G) = −
∑

i< j

si σi j s j, (1)

which should be minimized. In physics, this type of cost
function is called Hamiltonian, which measures the total en-
ergy (overall social tension) of a system as a function of its

FIG. 2. Balanced and unbalanced configuration of the proposed
model. Empty (full) circles have the value of +1 (−1). Solid (dashed)
lines are friendly (unfriendly) links and have value +1 (−1). (a) Two
kinds of consensus are observed in our model. In each cluster, one
node-link-node triplet is shown as representing the total triplets of
that cluster. (b) In the bipolar state, all relations between the two
clusters are unfriendly (disagreement). The shapes inside each cluster
(square and pentagonal) refer only to the type of agreement within
each cluster.

configurations. G is a particular graph from all the possi-
ble configurations in a network with n individuals (nodes).
Our model is based on a society in which everyone knows
everyone, which in graph theory language means that we
have a fully connected graph. Individual i ( j) opinions are
shown by si (s j), and we consider two type of opinions (±1).
The relationships (link) between these nodes is σi j , which
is an element of our symmetric adjacency matrix and can
take friendly (unfriendly) relationships (±1). Since we have
two types for nodes and links, the number of all configu-
rations is 2n × 2n(n−1)/2, where n(n−1)/2 is the total number of
relationships (links) in a fully connected network. One of the
configurations that reduces the social tension is two nodes
with a similar idea (+1 or −1) when the link (relationships)
between them is friendly (σi j = +1); we called this configura-
tion the “agreement” (consensus). Another configuration that
minimized social tension as agreement is “disagreement,” in
which two nodes with different opinions are linked with an
unfriendly link (σi j = −1). We call these three configurations
balanced, in which they have minimal energy (social tension),
and otherwise they are unbalanced (Fig. 1). The minimum
overall social tension given by Eq. (1) in a network can be
reached when all nodes and their relation are in agreement or
disagreement. In these states, we have two configurations for
the heaven state (agreement types I and II) because we have
two values for nodes, and the bipolar state. The illustration
of the balanced states of our model is schematically shown
in Fig. 2. According to the definition of overall social tension
given by Eq. (1) and using statistical mechanical techniques, a
mathematical framework can be constructed for the analytical
study of the proposed model. This mathematical framework
is known as the exponential random graph [45–50] and can
be used to calculate the probability of obtaining a particular
configuration. This probability is written as P (G) ∝ e−βH(G),
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where G is a specific graph configuration and β has the role
of an inverse temperature β = 1/T .

The parameter T is known as the social temperature [44]
and is a measure of the average volatility of individuals in so-
ciety [51]. This means that at high temperatures, regardless of
the reduction of overall social tension, people are more likely
to change their opinions and relationships. At low tempera-
tures, individuals appear more stubborn with their opinions
and social ties. In other words, at high temperatures, people
are more likely to behave irrationally.

A. Mean-field solution

In this section, we have calculated the mean quantities such
as the mean of nodes m and the node-link correlation q, with
the mean-field approximation. Suppose H′ is the sum of all
terms in the Hamiltonian (1) that contain si,

−Hi = si

∑

j �=i

σi j s j, (2)

and we have labeled the remaining terms as H′, so we have
H = H′ + Hi. We can infer from statistical mechanics that

m ≡ 〈si〉 =
∑

G

si P (G), (3)

where P (G) = e−βH(G)/Z is the Boltzmann probability and
Z = ∑

G e−βH(G) is the partition function; then we have

m = 1

Z
∑

{s �=si}
e−βH′ ∑

si=±1

si e−βHi

=
∑

{s �=si} e−βH′[
e−βHi (si=+1) − e−βHi (si=−1)

]
∑

{s �=si} e−βH′ [e−βHi (si=+1) + e−βHi (si=−1)]

