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A new basis has been found for the theory of self-organization of transport avalanches and jet zonal flows in L-
mode tokamak plasma, the so-called “plasma staircase” [Dif-Pradalier et al., Phys. Rev. E 82, 025401(R) (2010)].
The jet zonal flows are considered as a wave packet of coupled nonlinear oscillators characterized by a complex
time- and wave-number-dependent wave function; in a mean-field approximation this function is argued to obey
a discrete nonlinear Schrödinger equation with subquadratic power nonlinearity. It is shown that the subquadratic
power leads directly to a white Lévy noise, and to a Lévy fractional Fokker-Planck equation for radial transport
of test particles (via wave-particle interactions). In a self-consistent description the avalanches, which are driven
by the white Lévy noise, interact with the jet zonal flows, which form a system of semipermeable barriers to
radial transport. We argue that the plasma staircase saturates at a state of marginal stability, in whose vicinity
the avalanches undergo an ever-pursuing localization-delocalization transition. At the transition point, the event-
size distribution of the avalanches is found to be a power law wτ (�n) ∼ �n−τ , with the drop-off exponent
τ = (

√
17 + 1)/2 � 2.56. This value is an exact result of the self-consistent model. The edge behavior bears

signatures enabling to associate it with the dynamics of a self-organized critical (SOC) state. At the same time
the critical exponents, pertaining to this state, are found to be inconsistent with classic models of avalanche
transport based on sand piles and their generalizations, suggesting that the coupled avalanche-jet zonal flow
system operates on different organizing principles. The results obtained have been validated in a numerical
simulation of the plasma staircase using flux-driven gyrokinetic code for L-mode Tore-Supra plasma.

DOI: 10.1103/PhysRevE.103.052218

I. INTRODUCTION

Recently, due to the high-resolution, ultrafast sweeping
reflectometry schemes employed in the fusion research, there
has been increasing attention both theoretically and experi-
mentally on the issues related with the propensity of toroidally
confined L-mode plasma to spontaneously generate microbar-
riers to radial transport as a result of plasma self-organization.
Often such barriers are found to occur in quasiregular patterns
of highly concentrated, multiple jet zonal flows interspersed
with broader regions of turbulent (typically, avalanching)
transport [1–4]. The phenomenon, illustrated numerically in
Fig. 1 with the aid of a flux-driven gyrokinetic code [5], has
come to be known as the plasma staircase and was so named
[1] after its celebrated planetary analog [6].

The physics of the plasma staircase is of interest from
both a fundamental scientific perspective and for the practical
realization of fusion energy. From a scientific perspective, the
nonlinear dynamics of the plasma staircase occupies an inter-
esting niche where microscale and mesoscale nonlinearities

can appear on an equal footing [3,4]. From a practical per-
spective, the periodic dynamical patterning due to the plasma
staircase offers a unique environment to control the avalanche
activity by fine tuning the shape and the radial positions
of the barriers [4,7]. These practical aspects are dictated by
the understanding that the avalanche transport may have a
deteriorating effect on the confinement properties of thermal
plasma and charged fusion products [8,9], while significant
losses could be detrimental. It is therefore a crucial issue to
understand the behavior of the coupled staircase-avalanching
system and the way the avalanches may be contained within
the steps of the barriers.

Although the plasma staircase is a relatively new topic
for fusion, it already enjoys an exciting history behind: The
phenomenon was discovered experimentally [2] on the Tore
Supra tokamak following its very precise theoretical pre-
diction in Ref. [1], a rare, classic circumstance when the
discovery is made au bout de sa plume, if the celebrated art
phrase due to Arago [10] is appropriate here. At the time
this paper was being written, the natural tendency of L-mode
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FIG. 1. A detail of the plasma staircase in a flux-driven gyroki-
netic computation using the GYSELA code [5]. The plasma parameters
mimic those of the Tore Supra shot No. 45 511 [2]. The jet zonal
flows are thick, nearly vertical bands slightly inclined from bottom
right to upper left. We have used color to depict the shear of the
E × B flow: The color scale is expressed in ion cyclotron frequency
units, with the color legend summarized on the right-hand side of the
figure [blue (light gray) signifies positive values of the shear, and
dark (brownish) signifies negative values]. At the sharp transition
between the colors [from blue (light gray) to dark] the shear is
vanishing (i.e., the flow has an extremum). The flat areas between the
jets have mixed color. The avalanches are thin, fine-scale structures
(brushlike) elongated in radial direction. Concerning the units, “a” is
the tokamak minor radius, “cs” is the ion acoustic speed, and ρ is the
dimensionless radial coordinate.

plasma to generate staircase structures proves to be an estab-
lished fact [3,4], it has been confirmed computationally using
different numerical codes [11–16]; discussed theoretically,
especially invoking flux-gradient time delay, flux landscape
bistability or wave trapping [17–22]; and observed experimen-
tally other than on Tore Supra also on DIII-D [16]; KSTAR
[23]; and lately in HL-2A L-mode discharges [24].

Our purpose here is to describe a theoretical framework,
whose mathematical foundations have been spelled out in
Refs. [25–28], concerning the behavior of the staircase system
near a marginally stable state, where the event-size distri-
bution of the avalanches might be obtained using general
arguments, but where nevertheless known approaches based
on the assumptions of locality and next-neighborlike inter-
actions do not apply. The key element to our model is the
concept of nonlinear Schrödinger equation (NLSE) with sub-
quadratic power nonlinearity [26,28], based on which we
could demonstrate the existence of an attracting steady state

for the coupled avalanche-jet zonal flow system, and to predict
the statistical characteristics of this state. The results of this
analysis strongly suggest that the plasma staircase operates
as a complex system in a self-organized critical state (SOC)
[29,30]. In general, we could argue that NLSE with sub-
quadratic power nonlinearity offers a fertile basis to study
the self-organization phenomena involving SOC, due to the
nonlinear twists it carries.

The main practical result is that the event-size distribution
contains an asymptotic “fat” power-law tail describing the sig-
nificant likelihood of extreme avalanches. The rate of decay of
the power law is found, however, to be inconsistent with famil-
iar models of avalanche transport based on sand piles and their
modifications [29–32], suggesting that the coupled avalanche-
zonal flow system works on different organizing principles.
Aside from answering a long open question concerning the
localization-delocalization of plasma avalanches [3,7], the un-
derstanding of these principles may be of added interest, as
it introduces an approach to study the self-organization of
systems with many interacting degrees of freedom.

The paper is organized as follows. We formulate the NLSE
model first (Sec. II), followed by a demonstration that this
model leads directly to the white Lévy noise, and to a Lévy
fractional Fokker-Planck equation (FFPE) for particle trans-
port in the radial direction (Sec. III). Both test particles and
a self-consistent transport model are considered. An anxious
reader willing to proceed directly to FFPE may skip the
derivation of dynamical Eq. (20) beginning from Eq. (8). The
steady-state solutions of FFPE are obtained in Sec. IV for
both small and large wave numbers. In Sec. V we derive
the event-size distribution of avalanches in vicinity of the
steady state. Also in Sec. V we validate results using flux-
driven gyrokinetics and address the statistical case of extreme
avalanches based on the notion of SOC. We have collected our
conclusions in Sec. VI. For the reader’s convenience we left
to the Appendix a derivation of FFPE for Markov stochastic
processes with nonlocal kernel, which is a theory problem on
its own.

II. NLSE WITH SUBQUADRATIC POWER NONLINEARITY

We assume that the jet zonal flows are so narrow and
concentrated that one might speak about their spatially local-
ized positions in the direction of the tokamak minor radius
(see Fig. 1). In other words, the radial widths of the jets are
taken to be much thinner than the spacing between them.
This condition is generally very well satisfied in the plasma
L-mode [3,4]. With this implication in mind, let us assign
to each jet a radial position coordinate j, then consider the
jets in the poloidal cross section, neglecting eventual toroidal
drifts [see Figs. 2(a) and 2(c)]. In this cross section, the
jets will be represented by closed contours along which the
flow is (almost) periodic. The period of the flow is defined
as Tj = l j/uE , where uE = |E × B|/B2 is the familiar E × B
velocity, and l j is the length of the contour. We consider
each periodic flow as a nonlinear oscillator, characterized by
the nonlinear frequency ω j = 2π/Tj and the associated wave
number k j = 2π/l j . In this interpretation, the staircase is none
other than a wave packet of coupled nonlinear oscillators,
each with its own identity parameter j. We envisage this wave
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(a)

(b)
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FIG. 2. (a) A birds-eye view of the jet zonal flows and their
poloidal cross section (poloidal plane is marked with the letter
π ). (b) A schematic representation of the staircase wave function
ψn(t ) = ψ (n, t ). Vertical lines mimic the eigenfunctions of the linear
problem φn,m. (c) The discrete structure of jet zonal flows at the short
view and the definition of the position coordinate j. The distance
between the jets (velocity extrema) is 	 and is estimated as the
Rhines length for electrostatic drift-wave turbulence, i.e., 	 ∼ 	Rh

(Sec. IV D). The radial position is tracked by the variable n, which
also characterizes the energy spectrum of the staircase dynamical
system under the NLSE approximation. Top: U-turn arrows illustrate
the avalanches confined between the staircase steps.

packet being broad enough in that it contains a large number
of the individual jets. The coupling between the jets is pro-
vided by their nonlinear interaction, which is mediated by the
avalanches. In a self-regulating, nonlinear plasma system, that
would be a rather efficient mechanism since the avalanches,
absorbed by the transport barriers, deliver momentum to the
poloidal flows (via the turbulent Reynolds stress), which in
turn enhances the strength of the barriers [33].

A. Description of the model

To characterize, from a most general perspective, the
nonlinear dynamics of a wave packet of coupled nonlinear
oscillators, the jet zonal flows, one might invoke the analyt-
ical scheme of the nonlinear Schrödinger equation, or NLSE
[34,35], also known as the Gross-Pitaevskii equation [36,37].
The time-dependent Gross-Pitaevskii equation describes the
dynamics of initially trapped Bose-Einstein condensates and
is shown to be an exact equation in the dilute limit [38,39].
For many-body bosonic systems, the NLSE is a mean-field
approximation where the term proportional to the probability
density |ψ |2 represents the interaction between the atoms.

Next, we argue (and confirm through results) that the self-
organization phenomena pertaining to the plasma staircase
require a modified form of NLSE in which the probability
density |ψ |2 is replaced by a subquadratic power nonlinear-
ity |ψ |2s, where 0 < s < 1 is a power exponent and tunes
the nonlinear interaction mechanism. This modified form of
NLSE has been considered in Ref. [28] for the destruction

of Anderson localization in quantum nonlinear Schrödinger
lattices with disorder.