= 〈e−βHi (si=+1) − e−βHi (si=−1)〉G′

〈e−βHi (si=+1) + e−βHi (si=−1)〉G′
, (4)

where 〈· · · 〉G′ is obtained from the average over all graph
configurations that does not contain si. Using the similarity
with spin models, it can be said that Eq. (2) expresses a local
field coupled to node si. Here we have applied the mean-field
approximation by substituting σi j s j → q ≡ 〈σi j s j〉, and we
can write

m = eβ(n−1)q − e−β(n−1)q

eβ(n−1)q + e−β(n−1)q
= tanh [β(n − 1)q]. (5)

For calculating the node-link correlation (q), similar to
above, we have divided the Hamiltonian sum into two sums
as H = H′′ + Hi j . The (Hi j ) contains all terms that have si

and/or σi j , that is,

−Hi j = si σi j s j + s j

∑

k �=i, j

σ jk sk, (6)

and let (H′′) be the remaining terms. We can write

q ≡ 〈σi j s j〉 =
∑

G

σi j s jP (G)

=
∑

G′′ e−βH′ ∑
{s j=±1,σi j=±1} σi j s j e−βHi j

∑
G′′ e−βH′ ∑

{s j=±1,σi j=±1} e−βHi j
, (7)
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FIG. 3. The graphical solutions for (a) coevolutionary balance
and (b) thermal Heider balance model above and below their critical
temperatures (Tc and T ′

c ). The parameter q in our model is the node-
link correlation, but in the thermal Heider balance model [22] it is
the correlation between two links with a common edge. The number
of nodes is 128.

where G′′ is all the graph configurations that do not contain σi j

and s j . The above statement [Eq. (7)] is simplified as follows:

q = tanh(βm). (8)

By substituting (5) in (8), we can write the self-consistency
equations as

q = tanh {β tanh [β(n − 1)q]} ≡ g(q ; β, n). (9)

In the AppendixA, Eq. (9) has been derived with another
method. In Fig. 3(a), we have illustrated a plot of y = q and
y = g(q ; β, n) as a function of q. The intersection of two
functions gives the solution of Eq. (9). Depending on the
value of the temperature, the functions can intersect in either
one or three points in the physical region, −1 � q � 1. This
behavior is the classic phenomenology of the second-order
phase transition. The stability condition for solutions can be
checked by the absolute value of the first derivative on the
right-hand side of Eq. (9) in the fixed point q∗. This value is
less than one for stable solutions.

The critical temperature can be calculated by the right-
hand side of Eq. (9) for very small values of q. In this limit,
we can use the Taylor expansion as

g(q ; β, n) ≈ q(n − 1)β2 + O(q3), (10)

and find Tc = √
n − 1. The dependence of the critical temper-

ature on the size is rooted in the network topology, which is
fully connected. In this type of network, with increasing the
size, the number of neighbors (in other words, the dimension)
of the network increases, while in famous models of physics,
such as the two-dimensional (2D) Ising model, the number of
neighbors (dimension) of the model is fixed, which results in
a finite critical temperature in the thermodynamics limit.

Finally, we have calculated the equation for the mean
of triplets 〈siσi j s j〉, which is the energy of the network per
number of triplets. By the same analogy as described in this
section, we can find

E ≡ −〈siσi j s j〉 = − tanh(β ). (11)

The minus sign came from the definition of the Hamiltonian
(1).
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FIG. 4. (a),(b) Solution of Eq. (9) and the energy vs temperature
for the presented model. (c),(d) Solution of the equation of state
and energy vs temperature for the thermal Heider balance [22]. The
number of nodes is 128.

III. COMPARISON WITH THERMAL HEIDER BALANCE

Recently, Rabbani et al. [22] have developed the statistical
mechanics of the thermal Heider balance. They have con-
sidered the Heider balance Hamiltonian first introduced by
Marvel et al. [19], which is

H(G) = −
∑

i< j<k

σi j σ jk σki, (12)

where G is a specified graph and, similar to our model, they
consider temperature as the social tension. Here, σi j is the
link between nodes i and j, which can take the values ±1,
and Eq. (12) is the sum of all the triads in network G. They
have found that the phase transition between the ordered phase
(heaven, which means all links are positive) to the disor-
dered phase is discrete, and dependent on the temperature
[Fig. 3(b)]. The self-consistence equation in their model is
a function of an important parameter, which is q = 〈σi jσ jk〉,
besides size and temperature. This parameter is the average of
two stars, which is two links with a common node. They saw
the hysteresis loop in their simulation, which is a sign of the
first-order transition.

In the presented model, the solutions to our equation of
states [Eq. (9)] show a continuous phase transition. This equa-
tion depends on the size and temperature, besides an important
parameter which is the node-link correlation q = 〈σi j s j〉. We
have found in our simulations that the hysteresis loop does not
exist in this model. In Fig. 4, we have compared the solutions
of the self-consistence equation and energy in both models.
As can be seen in Fig. 4(a), the parameter 〈σi j s j〉 for the
presented model behaves smoothly from one (or minus one)
to zero; however, in the thermal Heider balance model shown
in Fig. 4(c), the parameter 〈σi jσ jk〉 behaves abruptly.
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FIG. 5. Comparison of our theory with Monte Carlo simulations
(triangles). The initial states for our simulation are agreement types
I and II. (a) Mean of node-link correlation (〈σi j s j〉) vs temperature.
(b) Mean of energy (〈siσi j s j〉) vs temperature.

IV. SIMULATIONS

We have simulated a fully connected network in which
the number of nodes (n) is known. We used the Metropolis
algorithm for thermalizing our network with a given tempera-
ture. In this method, we have picked a random object, which
could be a node or a link, and have computed the energy
for a new configuration where it is flipped. If the energy of
the new configuration has decreased with respect to the old
configuration, the flip will be accepted, otherwise if the energy
increased, the acceptance ratio is the Boltzmann probability.
In each step of the iteration, we have picked just one object: a
node with probability p = n/[n+n(n−1)/2] and a link with 1 − p.
This probability (p) is the number of nodes over the number
of updating objects, which is the number of nodes plus the
number of links. The parameter is useful for updating all
objects uniformly. In Fig. 5, we have illustrated our theory
with Monte Carlo simulations.

In Fig. 5(a), we have compared our simulation (for all
initial conditions either agreement type I and II as in Fig. 2)
with theory. For the node-link correlation (q), the simulation
and theory are in good agreement in low temperatures, but the
mean of the energy is in good agreement with the simulation
for the entire range of temperatures [Fig. 5(b)]. This agree-
ment holds for the random initial condition as well.

We have checked the finite-size effect on the presented
model in Fig. 6. The deviation of simulation from the theory
is very small in low temperatures for all network sizes. This
deviation in high temperature is large for small size networks;
however, when the bigger size is chosen, it becomes smaller
because the theory line is approaching the horizontal axes. In
the thermodynamic limit, it will be very small and the theory
and simulation will be in good agreement.

052302-4



HEIDER AND COEVOLUTIONARY BALANCE: FROM … PHYSICAL REVIEW E 103, 052302 (2021)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−1.0

−0.5

0.0

0.5

1.0

FIG. 6. Finite-size effect for the presented model in agreement
type I and II initial states (Fig. 1). The deviation of theory and
simulation will be smaller in the larger size.

V. CONCLUSIONS

Here we present a model where individuals update their
opinions and their social relationships to reduce overall social
tension (Hamiltonian). By considering social temperature as a
measure of the average irrationality of individuals in society,
we investigate the effect of this parameter on minimum ten-
sion states using the mean-field approximation. We compared
the presented model with the thermal Heider balance model
[22], which has been studied in a similar way, and the follow-
ing results have been obtained:

(i) The phase transition in the presented model is contin-
uous, while the thermal Heider balance has a discrete phase
transition.

(ii) The critical temperature of our model is proportional
to the square root of the networks size, while in the thermal
Heider balance, the critical temperature changes linearly with
size [23].