In the nonlinear Anderson problem the subquadratic non-
linearity arises because the nonlinear interactions among the
waves might be subject to a competing nonlocal ordering
(such as, for instance, the stripy ordering [40,41], etc.), lead-
ing the constituent linear waves to interfere with themselves
[26,28]. This destructive self-interference might be either
complete, eliminating the dependence on the modulus field
(for s = 0), or partial (for 0 < s < 1), and is parametrized
by the subquadratic power 2s < 2. No competing order-
ing (no self-interference) is assumed to take place for the
quadratic power nonlinearity, with s = 1. In magnetically
confined fusion plasma, a structural disorder similar to the
disorder in the Anderson problem might occur thanks to the
presence of a low-frequency, electrostatic micro-turbulence
(e.g., Refs. [42–45], Ref. [46] for review); in the meantime,
the competing nonlocal ordering could be associated with
spontaneous occurrence of the jet zonal flows [47] or stair-
case self-organization [2–4], suggesting a similar dynamical
description. Note that the drift waves are simultaneously a
source for the disorder and the driving mechanism for the
zonal flows. With these implications in mind, we introduce
a discrete NLSE of the form

ih̄
∂ψn

∂t
= Enψn + β|ψn|2sψn + V (ψn+1 + ψn−1), (1)

where ψn = ψ (n, t ) is a complex wave function and describes
the plasma staircase as a compound system of coupled nonlin-
ear oscillators; n is the discrete coordinate and is associated
with the radial direction in a tokamak; β characterizes the
strength of nonlinearity (below for definiteness β > 0); 0 <

s < 1 absorbs the effect of competing ordering on wave-wave
interactions; V is transition matrix element; En are onsite
energies; and the total probability is normalized to unity:∑

n |ψn|2 = 1. In what follows, h̄ = 1 for simplicity; thus, the
energy coincides with the frequency. For β → 0, the stair-
case decays into a set of loosely connected eigenstates, i.e.,
(almost) noninteracting jet flows, whose eigenfunctions are
exponentially localized, the localization length being much
smaller than the spacing between the jets. Note that we have
introduced n instead of j to be the position coordinate in the
NLSE model [see Figs. 2(b) and 2(c)]. A reason for that is
that n bears a somewhat different implication in that it directly
characterizes the energy spectrum of the staircase system un-
der the NLSE approximation. We assume that the spectrum
En is discrete and dense, for the positions of the jet zonal
flows must correspond to rational values of the tokamak safety
factor. Note that the safety factor [48] is usually a function of
radius, implying that the energy spectrum En might be actually
very broad, consistently with the above assumptions.

The background theory for NLSE (1) refers to wave pro-
cesses with competition between dispersion, randomness,
and nonlinearity (e.g., Refs. [49–55]). A large body of
work promoting a reduced equation with quadratic power
nonlinearity (s = 1) is documented in Refs. [56–65]. A gener-
alization to subquadratic powers, with s < 1, was formulated
in Refs. [26–28]. Superquadratic nonlinearities have been
considered in Refs. [25–27]. Formally, the model in Eq. (1)
coincides with the NLSE model introduced in Ref. [28], but
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with that simplifying element that we do not assume that
the field ψn is quantum. That is, our ψn = ψ (n, t ) is just a
complex wave function, not an operator wave function as in
Ref. [28] (as well as in Refs. [64,66], where the quantum
case s = 1 was analyzed). The general properties of a class
of nonlinear Schrödinger equations with both subquadratic
and superquadratic nonlinearities were reviewed in Ref. [67],
where one also finds conditions for existence, uniqueness, and
stability of solitary wave solutions, along with conditions for
blowup and global existence for the Cauchy problem.

B. Expanding the staircase wave function over the
eigenfunctions of the linear problem

Focusing on the nonlinear dynamics of the plasma stair-
case, because the jet zonal flows are strongly localized around
their radial positions j, it is convenient to expand the wave
function ψn over the eigenfunctions of the corresponding
linear problem that would result if the oscillators in NLSE
(1) were decoupled from each other. The Hamiltonian of the
linear problem is obtained by letting β → 0 in Eq. (1), leading
to

ĤLψn = Enψn + V (ψn+1 + ψn−1), (2)

which is easily seen to be the familiar Anderson Hamilto-
nian in the tight-binding approximation [68] (except that we
do not assume that the energies En are necessarily random).
The eigenfunctions of the linear problem φn,k are defined
by ĤLφn,k = ωkφn,k , where ωk are the respective eigenfre-
quencies, and k = 0,±1,±2, . . . is an integer counter. We
argue that the functions φn,k form a full basis of orthogonal
eigenfunctions and as such might be chosen as the basis
functions. The orthogonality of φn,k is a direct consequence
of strong spatial localization of the staircase jets, on the one
hand, and of the discrete character of NLSE (1), on the other
hand. Indeed it is found in direct numerical simulations of
the discrete NLSE with arbitrary power nonlinearity [69] that
the discrete equation exhibits localization in regimes where
blowup cannot occur in the continuum system. From general
studies it follows that the blowup occurs for s � 2, whereas
the regimes with s < 2 are unconditionally stable supporting
localization [67,69]. The latter include the subquadratic power
case s < 1, of main interest here. Without loss in generality,
we may consider that the eigenfunctions φn,m are normalized
to unity, then them being mutually orthogonal would imply∑

n

φ∗
n,mφn,k = δm,k, (3)

where δm,k is Kronecker’s delta, and the star denotes complex
conjugate. Complementing the discrete character of NLSE (1)
is again the argument that the jet zonal flows are situated
at the rational values of the tokamak safety factor. Because
rational numbers are everywhere dense in real numbers, the
allowed radial positions of the staircase jets are everywhere
dense in the position coordinate j (and hence are everywhere
dense in the tokamak safety factor, which is a function of j).
Then being dense in the safety factor they would correspond
to a set of functions φn,k that form a full basis of orthogonal
eigenstates (similarly to the Anderson problem for which the
full basis is known to exist and is well defined [70]). To this

end, using the functions φn,k as basis functions, we might now
expand

ψn =
∑

m

σm(t )φn,m, (4)

where σm(t ) are time-dependent complex amplitudes, and
m = 0,±1,±2, . . . is an integer counter.

C. Dynamical equations for the complex amplitudes σm(t )

We now obtain a set of dynamical equations for σm(t ). If
s = 1, then the task is relatively straightforward. One needs to
substitute Eq. (4) into NLSE (1), multiply both sides by φ∗

n,k ,
and then sum over n, using the orthonormality condition in
Eq. (3). The result is

iσ̇k − ωkσk = β
∑

m1,m2,m3

Vk,m1,m2,m3σm1σ
∗
m2

σm3 , (5)

where ωk are the eigenfrequencies of the linear problem; the
coefficients

Vk,m1,m2,m3 =
∑

n

φ∗
n,kφn,m1φ

∗
n,m2

φn,m3 (6)

characterize the overlap structure of the nonlinear field; and
we have used an overdot to denote time differentiation.

If s < 1, then likewise a simple procedure does not exist
(attempting to rise a series expansion resulting from ψnψ

∗
n

into a fractional power leads one to fight with a chimera). Even
so, here we might use a different tack already nailed down in
Ref. [28], using the formalism of Diophantine equations and
the notion of the backbone map, introduced in Ref. [26]. The
procedure is as follows.

First of all, we need to discuss what is to be meant by the
power 2s of the modulus function |ψn|, and we define this
power as the power s of the probability density |ψn|2, i.e.,
|ψn|2s ≡ (|ψn|2)s. Using Eq. (4), we have

|ψn|2s = (ψnψ
∗
n )s =

[ ∑
m1,m2

σm1σ
∗
m2

φn,m1φ
∗
n,m2

]s

. (7)

Mathematically, it is convenient to consider the power nonlin-
earity on the right-hand side of Eq. (7) as a functional map

F̂s : {φn,m} →
[ ∑

m1,m2

σm1σ
∗
m2

φn,m1φ
∗
n,m2

]s

(8)

from the complex vector field {φn,m} into the scalar field
(|ψn|2)s. It is noticed that the map in Eq. (8) is positive
definite, and that it contains a self-affine character in it, such
that by stretching the basis vectors by a stretch factor λ the
value of F̂s is renormalized (multiplied by |λ|2s). We have,
accordingly,

F̂s{λφn,m} = |λ|2sF̂s{φn,m}. (9)
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1. Multinomial expansion and Diophantine equations
in the leading order

For any non-negative integer s, the power nonlinearity in
Eq. (7) can be expanded in a multinomial series [71] to give

|ψn|2s =
∑

∑
qm1 ,m2 =s

C ...qm1 ,m2
s

∏
m1,m2

[ξm1,m2 ]qm1 ,m2 , (10)

where

C ...qm1 ,m2
s = s!∏

m1,m2
[qm1,m2 !]

(11)

is a multinomial coefficient, the sign ! indicates the factorial
operation, and we have denoted

ξm1,m2 = σm1σ
∗
m2

φn,m1φ
∗
n,m2

(12)

for simplicity. The sum in Eq. (10) is taken over all combi-
nations of non-negative integer exponents qm1,m2 such that the
sum of all qm1,m2 is s, i.e.,∑

m1,m2

qm1,m2 = s. (13)

An analytic continuation of Eqs. (10) and (11) to noninteger
values of s can be obtained by extending the factorial function
to the gamma function using m! = �(m + 1) and simultane-
ously relaxing the condition that the exponents in Eq. (13) are
integer. The latter generalization might be achieved iteratively
starting from a situation according to which there is only one
such exponent to be accounted for, then gradually increasing
the number of the fractional-valued exponents in Eq. (13),
aiming to assess their overall effect on the final expansion.