(iii) The thermal Heider balance has good agreement with
the simulation in finite sizes, but in the coevolutionary bal-
ance, this agreement is good for large sizes.

As the results show, the differences between the coevolu-
tionary and Heider balance models are fundamental. One of
the most important differences between these two models is
that in the Heider balance model, the relationship between
two people is related to the third person (triangles), while
the relationship in the coevolutionary balance is only related
to the opinions of two people (node-link-node triplet). The
number of triangles in the Heider balance model is approx-
imately equal to the size of the network to the power of
three [

(n
3

) ≈ n3], and the number of triplets in the coevolu-
tionary balance model is equal to the number of network
links [approximately

(n
2

) ≈ n2]. This difference in the number
of triplets indicates that in the Heider model, the number of
triplets with common links is approximately equal to the size
of the network. Changing the sign of a relationship has a much
greater impact on the overall amount of social tension in the
Heider model than in the coevolutionary model (Fig. 4). The

effect of average irrationality of individuals (temperature) on
the ordered phase is significantly different for these two mod-
els. With the increase of temperature, in the Heider model, the
order disappears abruptly, while in the coevolutionary model,
this effect slowly destroys the order.
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APPENDIX: DERIVING SELF-CONSISTENCE EQUATION
FROM APPROXIMATED PARTITION FUNCTION

The main assumption for mean-field theory is to neglect the
fluctuation of microscopic variables around their mean values.
We can split the node, edge variables into mean 〈si〉, 〈siσi j〉
and deviation (fluctuation) δsi = si − m, δ(σi j s j ) = σi j s j − q
and assume that the second-order term with respect to the
fluctuation, δsi, δ(σi j s j ), is negligibly small in the interaction
energy:

H = −
∑

i< j

{(δsi + m)[q + δ(σi j s j )]}

− h1

∑

i

si − h2

∑

i< j

σi j s j,

≈ n(n − 1)mq/2 − [h1 + q(n − 1)]
∑

i

si

− (h2 + m)
∑

i< j

σi j s j . (A1)

Above is the mean-field Hamiltonian and the partition func-
tion is

Z = Tr e−βH = eβn(n−1)mq/2(2 cosh {βh1 + (n − 1)q]})n

×{cosh [β(h2 + m)]}n(n−1)/2. (A2)

The Helmholtz free energy is

F = −kBT lnZ
∝ −kBT n ln (cosh {β[h1 + (n − 1)q]})

− kBT n(n − 1)/2 ln {cosh [β(h2 + m)]}. (A3)

We can find the self-consistence (equation of state) by the
derivative of the free energy with respect to external fields,

m = 〈si〉 = −1

n

∂F
∂h1

∣∣∣
h1=0

= tanh[β(n − 1)q],

q = 〈σi j s j〉 = − 2

n(n − 1)

∂F
∂h2

∣∣∣
h2=0

= tanh(βm). (A4)

Finally, the self-consistence equation is

q = tanh {β tanh[β(n − 1)q]}. (A5)
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16047 (2017).

[31] R. Shojaei, P. Manshour, and A. Montakhab, Phys. Rev. E 100,
022303 (2019).

[32] J. Leskovec, D. Huttenlocher, and J. Kleinberg, Conference on
Human Factors in Computing Systems (Association for Com-
puting Machinery, New York, 2010).

[33] V. Sood and S. Redner, Phys. Rev. Lett. 94, 178701 (2005).
[34] C. Castellano, D. Vilone, and A. Vespignani, Europhys. Lett.

63, 153 (2003)
[35] C. Castellano, M. Marsili, and A. Vespignani, Phys. Rev. Lett.

85, 3536 (2000).
[36] M. McPherson, L. Smith-Lovin, and J. M. Cook, Ann. Rev.

Sociol. 27, 415 (2001).
[37] B. Söderberg, Phys. Rev. E 66, 066121 (2002).
[38] P. Holme and M. E. J. Newman, Phys. Rev. E 74, 056108

(2006).
[39] M. Saeedian, M. San Miguel, and R. Toral, Sci. Rep. 9, 9726

(2019).
[40] M. Saeedian, M. San Miguel, and R. Toral, New J. Phys. 22,

113001 (2020).
[41] R. Singh, S. Dasgupta, and S. Sinha, Europhys. Lett. 105, 1

(2014).
[42] P. Singh, S. Sreenivasan, B. K. Szymanski, and G. Korniss,

Phys. Rev. E 93, 042306 (2016).
[43] P. J. Górski, K. Bochenina, J. A. Hołyst, and R. M. D’Souza,

Phys. Rev. Lett. 125, 078302 (2020).
[44] T. M. Pham, I. Kondor, R. Hanel, and S. Thurner, J. R. Soc.,

Interface 17, 20200503 (2020).
[45] O. Frank and D. Strauss, J. Am. Stat. Assoc. 81, 832 (1986).
[46] T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S.

Handcock, Sociol. Methodol. 36, 99 (2006).
[47] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, Soc. Netw. 29,

173 (2007).
[48] J. Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004).
[49] J. Park and M. E. J. Newman, Phys. Rev. E 72, 026136

(2005).
[50] D. Lusher, J. Koskinen, and G. Robins, Exponential Random

Graph Models for Social Networks (Cambridge University
Press, New York, 2013).

[51] D. B. Bahr and E. Passerini, J. Math. Sociol. 23, 1 (1998).

052302-6

https://doi.org/10.1080/00223980.1946.9917275
https://doi.org/10.1073/pnas.1004008107
https://doi.org/10.1371/journal.pone.0038135
https://doi.org/10.1093/comnet/cnx044
https://doi.org/10.1177/002234337401100307
https://doi.org/10.1016/0378-4371(96)00034-9
https://doi.org/10.1016/j.socnet.2020.05.003
https://doi.org/10.1038/s41598-020-80330-0
https://doi.org/10.3389/fphys.2020.573732
https://doi.org/10.1111/ecog.02561
https://doi.org/10.1037/h0046049
https://doi.org/10.1103/PhysRevE.99.012320
https://doi.org/10.1016/j.physa.2017.04.132
https://doi.org/10.3390/e19060246
https://doi.org/10.1103/PhysRevE.95.022314
https://doi.org/10.1016/j.physa.2019.123882
https://doi.org/10.1103/PhysRevE.103.022307
https://doi.org/10.1103/PhysRevLett.103.198701
https://doi.org/10.1371/journal.pone.0183696
https://doi.org/10.1016/j.physa.2018.11.055
https://doi.org/10.1103/PhysRevE.99.062302
https://doi.org/10.1103/PhysRevE.102.012310
http://arxiv.org/abs/arXiv:2008.00537
https://doi.org/10.1103/PhysRevE.103.032305
https://doi.org/10.1103/PhysRevE.72.036121
https://doi.org/10.1016/j.physd.2006.09.028
https://doi.org/10.1016/j.physd.2020.132556
https://doi.org/10.1142/S012918310500742X
https://doi.org/10.1038/s41598-017-15960-y
https://doi.org/10.1103/PhysRevE.100.022303
https://doi.org/10.1103/PhysRevLett.94.178701
https://doi.org/10.1209/epl/i2003-00490-0
https://doi.org/10.1103/PhysRevLett.85.3536
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1103/PhysRevE.66.066121
https://doi.org/10.1103/PhysRevE.74.056108
https://doi.org/10.1038/s41598-019-45937-y
https://doi.org/10.1088/1367-2630/abbfd0
https://doi.org/10.1209/0295-5075/105/10003
https://doi.org/10.1103/PhysRevE.93.042306
https://doi.org/10.1103/PhysRevLett.125.078302
https://doi.org/10.1098/rsif.2020.0503
https://doi.org/10.1080/01621459.1986.10478342
https://doi.org/10.1111/j.1467-9531.2006.00176.x
https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1103/PhysRevE.72.026136
https://doi.org/10.1080/0022250X.1998.9990210