So in the first iteration Eq. (13) can only be satisfied if the
fractional exponent that we are looking at (which is the only
fractional exponent in this case) is equal to s exactly (because
the sum of the remaining integer-valued exponents cannot add
up to a fractional value). Then, Eq. (13) demands that the sum
of the remaining (integer-valued) exponents is zero, and this is
an exact result. Assume it is the exponent qi, j which takes the
fractional value, i.e., qm1,m2 = s for some m1 = i and m2 = j.
Then, from Eq. (13) one infers∑

m1 �=i,m2 �= j

qm1,m2 = 0. (14)

Equation (14) is a Diophantine equation, which is a poly-
nomial equation for which only integer solutions are sought.
Because the exponents qm1,m2 cannot take negative values, the
only way Eq. (14) can be satisfied is by setting all the expo-
nents qm1,m2 to zero (m1 �= i, m2 �= j; the exponent for which
m1 = i and m2 = j is equal to s, i.e., qi, j = s). It is understood
that the polynomial form in Eq. (10) is homogeneous in that
the sum of the exponents in each term is always s, as Eq. (13)
shows. On the other hand, the property of the homogeneity
implies that any term of the polynomial in Eq. (10) is in
some sense representative of the whole. That means that there
is no particular reason for which to prefer the very specific
setting m1 = i, m2 = j against other settings when choosing
the fractional-valued exponent, qm1,m2 . The net result is that
the condition qi, j = s could be satisfied in a countable number
of ways within the range of variation of the parameters m1 and
m2. Clearly, all such combinations would equally contribute to

the series expansion in Eq. (10). Then to account for these
contributions one has to sum over the indices m1 and m2.
Eventually, in the first iteration, Eq. (10) is simplified to

|ψn|2s =
∑

m1,m2

[ξm1,m2 ]s, (15)

where we have considered that

C ...qi, j
s = �(s + 1)

�(qi, j + 1)
= �(s + 1)

�(s + 1)
= 1. (16)

Substituting ξm1,m2 with the aid of Eq. (12), from Eq. (15) one
arrives at

|ψn|2s =
∑

m1,m2

σ s
m1

σ ∗s
m2

φs
n,m1

φ∗s
n,m2

. (17)

2. Diophantine equations in the second and higher orders

Turning to the second iteration, we assume that Eq. (13)
could be satisfied in such a way that the fractional exponents
are just two (and only two), while any other exponents are
given by the integer numbers. All these exponents must, more-
over, be non-negative to ensure good behavior in the infrared
limit when the interaction amplitudes vanish. Because s < 1,
the only possibility is that the sum of the fractional exponents
is s, while the sum of the integer-valued exponents is zero.
Denoting the fractional exponents as qi1, j1 and qi2, j2 , one finds
that Eq. (13) is split into two separate equations, that is,
qi1, j1 + qi2, j2 = s and the Diophantine equation∑

m1 �=i1,i2

∑
m2 �= j1, j2

qm1,m2 = 0, (18)

from which it is deduced that all integer-valued exponents are
equal to zero, i.e., qm1,m2 = 0 for m1 �= i1, i2 and m2 �= j1, j2.
That means that the only nonvanishing exponents that would
meaningfully contribute to the product

∏
m1,m2

on the right-
hand side of Eq. (10) are those which take the fractional
values, i.e., the exponents qi1, j1 and qi2, j2 . It is understood that
the corresponding wave process in Eq. (10) requires nonlinear
coupling among four waves, in contrast to only two waves in
the first iteration, and is represented by a term proportional
to [ξi1, j1 ]qi1 , j1 [ξi2, j2 ]qi2 , j2 . If we adopt, for the reasons of formal
ordering, that the coupling probability between two waves in
Eq. (10) is characterized by a small parameter ε 	 1, then
the two-wave process in the first iteration has the order O(ε),
and the four-wave process in the second iteration has the
order O(ε2). More generally, in the lth iteration, a nonlinear
coupling among as many as 2l � 2 waves is required, leading
to a nonlinear process of order O(εl ). The higher the order is,
the less probable the corresponding nonlinear process would
be (thanks to the exponential decay of the factor εl with
increasing l). Confident on this exponentially fast decay, we
might arguably propose that the NLSE dynamics in Eq. (1)
are governed by the coupling processes in the first order over
ε, mathematically corresponding to a situation when the frac-
tional exponent in Eq. (13) is just one and only one.

The net result is that the original NLSE model in Eq. (1)
could be simplified, and a reduced model based on Eq. (17)
might instead be advanced without losing the essential physics
of nonlinear interaction. We note in passing that the reduced
model in Eq. (17) is consistent with the idea that NLSE (1)
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is by itself an approximation, according to which the nonlin-
earity |ψn|2s occurs as a consequence of the coupling process
|ψn|2s = |ψn|s × |ψn|s in the first order. For s = 1, this ap-
proximation is actually quite known in physics [35,52,59].

3. Backbone map

Similarly to Eq. (8) above, the model nonlinearity in
Eq. (17) can be considered as a homogeneous map

F̂′
s : {φn,m} →

∑
m1,m2

σ s
m1

σ ∗s
m2

φs
n,m1

φ∗s
n,m2

(19)

from the complex vector field {φn,m} into a scalar field in
Eq. (19). The map in Eq. (19) was introduced for classical
waves in Refs. [26,27] and later generalized to quantum waves
in Ref. [28]. Through these studies it had received a spe-
cial name, the “backbone” map, owing to the very specific
reductions it offered in the graph space. It was argued that
the backbone map preserved (despite the simplifications it
carried) if only the sought dynamical properties of the original
NLSE model (1) as well as the algebraic structure of F̂s in
the sense of Eq. (9). Note that the maps F̂s and F̂′

s are both
self-affine, with the same renormalization property already
included in Eq. (9). That means that the backbone-reduced dy-
namical model in Eq. (17) is characterized by the same scaling
behavior of fluctuating observable quantities, and would lead
to the same scaling laws for transport, as the original model in
Eq. (1).

In view of the above, our further analysis will be based on
the backbone-reduced NLSE, which is obtained by replacing
the original functional map F̂s by the backbone map F′

s for s <

1. Note that F̂s coincides with its backbone in the limit s →
1. This property illustrates the particularity of the quadratic
power case versus arbitrary power nonlinearity and has been
already discussed in Ref. [26].

Multiplying both sides of the backbone-reduced NLSE by
φ∗

n,k and summing over n with the aid of the orthonormality
condition in Eq. (3), after simple algebra one obtains, sim-
ilarly to Eq. (5), the following dynamical equations for the
complex amplitudes σk (t ):

iσ̇k − ωkσk = β
∑

m1,m2,m3

Vk,m1,m2,m3σ
s
m1

σ ∗s
m2

σm3 , (20)

where the new coefficients Vk,m1,m2,m3 are given by [cf. Eq. (6)]

Vk,m1,m2,m3 =
∑

n

φ∗
n,kφ

s
n,m1

φ∗s
n,m2

φn,m3 . (21)

Equations (20) correspond to a system of coupled nonlinear
oscillators with the Hamiltonian

Ĥ = Ĥ0 + Ĥint, Ĥ0 =
∑

k

ωkσ
∗
k σk, (22)

Ĥint = β

1 + s

∑
k,m1,m2,m3

Vk,m1,m2,m3σ
∗
k σ s

m1
σ ∗s

m2
σm3 . (23)

Here, Ĥ0 is the Hamiltonian of noninteracting harmonic os-
cillators and Ĥint is the interaction Hamiltonian. Note that
Ĥint includes self-interactions through the diagonal elements

Vk,k,k,k . Each nonlinear oscillator with the Hamiltonian

ĥk = ωkσ
∗
k σk + β

1 + s
Vk,k,k,kσ

∗
k σ s

k σ
∗s
k σk (24)

and the equation of motion

iσ̇k − ωkσk − βVk,k,k,kσ
s
k σ

∗s
k σk = 0 (25)

represents one nonlinear eigenstate in the system: The eigen-
states are identified by their wave number k, unperturbed
frequency ωk , the degree of self-interference s, and the
nonlinear frequency shift �ωk = βVk,k,k,kσ

s
k σ

∗s
k . Nondiago-

nal elements Vk,m1,m2,m3 characterize couplings between each
four eigenstates with wave numbers k, m1, m2, and m3. Note
that the amplitudes raised to the fractional power 0 < s < 1
are those resulting from the self-interference processes in
the presence of competing ordering. Setting s → 1, from
Eqs. (20) and (21) one recovers the dynamical model in the
quadratic power case, i.e., nonlinear Eq. (5) with the coeffi-
cients in Eq. (6).

It is understood that the excitation of a new eigenstate is
none other than the spreading of the wave field in wave num-
ber space. Resonances occur between the eigenfrequencies ωk

and the frequencies posed by the nonlinear interaction terms.
From the interaction Hamiltonian in Eq. (23), the resonance
condition is (Ref. [72])

ωk = sωm1 − sωm2 + ωm3 . (26)

For s = 0 (linear model), the resonance condition in Eq. (26)
reduces to ωk = ωm3 and is trivial, while for s = 1 (quadratic
NLSE) it leads directly to Eq. (10) of Ref. [63], yielding
ωk = ωm1 − ωm2 + ωm3 . When the resonances happen to over-
lap, the phase trajectories start to switch from one resonance
to another on essentially a random basis. As Chirikov [73]
realized, any overlap of resonances would introduce a random
ingredient to dynamics together with some transport in phase
space. Applying this argument to NLSE (1), one might expect
that a transition to chaos would cause the nonlinear field to
spread along the domains of chaotic motion. The analysis of
Refs. [26–28] shows, however, that an unlimited spreading
of the classical field is only possible for the quadratic power
nonlinearity, with s = 1, for which the topology of the overlap
is such that there might exist a connected escape path to infin-
ity that lies everywhere within the chaotic domain; while for
s < 1 an escape to infinity would be interrupted by multiple
transitions to regular dynamics, so the analog escape path is
disconnected (a purist might think of it as a Cantor set of the
Hausdorff dimension s); as a result, an unlimited spreading
does not really occur unless quantum tunneling effects are
included permitting to overcome the discontinuities. We shall
return to this point later on in Sec. V F, where the possibility
that the staircase transport barriers might diffuse in radial
direction in a tokamak is addressed.

III. LÉVY FRACTIONAL FOKKER-PLANCK EQUATION

The couplings between the oscillators in Eq. (20) lead
directly to the white Lévy noise, and to a superdiffusive
radial transport of plasma particles with plasma avalanches.
The demonstration involves a few steps. The first one is to
ascertain that the nonlinear interactions, included in Eq. (20),
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result in a chaotic behavior of the oscillators. This is relatively
straightforward since all that we need to demonstrate at this
point is that the so-called stochasticity parameter [74–76] is
large. We proceed as follows.

A. Stochasticity parameter K

If the nonlinear field is spread over �n � 1 states, then the
conservation of the total probability∑

n

ψ∗
n ψn �

∫
|ψn|2d�n = 1 (27)

would imply |ψn|2 � 1/�n. In NLSE system (1) the non-
linear frequency shift behaves with the probability density
as �ωNL = β(|ψn|2)s and for �n � 1 will scale with the
number of states in accordance with �ωNL � β/(�n)s. On
the other hand, the distance between the states δω goes to
zero as ∝ 1/�n, provided just that the wave-number space
is homogeneous. The stochasticity parameter K � �ωNL/δω

(often referred to as the Chirikov overlap parameter [77])
shows by how much the nonlinear frequency shift is greater
than the distance between the resonances (large K values
imply that the resonances strongly overlap, leading to chaotic
dynamics [73,74]). Note that the areas of strong resonance
overlap might, in general, be highly structured and strongly
shaped, that is, while the condition K � 1 characterizes the
density of the overlap, it says nothing about the way the
overlapping resonances are folded in the embedding space. As
a result, the chaotic motions might occupy only a fraction of
the available phase space, with complex internal organization
that might be fractal [75,76]. Using �ωNL � β/(�n)s and
δω � 1/�n, one gets

K � β(�n)1−s � 1. (28)

One sees that the K value generally depends on the number
of states (except for the quadratic power case s = 1). If s < 1,
then the condition K � 1 is always satisfied, provided just
that the number of states �n is large enough, i.e., (�n)1−s �
1/β. If s = 1, then K � 1 demands that the nonlinearity pa-
rameter β be large by itself (independently of �n). To this
end, if one requires that the wave packet in NLSE (1) is
so broad that the condition β(�n)1−s � 1 is satisfied at the
time t = 0, then one might argue that the consequent NLSE
dynamics will be chaotic for all t > 0. Better, the condition
K � 1 will, for s < 1, be even improved through dynamics
(because the entropy growth would imply that the number
of states is a nondecreasing function of t). The net result is
that the chaotic property is self-improving for s < 1 and is
self-preserving (K does not depend on t) for s = 1. So this
property will be naturally there either thanks to the initial
condition β(�n)1−s � 1 for t = 0 and s < 1, or following the
setting β � 1 for s = 1.

B. Self-affinity of the backbone

The next step would be to take a careful look of the func-
tional map in Eq. (8) [and of its backbone-reduced counterpart
in Eq. (19)], keeping in mind the self-affinity property in
Eq. (9). Indeed, the scaling in Eq. (9) shows that the inter-
actions are self-similar and can be characterized by a fractal

measure d f = 2s < 2 (for the moment we leave it up to the
reader how to interpret the wording “fractal measure”). This,
together with the fact that the behavior is chaotic [because the
Chirikov parameter, as we have already seen, is large thanks
to Eq. (28)], would tell us that the couplings between the
oscillators in Eq. (20) generate a stochastic process with frac-
tal organization, posed by the nonlinear interactions. Assume
the nonlinear dynamics are such that there is a nonequilibrium
steady state attracting phase-space trajectories, and that the
oscillators in Eq. (20) have evolved into a vicinity of this
state. The fact that such a state might at all exist is highly
nontrivial, however, we can hypothesize its existence anyway,
and try to put in perspective the consequences. One such
consequence is that the coupling process must be stationary,
at least, in the absence of large deviations. Then by being both
stochastic and stationary this process could be categorized as
a random “noise” process in the limit t → +∞ [78] (as an
alternative to a “motion” process). This noise process must,
moreover, be stable [79] (because it is generated in vicinity
of an attracting stable state). But then there is only one such
process, which is simultaneously (i) stable, (ii) stationary,
(iii) stochastic, and (iv) leads to self-similar fluctuations: the
white Lévy noise. By white Lévy noise we mean a stationary
random process whose time integral is a symmetric μ-stable
Lévy flight process of index μ = 2s [80,81]. Note that the
Lévy flight trajectory can be assigned a Hausdorff (fractal)
measure d f = μ = 2s [79,80]. While the existence of an at-
tracting stable state in the system (20) will be a matter of the
forthcoming discussion (see Sec. V E), here we nail down our
second point, that is, that the nonlinear couplings between the
oscillators in Eq. (20) are such that they naturally generate
a white Lévy stable noise in vicinity of their attractor. Note
that the power s being smaller than 1 matters in this regard
since it produces a whole family of stochastic noise processes
parametrized by the index μ = 2s.

C. White noise acting on plasma particles

Our third (and final) point concerns the fact that the white
Lévy noise, whose origin, as we argue, is found in the nonlin-
ear interactions between the coupled nonlinear oscillators in
Eq. (20), can naturally act on plasma particles and by doing
so can drive superdiffusive transport of these particles in the
radial direction in a tokamak. It is understood that NLSE (1)
does not include, as it is, any “plasma particles” and that the
introduction of the dynamical model in Eq. (1) has the only
scope of unveiling the mechanism of the noise. This said,
we are ready to take the next step and approach the coupled
particle-jet oscillator system. The task is twofold and includes
two levels of description: test particles and a self-consistent
kinetic model.

1. Test particles

Focusing on the test particles first, we consider a simple
system of Langevin equations [78,79] for the microscopic mo-
tion of the particles under the action of a stochastic (noiselike)
force, i.e.,

dn/dt = v; dv/dt = −ηv + Fμ(t ), (29)
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where η is the plasma viscosity, n is the radial coordinate, v is
the particle velocity along n, and Fμ(t ) denotes the Langevin
source. Based on the above reasoning (Sec. III B), we asso-
ciate the Langevin source Fμ(t ) with the white Lévy noise of
index μ. As is well known [80–86], the Langevin equation
(29) with the white Lévy noise Fμ(t ) leads directly to a Lévy
fractional diffusion equation

∂

∂t
f (n, t ) = Dμ

∂μ

∂|n|μ f (n, t ), (30)

where f = f (n, t ) is the probability density to find a test
particle at point n at time t ;

∂μ

∂|n|μ f (n, t ) = 1

�μ

∂2

∂n2

∫ +∞

−∞

f (n′, t )

|n − n′|μ−1
dn′ (31)

is the Riesz fractional derivative of order 1 < μ < 2 (for the
various aspects of fractional differentiation and integration
see, e.g., Refs. [87,88]; for the Cauchy special case μ = 1,
see Refs. [81,82,89]); �μ is the normalization parameter and
is given by �μ = −2 cos(πμ/2)�(2 − μ); and Dμ is the in-
tensity of the noise [see Eq. (A10) in the Appendix]. The fact
that we have preferred to work with the interval 1 < μ < 2
(i.e., 1

2 < s < 1) is motivated by the understanding that the
trajectory of an idealized test particle performing a Lévy flight
must be a continuous curve (i.e., the Hausdorff dimension
d f = μ > 1). The case 0 < μ < 1 is mathematically similar,
however, we do not consider it for classical particles.

In order to understand the route to particle dynamics, let
us reiterate on the above proposal that the noise term Fμ(t ) is
generated through nonlinear interactions between the coupled
nonlinear oscillators in Eq. (20). That is, the nonlinear cou-
plings in Eq. (20) (vibrations of the staircase jets) produce a
noisy background in L-mode plasma, which is perceived by
the plasma particles through the scattering on plasma waves.
For s < 1 (nonlocal ordering present), these scattering pro-
cesses could actually be very hard (the Langevin source is of
the Lévy type), leading to long-range jumps along the coordi-
nate n [see Appendix, Eq. (A11)], and to the Lévy fractional
kinetic equation (30) for the probability density. Note that
the quasilinear transport paradigm [74,75,77] does not really
apply here (if not for s = 1 exactly). From this picture, the
noise term in the Langevin equation (29) is obtained directly
from NLSE (1) by summing over k the singular “voices” from
all oscillators in Eq. (20). This yields

Fμ(t ) = β

2
�wp

[ ∑
k,m1,m2,m3

Vk,m1,m2,m3σ
s
m1

σ ∗s
m2

σm3 + c.c.

]
,

(32)
where c.c. means complex conjugation (needed to ensure that
we are dealing with real quantities), and �wp is a coefficient,
which characterizes the efficiency of wave-particle interac-
tions. So the claim is that the sum in Eq. (32) produces a white
Lévy noise for s < 1, and a white Brownian noise for s = 1,
provided just that the stochasticity condition in Eq. (28) holds
(i.e., the wave packet is broad enough) and that the system of
coupled nonlinear oscillators (20) is found in vicinity of an
attracting stable state (Sec. III B). In this way of thinking, we
could trace the origin of Lévy flights (and, more generally, the
origin of nonlocal transport of particles in the radial direction)

FIG. 3. The comb model of the plasma staircase. The potential
function �(n) is modeled by a power-law dependence �(�n) ∝
|�n|α at each step of the periodic staircase structure. In a simplified
version of the model the distance between the steps 	 is assumed to
be so long that one may extend the power-law dependence �(n) ∝
nα , good for 0 < n � 	, virtually to infinity. There is an upper
threshold on �(n) above which the potential function does not affect
the avalanches significantly, and this is set to be at �max = �(	).
We assume �max to be large compared with the characteristic kinetic
energy of the avalanches. Similarly to Fig. 2, the U-turn arrows rep-
resent the avalanches confined between the staircase steps. Adapted
from Ref. [7].

back to nonlinear interactions among the eigenstates in NLSE
system (1). The subquadratic (s < 1) power nonlinearity is
very important in this regard as it appears to be the wanted
type of nonlinearity that leads directly to the white Lévy noise
(as an alternative to the Brownian noise), and to the Riesz
derivative in the fractional diffusion equation (30). Note that
the sum in Eq. (32) goes over all combinations of the wave
numbers k, m1, m2, and m3, and in this sense includes both
the next-neighbor and far-distant couplings. Were the summa-
tion in Eq. (32) reduced to the next-neighbor couplings only,
then a different description would result [63] corresponding to
a pseudochaotic dynamics [76,90].

2. Self-consistent model

Turning, next, to a self-consistent setting, one must amend
the diffusion equation (30) with a potential function due to the
staircase transport barriers. This task has been already con-
sidered in the framework of the “comb” model (see Ref. [7])
and leads to a self-consistent Lévy fractional Fokker-Planck
equation (FFPE)

∂

∂t
f (n, t ) =

[
Dμ

∂μ

∂|n|μ + 1

η

∂

∂n
�′(n)

]
f (n, t ), (33)

where η is the plasma viscosity; �′(n) = d�(n)/dn; and
�(n) is the comb potential mimicking the staircase structure
[so −�′(n) is the potential force along n arising from the
presence of the barriers; this force competes with the noiselike
force Fμ(t ) driving the Lévy flights; see Fig. 3].

The main idea behind the comb model is that the jet
zonal flows and transport avalanches form a strongly coupled
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dynamical system and can exchange momentum, entropy, and
energy via the turbulent Reynolds stress. So the avalanches
can naturally enhance or weaken the barriers, which would
stabilize, then, at the edge of the localization-delocalization
threshold. The edge property, in its turn, dictates a very spe-
cific shape to the �(n) dependence, which could be predicted
at the delocalization threshold using general arguments [7].
According to the model, the avalanches are coherent struc-
tures, which grow to macroscopically noted sizes through
the complex processes of mode coupling and the buildup of
correlations (the reader might refer to, e.g., the analysis of
Refs. [86,91], where the occurrence of plasma avalanches was
pursued starting from the paradigmatic Hasegawa-Wakatani
model of electrostatic drift-wave turbulence [46,92]). While
we do not discuss these processes here, we leave it to a remark
that the origin of coherent structures has been (and still is) an
important theme for tokamak plasma (e.g., Refs. [44,93–95];
references therein).

Somehow the avalanches can propagate radially at su-
personic speeds (that is, much faster than the characteristic
thermal velocities in the bulk plasma) [93,95]. As the
avalanches can trap and convect particles, the resulting ra-
dial motion of these particles will appear as a sequence of
almost instantaneous jumps in the radial direction [44,86].
We associate these jumps with a Lévy flight motion along the
coordinate n and, mathematically, with the Riesz operator in
the self-consistent FFPE (33).

3. Taking a deep breath

It is worth emphasizing that FFPE (33) is formulated for
the radial transport of particles, not waves. Indeed, the trans-
port of waves in a classical (not quantum [28,64]) NLSE (1)
is forbidden by the condition s < 1, and is only allowed for
s = 1 (above a nonzero threshold in β) [26,63]. The impli-
cation is that the plasma staircase is a structurally stable,
robust dynamical system, in which the barriers (jet zonal
flows) cannot diffuse away along the coordinate n (unless
quantum-tunneling effects are introduced [28,64] or the driv-
ing noise process degenerates into a Brownian white noise in
the limit s → 1). It is in fact the nonlinear oscillations of the
staircase jet zonal flows around their equilibrium positions
that, according to our model, are sources of the white Lévy
noise in the medium. These self-consistently generated Lévy
noises act, in their turn, as a driving mechanism for the radial
propagation of plasma particles on Lévy flights, leading to
the Lévy fractional diffusion equation (30). The fact that the
staircase dynamical patterns generate just the Lévy (not Brow-
nian) noises is actually clear from the long-range correlated
nature of the staircase self-organization (accounted for by the
subquadratic power s < 1), and mathematically corresponds
to the inclusion of the far-distant couplings in Eq. (32) (on an
equal footing with the next-neighbor couplings).

Regardless of the staircase implications, FFPE (33) is a
fundamental kinetic equation, which is obtained for many
complex systems with long-range dependence under cer-
tain conditions (Refs. [76,80,81,96] and references therein).
The competition between nonlocality, contained in the Riesz
derivative (31), and nonlinearity, contained in the �(n) de-
pendence, advances the important problem of confined Lévy

flight [82,96], which had been a matter of some attraction in
the literature [7,81]. In the Appendix to this paper, we present,
for the reader’s convenience, a derivation of FFPE (33) for
stochastic Markov chains in the long-wavelength limit [see
Eq. (A18) and its hybrid generalization in Eq. (A23)]. The
derivation is aimed to demonstrate how fractional operators
arise from the microscopic properties to dynamics, and uses
the idea of complex transition probability in reciprocal space
[86] enabling a simple factorization procedure.

D. The issue of nonlocal transport

Theoretically, the issue of nonlocal transport is a challenge
because it violates the Fickian transport paradigm [97,98] that
fluxes at a point are decided by gradients at the same point. In
magnetically confined fusion plasma, the interest in nonlocal
transport was greatly fueled by the need to understand the
behavior of cold pulses [99,100] and the elusive “uphill trans-
port” [101,102], by which one means that, at some specific
regions of the space, the flux may have the same direction
as the gradient. Often the uphill transport is associated with
the transport of voids propagating from the plasma edge in-
ward, while the usual plasma avalanches propagate from the
plasma core outward. Indeed the fractional flux is in general
asymmetric and, for steady states, has a negative (toward the
core) component that enhances confinement and a positive
component that increases toward the edge and leads to poor
confinement [102]. In this work, we do not quite distinguish
between the two components to the transport, and we tacitly
assume that the results to be claimed for the “avalanches”
(e.g., event-size distribution, etc.) equally apply to the neg-
ative component as well. An evidence of nonlocal phenomena
in tokamak plasma was provided by perturbative experiments
[103,104] with plasma edge cooling and heating power mod-
ulation, indicating anomalously fast transport of edge cold
pulses to plasma core, not compatible with major diffusive
timescales. Recent progresses on experimental analysis and
theoretical models of nonlocal transport applied to fusion
plasma are reviewed in Ref. [105].

E. Adding white Brownian noise

In writing FFPE (33) we have assumed that the white Lévy
noise was the only stochastic driving process acting on plasma
particles, and we associated the origin of this noise with
nonlinear interactions between the staircase jet zonal flows,
thought of as a system of coupled nonlinear oscillators in
the backbone approximation. In a realistic jet plasma system,
however, that will not be the only noise process to consider.
For instance, at the small scales, one would naturally hear, in
addition to the Lévy noise in Eq. (32), also a white Brownian
noise due to the Coulomb collisions and other internal fric-
tional processes (e.g., quasilinear scatterings on the plasma
waves, etc. [75,77]). If we were smart enough to include the
Brownian noise already from the outset, we had to introduce,
instead of FFPE (33), a more general kinetic equation (see
Appendix for derivation)

∂

∂t
f (n, t ) =

[
Dμ

∂μ

∂|n|μ + D
∂2

∂n2
+ 1

η

∂

∂n
�′(n)

]
f (n, t ),

(34)
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where D is the diffusion coefficient due to collisional pro-
cesses and is defined as the intensity of the Brownian noise.
Equation (34) is a hybrid kinetic equation, which contains
the nonlocal (Riesz) and collisional (Brownian) diffusion on
essentially an equal footing. We note in passing that the
Brownian noise is the special case of the white Lévy noise
in the limit μ → 2, and it is the only Lévy stable process to
generate finite moments at all orders [76]. Setting μ → 2 in
FFPE (34), one sees that the Riesz term vanishes in virtue of
�μ → +∞, leaving solely the Brownian diffusion behind.

In the applications of nonlocal transport (e.g.,
Refs. [99,103]) it is convenient to think of the Lévy noise as
involving a nonlinear threshold condition in that the intensity
Dμ is only nonzero above a certain critical value of the
average gradient generating the instabilities and vanishes
otherwise. Then, FFPE (34) would readily switch between
the local (e.g., collisional, as well as Gaussian quasilinear)
transport in the parameter range of subcritical behavior, and
nonlocal (Lévy style) transport above the criticality. Note, in
this regard, that FFPEs similar to Eq. (34) with a combination
of Lévy and ordinary diffusion have been also discussed in
connection with the dynamics of protein fast folding and
the motion of excitations and proteins along polymer chains
[106,107].

IV. STEADY-STATE SOLUTION

Next, we look into a steady-state (∂/∂t = 0) solution of
FFPE (33). A priori we expect this solution to satisfy a
boundary value problem that is (hopefully) consistent with
the nonlocal nature of the Riesz operator in Eq. (31), math-
ematically a very nontrivial task [81,96]. The latter task, in its
turn, is related with the exact analytic form for the potential
function �(n), which is staircase specific.

A. Model potential

Aiming at a self-consistent description, we again refer our-
selves to the comblike potential function �(n), which was
introduced in Ref. [7] as a working model of the plasma
staircase. The comb is built as a periodic sequence of spa-
tially separated “teeth,” the spikes of �(n), which are reset
after a spatial period 	 long compared with the collisional
lengths (see Fig. 3). The teeth have tunable shape, and the
shape effect of the staircase on the probability distribution of
plasma avalanches has been addressed [7]. Here, we consider
a simplified version of the comb model according to which the
staircase steps are so long that one might formulate a transport
problem between the neighboring teeth only [that is, one tooth
at the origin and the next one virtually at infinity, where �(n)
is reset]. For this purpose, we assume that the particle is
initiated at point n = 0, where it finds a perfectly reflecting
boundary corresponding to �(n) = +∞ for n � 0. Then for
n > 0 we postulate a power-law dependence �(n) = nα/α,
where α is a power exponent. We consider α to be a free
parameter, which characterizes the shape of the teeth within
each staircase period. A similar model but with a symmetric
power-law-like potential �(n) = |n|c/c for −∞ < n < +∞
was considered by Metzler et al. [81]. In our case, because
�′(n) ≡ 0 for all n < 0, there is a further simplification, mak-

ing it possible to reduce the limits of improper integration in
the Riesz fractional operator (31) to the positive semiaxis only.
This yields a truncated operator in accordance with

∂μ

∂|n|μ f (n) �⇒ 1

�μ

∂2

∂n2

∫ +∞

0

f (n′)
|n − n′|μ−1

dn′, (35)

where we have also omitted the dependence over time in view
of the steady-state condition ∂ f (n, t )/∂t = 0. We consider the
truncated operator in Eq. (35) as representing the general form
of the Riesz derivative in semi-infinite space n � 0, with a
perfectly reflecting left boundary satisfying �(n) = +∞ for
n � 0 and �′(n) ≡ 0 for n < 0.

B. Steady-state solution for large n

For large n, we can neglect the Brownian diffusion term
compared to the Lévy flight term in FFPE (34), hence, base
our analysis on the fractional Fokker-Planck equation (33),
with ∂ f (n, t )/∂t = 0. Considering the boundary condition
�′(n) ≡ 0 for n < 0, we have, with the aid of Eq. (35),

−1

η

∂

∂n
(�′(n) f (n)) = Dμ

�μ

∂2

∂n2

∫ +∞

0

f (n′)
|n − n′|μ−1

dn′, (36)

where �′(n) = nα−1 for n > 0. To enjoy smooth analytic de-
pendence for n → +0, it is required that the power exponent
α > 2. It is therefore ensured that the vanishing first deriva-
tive �′(n) → 0 at the origin n → +0 matches the condition
�′(n) ≡ 0 on the negative semiaxis.

To assess the solution for n → +∞, one might proceed
as follows. If the Lévy index is in the range 1 < μ < 2, then
for large space lags |n − n′| → +∞ one dares say that the
inverse power law 1/|n − n′|μ−1 is a slowly decaying function
of the wave number, so one ventures to take it out of the
integral sign, and to replace by a scaling factor 1/nμ−1 instead,
after which the remaining improper integral over n′ of the
probability density is claimed to be equal to 1 by the conser-
vation of the probability, i.e.,

∫ +∞
0 f (n′)dn′ = 1. The result is

that the right-hand side of Eq. (36) scales with n as 1/nμ+1

(for asymptotically large n), typical for Lèvy distributions.
Utilizing �′(n) = nα−1 on the left-hand side, from Eq. (36)
one arrives at the asymptotic power-law behavior

f (n) � (ηDμ/�μ) n−(α+μ−1), (37)

where n → +∞. It is clear from Eq. (36) that the steady state
f (n) for large n is defined by a competition between the nonlo-
cality, contained in the Riesz fractional derivative (35), and the
nonlinearity, contained in the �(n) dependence. If the Lévy
index approaches its Gaussian value, i.e., μ → 2, then the
normalization parameter �μ = −2 cos(πμ/2)�(2 − μ) goes
to infinity [because the gamma function �(2 − μ) diverges in
this limit]. The implication is that the power-law dependence
in Eq. (37) would only occur for the fractional μ values for
which the dynamics are nonlocal, otherwise the Brownian
term in FFPE (33) must be reinstalled.

C. Steady-state solution for small n

Next, we turn to the opposite limiting case of small n. In
this regime, the Riesz term in FFPE (34) is much weaker than
the Brownian term, suggesting that the steady-state solution
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near the origin (n → +0) could be obtained by balancing
the Brownian term to the nonlinear term. That would yield,
similarly to Eq. (36),

−1

η

∂

∂n
(�′(n) f (n)) = D

∂2

∂n2
f (n), (38)

from which a compressed (α > 2) Gaussian bell function

f (n) � f0 exp(−nα/αηD) (39)

can be inferred. This compressed Gaussian behavior being
analytically very appealing might yet be unsatisfactory for
practical applications in that it does not take into account
the possible sources and sinks of particles in the bulk of the
staircase [not included in FFPE (34)].

To remedy, let us consider a more general situation, accord-
ing to which the sources are concentrated at the origin n = 0
and have the form of the Dirac’s delta pulse, i.e., Ŝ+[ f (n)] =
δ(n), while the sinks are proportional to the probability den-
sity and are given by the dependence Ŝ−[ f (n)] = −ε f (n),
where ε is a coefficient that characterizes the sinks. We as-
sociate this dependence with the stabilizing effect of the shear
flows on radial transport [47,108]. Then for n > 0, n → +0,
we may argue that the shape of the f (n) distribution is defined
by a competition between the sink term Ŝ−[ f (n)] = −ε f (n)
and the Gaussian diffusion term, leading to

−D
∂2

∂n2
f (n) = Ŝ−[ f (n)] = −ε f (n), (40)

from which a simple exponential decay of f (n) would result,
i.e.,

f (n) � exp(−
√

ε/D n). (41)

The exponential function in Eq. (41) introduces a charac-
teristic scale into the transport model, i.e., λ � √

D/ε. Note
that the probability density in Eq. (41) decays much slower
than the compressed Gaussian distribution in Eq. (39). The
implication is that the sink term disperses the particles over
much broader a region than the balance between the diffusion
and the potential-function term in FFPE (34) would predict.
In this regard, we consider the length scale λ as a crossover
scale from local (Gaussian) diffusion to nonlocal transport.

D. Orderings and lengths

Once the crossover scale is introduced, one might naturally
argue that the scale-free distribution in Eq. (37) applies, if
n � λ. The latter condition offers a quantitative measure of
how “large” are the large n’s, considered in Sec. IV B. For
the reasons of formal ordering, we must also require that the
parameter λ be much smaller than the spacing 	 between
the consecutive teeth of the staircase [see Figs. 2(c) and
3], that is, the crossover to nonlocal transport must occur
within one staircase period. By adopting a hypothesis that
the E × B staircase develops through the self-organization
of vortical flows in magnetized plasma, we evaluate 	 as
the Rhines length for electrostatic drift-wave turbulence, i.e.,
	 � 	Rh, where 	Rh designates the spatial scale separating
vortex motion from drift-wavelike motion [109], similarly to
its fluid analog [6]. Note that 	Rh scales as a square root
of the E × B drift, leading to 	Rh � √

uE � √
E/B, where

uE = |E × B|/B2 is the drift velocity, E is the radial electric
field, and B is the toroidal magnetic field. Using λ � √

D/ε,
from the condition λ 	 	 � 	Rh we have E � DB/ε, that
is, the staircase is a thresholded phenomenon, which may only
occur if the radial electric field due to the drift waves exceeds
a certain critical value (of the order of DB/ε). Note that
the threshold appears to be higher in tokamaks with greater
toroidal field B and for plasmas with a lower ε value.

E. Weak localization of avalanches

The asymptotic probability density in Eq. (37) is a start-
ing point to analyze the localization properties of plasma
avalanches. First of all, it is clear that we are dealing with
a localization phenomenon that is different from the familiar,
strong localization on an exponentially fast dropoff [68,110]
[because the decay of the f (n) function is power-law-like
for n → +∞, implying the significant likelihood of under-
barrier crossing]. Following Ref. [7], we refer to this type
of localization phenomenon as “weak” localization. Second,
we distinguish between the behaviors with, respectively, finite
and infinite second moments, and we associate the weak lo-
calization with a type of behavior when the second moments
are finite [80,81]. Mathematically, that means that the inte-
gral

∫ n n′2 f (n′)dn′ < +∞ must converge at infinity. This is
possible, if and only if the steady state f (n) decays faster
than an inverse-cubic dropoff, that is, faster than ∝ 1/n3 for
n → +∞. A condition for that is that the power exponent in
Eq. (37) is greater than 3, i.e.,

α + μ − 1 > 3, (42)

leading to α > 4 − μ. One sees that a Lévy flyer in a free
space cannot be weakly localized [because in the absence
of potential fields the α value is zero; then the inequality in
Eq. (42) says that the Lévy index μ must be greater than
4 at odds with the Lévy-Gnedenko generalized central limit
theorem [111]]. In the same spirit, a potential field �(n) ∝ nα

can weakly localize the avalanches, if (and only if) it grows
sharply enough with n for n → +∞, i.e., if the α value is
greater than αmin = 4 − μ. In particular, the so-called Cauchy
flights [89], characterized by μ → 1 and representing ballistic
transport in radial direction, could be weakly localized, if α >

αmin = 3. If the α value is fixed, then the weak localization oc-
curs for a family of Lévy flight processes obeying μ > 4 − α

and 1 < μ < 2, which might or might not be satisfied.

V. EVENT-SIZE DISTRIBUTION OF AVALANCHES

We have seen in the above that the analytical structure of
f (n) is divided between the core [Eq. (41)] and tail [Eq. (37)]
regions. The crossover between the two regions is at λ �√

D/ε and is assumed to be small compared to the distance
between the jets, i.e., λ 	 	Rh. With a permission that 	Rh

is virtually infinite, i.e., the drift-wave turbulence is actually
very strong, we might rely on the inverse power-law behavior
in Eq. (37) for all λ 	 n � 	Rh � +∞. The size distribution
of avalanches is obtained as the probability for the random
walker to not be dispersed by the Fokker-Planck dynamics
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after �n space steps in radial direction, motivating

wτ (�n) =
[∫ +∞

0
−

∫ �n

0

]
f (n′)dn′ =

∫ +∞

�n
f (n′)dn′. (43)

It is understood that the avalanches are coherent structures,
which means that the integration in Eq. (43) produces the
number density of such avalanches with sizes between �n
and �n + d�n [and not yet the number of the avalanches
with sizes from �n to +∞, which would be the integral∫ +∞
�n wτ (�n′)d�n′]. Setting �n to be in the tail region, i.e.,

�n � λ, with the aid of Eq. (37) one obtains

wτ (�n) ∝ (ηDμ/�μ) �n−τ , (44)

where

τ = α + μ − 2 (45)

is the exponent of the power law. In the above we have
promoted the coefficient 1/�μ to emphasize that there is no
asymptotic power-law behavior in the Gaussian limit, μ → 2.
By examining Eq. (45) one sees that the exponent τ increases
with the increasing both α (the shape of the potential func-
tion) and μ − 2 < 0 (distance to the Gaussian limit). That
is, a stronger �(n) dependence, weaker nonlocal features
would result, as a rule, in a steeper line of decay of the
ensuing wτ (�n) distribution, with a narrower room for large-
amplitude and extreme events. The latter conclusion, though,
should be taken with a grain of salt in that a sharper �(n)
can by itself act as a source of the free energy driving the
avalanches (Sec. V A.) Note that the exponent τ is always
positive in view of α > 2.

A. The τ exponent and the state of marginal stability

Let us now obtain the exponent τ self-consistently. For this,
we shall arguably assume that the steady state of the staircase
is stable and self-organized. The staircase being stable means
it had occurred at a local free-energy minimum. In plasmas,
the free energy is contained in temperature and pressure gra-
dients that are sources of various instabilities [46,77]. On
the other hand, in driven systems, a class to which (as we
argue) belongs the plasma staircase, the instabilities will be
excited naturally thanks to the free-energy input, then the
stability condition says that the local free-energy minimum
is found at the edge of the instability drive, provided that the
rate of the driving is (i) so slow that it allows the staircase
system to self-organize, yet is (ii) strong enough to feed the
staircase dynamical patterning against dissipation. This ob-
servation suggests that the shape of the potential function at
the steady state (to be associated with the state of marginal
stability of the staircase) is such that the �(n) dependence (i)
localizes (weakly) any type of avalanche, with the Lévy index
μ in the interval 1 < μ < 2, and (ii) the localization of the
Cauchy flights, with μ → 1, is at the edge of delocalization.
With the aid of αmin = 4 − μ this yields α = 3 exactly at
the marginality. Using Eq. (45), we have τ = 2s + 1, where
μ = 2s has been considered.

The fact that there exists a marginally stable state that
attracts the nonlinear staircase dynamics finds further support
in the analysis of the avalanche-zonal flow coupling. In fact,
assume that the function �(n) is perturbed such that it grows

with coordinate n faster than the least necessary to confine
the avalanches (in our case faster than the cubic power of the
coordinate). That means that there is excess free energy in
the jet flows that is contained in the increased spatial gradient
�′(n). Then, the system seeking a new stable state will release
the excess energy by exciting secondary instabilities in the
plasma. Part of these instabilities will be absorbed by the
avalanches through the processes of mode coupling and the
buildup of correlation [44,91,94], the result being that the
avalanches grow, and their magnitudes increase. Simultane-
ously, the height of the barriers containing the avalanches
will be lowered due to energy conservation, a process that
would naturally flatten the �(n) dependence. If the lowering
is significant enough, then the avalanches may escape the
barrier, and this will take away some energy from the staircase
in the form of radial kinetic energy. To this end, the �(n)
function becomes too flat to confine the avalanches effectively,
while the radial transport has intensified. Nonlinearly, the
intensification of radial transport will act as to reconstruct the
barriers (because the newly formed avalanches will transport
azimuthal momentum up the gradient of the azimuthal flow,
hence will drive the zonal-flow shear while moving outwards).
The phenomenon had been seen directly in the JET experi-
ments [33]. During this process, energy is transferred from
the avalanches to the zonal flows via the turbulent Reynolds
stress, resulting in suppression of fluctuations in-between the
staircase steps and simultaneous ensuing intensification of the
jet poloidal flows.

The asymptotic dynamical state of the system crucially
depends on the rate of external forcing [86,91]: If the free-
energy input rate is slow enough, then the system eventually
returns in the vicinity of the marginally stable state from
which it had departed. When this occurs, the initial �(n) has
been successfully reinstalled. On the contrary, if the driving is
strong in a sense, i.e., the free-energy input rate goes above a
certain nonlinear threshold, then the driven system would end
up in ever-continued predator-preylike oscillations around the
marginally stable state, a type of dynamics characterized by
periodic weakening of the barriers due to their crosstalk with
the radial transport. This type of behavior has been reported
for magnetically confined fusion plasma by Schmitz et al.
[112].

In what follows, we assume that the rate of the driving is so
slow that any eventual deviations from the marginally stable
state dissipate before they could trigger the predator-preylike
oscillations. That said, we refer to the value α = 3 as the
natural stability limit for the plasma staircase that attracts
the nonlinear avalanche-jet zonal flow dynamics. Note that
the assumption of weak driving is crucial in this regard: It
is due to this assumption that one may rely on the power-law
reduced event-size distribution in Eq. (44) and the associated
multiscale dynamical properties. Should the assumption of
slowness of the driving be invalidated, a characteristic scale
will be introduced through the excitation of the predator-
preylike oscillations, while the multiscale features to the
dynamics would generally be suppressed.

One sees that by accepting the power law in Eq. (44) one
must also require that the system is driven “slowly” enough in
that it is allowed to produce complex and multiscale features
naturally through the self-organization into a state of marginal
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stability, otherwise it undergoes forced nonlinear oscillations
in which the turbulence preys on self-organized transport bar-
riers [47,108,112]. Theoretically, a crossover from multiscale
to autooscillatory dynamics has been discussed for driven
systems in Refs. [113,114], where one also finds a general
condition on the limit driving rate.

B. Finding the s value

Our next (and final) task is to assess the s value at the
marginality. For this, let us observe, following the analysis
of Refs. [63,64], that the nonlinear frequency shift �ωNL =
β|ψn|2s � β/(�n)s in NLSE (1) has the sense of the effective
“temperature” of nonlinear interaction. In a thermodynami-
cally stable state, this temperature controls the reservoir of
the free energy driving the instabilities. Denoting the free
energy as E and the temperature as T , we have the ordering
E � T near the stable state. On the other hand, the total free
energy E may be represented as the energy density � times
the system’s volume �, i.e., E � ��. The energy density � is
none other than the thermodynamic pressure P, whereas the
volume � is expressed, for the NLSE system, as the number
of states, i.e., � � �n. Putting all the various pieces together,
we have T � �ωNL = β/(�n)s � �� � P�n, from which
the familiar polytropic equation of state [115]

P�γ � β = const (46)

can be deduced, with γ = s + 1. In a basic theory of ideal
gases, the polytropic Eq. (46) describes an adiabatic (no en-
tropy generation) process. The adiabatic character means that
there is no heat and energy exchange with the exterior. In this
regard, the interpretation of the parameter γ as “adiabatic”
index finds its justification in the two conserved quantities of
the NLSE model: the Hamiltonian [Eqs. (22) and (23)] and
the total probability [Eq. (27)]. When applied to the plasma
staircase as driven system, the adiabatic character would im-
ply that the driving rate is infinitesimally slow, such that
the system is allowed to accommodate any free-energy input
before a new portion of the free energy is again introduced.
One sees that adiabaticity is a very good property in that
it guarantees both the polytropic form of Eq. (46) and the
power-law event-size distribution in Eq. (44).

As is well known from classic thermodynamics of ideal
gases, the adiabatic index has the following general repre-
sentation [115]: γ = (2 + ζ )/ζ , where ζ is the number of
degrees of freedom of a molecule, so that for, for instance,
a monoatomic gas, with three degrees of freedom, ζ = 3 and
γ = 5

3 . Combining with γ = s + 1, one sees that s = 2/ζ . If
ζ → ∞, then s → +0, hence NLSE (1) reduces to a linear
Schrödinger equation in which the energy levels are all shifted
by the same value of β, i.e., En −→ En + β. For the nonlinear
model with self-interference among the waves, the number
of degrees of freedom is obtained self-consistently from the
Langevin equation (20) as the sum of the power exponents
standing for the stochastic term, i.e., ζ = 2s + 1. Equating
this to ζ = 2/s, one arrives at a simple quadratic equation for
s, i.e.,

2s2 + s − 2 = 0, (47)

TABLE I. A summary of the exponents that have been used to
characterize the coupled avalanche-jet zonal flow system and the
ensuing statistical distributions of plasma avalanches.

Value Defined through Description

s |ψn|2s ≡ (|ψn|2)s subquadratic power exponent
μ Fμ(t ), Eq. (A10) the index of Lévy stable noise
α �(�n) ∝ |�n|α potential-function exponent
τ wτ (�n) ∝ �n−τ event-size distribution
γ P�γ � β = const polytropic exponent
ζ γ = (2 + ζ )/ζ number of degrees of freedom
κ τ = (1 + κ )/κ kappa exponent

yielding s = (
√

17 − 1)/4 � 0.78. Once the value of s is
known, one takes stock of the entire pool of the parameters
introduced above, i.e., μ = 2s, ζ = 2/s, γ = s + 1, and τ =
2s + 1. Note that the τ value is obtained using Eq. (45) and
the result that α = 3 at the free-energy minimum. We have
collected our findings in Tables I and II.

The fact that there exists a nontrivial s value satisfying
the complex bargain between the various parameters and
processes involved, i.e., s = (

√
17 − 1)/4 � 0.78, shows that

the coupled avalanche-jet zonal flow system can, in fact, stabi-
lize itself in the vicinity of a dynamical steady state, in which
it would release excess free energy in the form of avalanches
with a broad event-size distribution, i.e., wτ (�n) ∝ �n−τ for
�n � 1. The τ exponent is found to be τ = (

√
17 + 1)/2 �

2.56 and is sensitive to both the s value and the condition that
the system as a whole is near its free-energy minimum, i.e.,
α = 3. We consider this nonequilibrium steady state as attract-
ing the nonlinear staircase dynamics. Note that the avalanches
prove to be nonlocal transport events, which is immediately
seen from the result that the Lévy index μ is smaller than 2,
i.e., μ = (

√
17 − 1)/2 � 1.56. Note, also, that the polytropic

exponent γ = (
√

17 + 3)/4 � 1.78 appears to be remarkably
close to (although slightly larger than) the paradigmatic value
γ = 5

3 � 1.67 for monoatomic ideal gas [115]. The hint is that
the system of coupled nonlinear oscillators in Eq. (20) behaves
as well as it was an ideal “monoatomic” gas embedded in a
hypothetical fractal embedding space, with a fractional num-
ber of the embedding dimensions being equal to ζ = (

√
17 +

TABLE II. Self-consistent values of the exponents s, μ, α, τ ,
γ , ζ , and κ in the vicinity of the steady state. Second column:
analytic representations in terms of the subquadratic power exponent
s. Third column: exact values using transcendental numbers. Fourth
column: approximate numerical estimates rounded to two decimal
places (marked by the ± sign).

Value Math expression Exact result Approx

s |ψn|2s ≡ (|ψn|2)s (
√

17 − 1)/4 0.78±

μ μ = 2s (
√

17 − 1)/2 1.56±

α α > 4 − μ 3 3
τ τ = 2s + 1 (

√
17 + 1)/2 2.56±

γ γ = s + 1 (
√

17 + 3)/4 1.78±

ζ ζ = 2s + 1 = 2/s (
√

17 + 1)/2 2.56±

κ κ = 1/2s
√

17 + 1)/8 0.64±

052218-13



MILOVANOV, RASMUSSEN, AND DIF-PRADALIER PHYSICAL REVIEW E 103, 052218 (2021)

1)/2 � 2.56 < 3. A mathematical case of such hypothetical
spaces has been discussed in Ref. [116] based on the notion
of fractal manifold.

In the applications of statistical mechanics of complex
systems one often writes the τ exponent in Eq. (44) as τ =
(1 + κ )/κ , where κ is the so-called “kappa” parameter and is
introduced to interpolate between the statistical distributions
in the core and tail regions (e.g., Ref. [117] and references
therein). With the aid of τ = 2s + 1 one gets κ = 1/2s =
1/μ. One sees that the kappa value is none other than the
inverse Lévy index μ and is the relevant parameter to charac-
terize the nonlocal transport by plasma avalanches (as much as
the μ value). Using for the exponent s its self-consistent value
s = (

√
17 − 1)/4 � 0.78 at the steady state, one also obtains

κ = (
√

17 + 1)/8 � 0.64.

C. Fitting to a Fréchet distribution

In order to validate the theory prediction that the event-size
distribution of plasma avalanches has a fat power-law tail,
we have compared the wτ (�n) dependence in Eq. (44) with
the corresponding numerical dependencies obtained from
gyrokinetic simulations [3,4] of the plasma staircase using
flux-driven gyrokinetic code GYSELA [5]. The parameters of
the simulation were those mimicking the Tore Supra shot No.
45 511 [118]: the same parameters were used in Ref. [2] to
generate the staircase pattern reproduced in Fig. 1, as well as
those mimicking the consequent shots No. 47 670 and No. 47
923, performed under similar plasma conditions. A close fit to
the probability density function was obtained using a Fréchet
distribution (e.g., Ref. [119])

Fκ (�n) = [G(�n)]1+κ

a
exp[−G(�n)] (48)

with

G(�n) =
(

1 + κ
�n − b

a

)−1/κ

. (49)

The Fréchet distribution belongs to a family of the generalized
extreme value distributions [120] and is a relevant tool to
model the maxima of finite sequences of random variables.
In the above a and b are, respectively, the scale and the
location parameters and were fitted in the simulation to the
actual positions and strengths of the avalanches, so this gave
a � 10 and b � 44, and κ is the “kappa” parameter, which
fitted the shape of the distribution in the entire range of the
�n variation. For �n � 40, a behavior compatible with the
power law

Fκ (�n) ∼ �n−(1+κ )/κ (50)

was recognized, with the optimum fit at κ � 0.67 in good
agreement with the NLSE result κ = (

√
17 + 1)/8 � 0.64

(see Table II).
To illustrate these findings, we have plotted in Fig. 4 the

GYSELA computed probability density in comparison with
the Fréchet distributions for the different κ values (min κ =
0.501; max κ = 0.8). Also in Fig. 4 we have plotted the
cumulative root-mean-square error between the numerically
computed (GYSELA) and template (Fréchet) distributions,
showing that the cumulative error tends to saturate above

FIG. 4. The GYSELA computed probability density [the noiselike
curve, shown in red (light gray) color] against the Fréchet dis-
tributions (smooth humped curves) for the different values of the
κ parameter (min κ = 0.501; max κ = 0.8). The cumulative root-
mean-square error between the numerically computed (GYSELA) and
template (Fréchet) distributions is shown in the same color legend
and style, and is also marked by the corresponding κ value assumed
in Eqs. (48) and (49). Note that the error curves are the growing
curves starting at �n � 40. Coarse experimental distribution (here
in a discrete form) is represented by the three thick, horizontal
pieces (gray color), and was obtained by concatenating 15 different
occurrences of staircase observations in well-diagnosed Tore Supra
shots No. 47 670 and No. 47 923.

�n ∼ 1 × 102. These numerical plots are further reprocessed
in Fig. 5, where we have singled out the Fréchet distribution
for the very specific value κ � 0.67 for which the optimum fit
was obtained. On the right panel of Fig. 5 we displayed the
normalized root-mean-square error in a percentile to the max-
imum error at κ � 0.85 (actually the max κ value analyzed in
the simulations), from which it is clear that the fitting quality
is maximized for κ � 0.67. Complementing the numerical fits
is a coarse experimental distribution of the probability density
[the steplike function (gray color), shown in a discrete form
in Fig. 4, and in an interpolated form in Fig. 5] obtained by
concatenating 15 different occurrences of staircase observa-
tions in well-diagnosed Tore Supra shots No. 47 670 and No.
47 923. One sees, from this distribution, that the experimental
diagnostics alone is actually too rough to conclude the κ value
with wanted precision (and it was not, in fact, our goal to
perform this task), yet we were able to reconstruct, using the
GYSELA code, a virtual reality incorporating the experimental
distribution to a very good extent, with a synthetic statistics
actually covering the entire range of the �n variation.

Finally, we acknowledge the limitations due to the finite
system size, yet we confirm that the data had spanned a
reasonably wide spatial segment (in practical terms, up to 15
single avalanche sizes), enabling a statistical fit to the power
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FIG. 5. The GYSELA computed probability density [the noiselike
curve, shown in red (light gray) color] versus the Fréchet distribution
(smooth humped curve) with κ � 0.67 for which the optimum fit
was obtained. The steplike curve (gray color) is coarse experimental
distribution and interpolates the discrete distribution as of Fig. 4.
The right panel summarizes the normalized root-mean-square error
in a percentile to the maximum error at κ � 0.85, showing that the
normalized error is minimized for κ � 0.67.

law in Eq. (50). Numerically, the occurrence of the power-law
subrange in Eq. (50) was confirmed for �n being approxi-
mately four times larger than the turbulence autocorrelation
length, which corresponds with the typical influence range of
the mesoscale self-organization [3,4].

The fact that the event-size distribution of plasma
avalanches proves to follow a power law [see Eq. (50)] is
not really surprising. Indeed, the size of an avalanche might
be roughly considered as a measure of the energy it carries.
According to the NLSE model, the avalanches are generated
self-consistently by a noise process, whose origin is attributed
to couplings between the nonlinear oscillators in Eq. (20).
Naturally, such oscillators produce a superthermal radiation
field acting on cold particles. Then, in a basic physics of
nonequilibrium processes it is an established result [121] that
a plasma which is immersed in superthermal radiation un-
dergoes velocity-space diffusion which universally produces
an asymptotic power-law distribution over the energies, with
a κ value which is dictated by the intensity of the radiation
(being, as a general rule, inversely proportional to this). In our
case, this intensity is implicit in the edge condition that the
avalanches occur at the localization-delocalization threshold,
yielding κ = (

√
17 + 1)/8 � 0.64 in good agreement with

the numerical simulation result κ � 0.67.

D. Case of extreme avalanches

The fact that the event-size distribution in Eq. (50) follows
a power law implies that there is an ample space for large-
magnitude and extreme avalanches (much ampler at least than
what one would expect under a Gaussian hypothesis), and that

FIG. 6. An example of extreme event observed in the GYSELA

simulations of Tore Supra L-mode plasma. Colors: blue (light gray)
marks the background heat flux level; white and yellow indicate
elevated turbulent flux; dark (brownish) signifies extreme flux. Axes:
“a” is the tokamak minor radius, “cs” is the ion acoustic speed,
and ρ is the dimensionless radial coordinate. Upper panel: the flux-
surface averaged temperature profiles for the different time lags:
t = 450, 680, and 910 time units.

the extreme avalanches are essentially unpredictable. Indeed,
the absence of a characteristic scale (other than the finite sys-
tem size) makes such avalanches indistinguishable from any
small- or medium-size avalanche, leading to an impossibility
of forecasting [122,123]. In particular, there might not be
any special precursory activity preceding the large-magnitude
avalanches, so to a shallow observer it would appear that the
large bursts occur so very unexpectedly under seemingly usual
plasma conditions. In Fig. 6 we show an example of such
large-magnitude event, which was observed in the GYSELA

simulations following a rather long plasma quiescent period.
On the top of the graph we also plotted the flux-surface av-
eraged temperature profiles for the different time lags (i.e.,
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for 450, 680, and 910 time units). That the profiles look un-
changed as time progresses means that the burst in Fig. 6 has
developed entirely through the self-organization of the plasma
(i.e., via internal redistribution of the free energy already
available to the staircase), rather than was a consequence of
occasional overdriving of the nonlinear avalanche-jet zonal
flow system due to an excessive free-energy injection.

While the occurrence of the large-magnitude and extreme
avalanches appears to be a matter of statistics (the fatalist
would say is a matter of good luck), a question of practical
importance would be to assign a safety grade to a dynamical
system with possible extreme events (in our case, extreme
bursts of transport across the staircase transport barriers). The
task is relatively straightforward and refers to an extreme-
risk classification scheme already developed in Ref. [124]
to which the τ value is key. Comparing the NLSE result
τ � 2.56 (our Table II) to the reference values reported in
Table 4 of Ref. [124], one might see that the plasma staircase
exhibits characteristics enabling to associate it with the safety
class A3 (moderate tail risk). The class is two grades less
than the highest grade achievable for dynamical systems with
self-regulation (class A5) and three grades less than the safest
class (class X ), which requires external (forced) regulation.
While the assignment of the different safety grades might
appear to be an academic exercise, we note that the grades
are justified from a topological perspective [124] and as such
might be used to categorize the various dynamical phenomena
resulting in extreme events.

E. Is it SOC or not?

Based on the above analysis one might reasonably establish
that the plasma staircase is a (i) slowly driven, (ii) dissipative,
(iii) interaction-dominated, (iv) thresholded nonlinear dynam-
ical system with a (v) large number of interacting degrees of
freedom [i.e., coupled nonlinear oscillators in Eq. (20)]. More
so, this system is characterized by a power-law event-size
distribution of dynamical relaxation events [see Eq. (44)]; by
a superdiffusive dispersion relation t ∼ |�n|μ [which is an
immediate consequence of the Lévy fractional FFPE (33)];
and by the criticality character that the stable state minimizes
the growth rate of the potential function �(�n) ∝ |�n|α ,
leading to α = 3 (Sec. V A). These observations might inspire
one to conclude that the plasma staircase is a complex dy-
namical system in a state of self-organized criticality (SOC).
Indeed, the requirements (i)–(v) have been discussed to be
the defining signatures and important key features of SOC
(e.g., Refs. [125–128]), motivating the above conclusion. The
subject had caused some excitation in the literature previously
as the theoretical notion of SOC was advanced as a paradig-
matic framework to explain the behavior of driven, dissipative
dynamical systems in response to slow driving [129–131].

That said, the exponent τ � 2.56 (safety class A3 [124])
appears to be numerically very different from the respective
values deriving from sand-pile SOC models [29,30] and their
generalizations (e.g., the Zhang model [31], the e-pile model
[124], and other models alike): If only in one dimension,
which is a very special case of SOC [32] (safety class A1: high
risk of extreme avalanches) as well as in the mean-field limit
[132] for which a crossover to the diffusive transport could

be expected (safety class A5: moderate to low risk of extreme
events).

These differences in safety classes suggest that in the
parameter range of staircase self-organization we actually
encounter a different type of SOC phenomenon, which is
not reproduced by the familiar sand-pile style models. A
characteristic feature of this new type is that the avalanches
are driven directly by the white Lévy noise, which is self-
organized, and whose origin is found in multiple dynamical
couplings between the nonlinear oscillators in Eq. (20). At
a kinetic level, the avalanches correspond to a Lévy frac-
tional FFPE (33) with self-consistent potential and must be
considered as coherent structures. Conversely, sand piles lead
to a different description as they rely on next-neighbor-like
interactions which are local in space and which may generate
some non-Markovianity for t → +∞, but not really a nonlo-
cal behavior in the sense of the Lévy-Gnedenko generalized
central limit theorem [111] [remark that the e piles [124]
bring directly to a non-Markovian diffusion equation with
memory and the fractional differentiation over time, while the
space derivatives are integer and correspond to the familiar
Laplacian operator, in contrast to FFPE (33)].

Last but not least, we have seen that the marginally stable
(probably SOC) state occurs for s = (

√
17 − 1)/4 exactly. We

consider this exact value as a mathematical constant character-
izing the staircase self-organization. The self-organized nature
of the criticality stems from the fact that the cubic dependence
in �(�n) ∝ |�n|3 attracts the nonlinear avalanche-jet zonal
flow dynamics (by minimizing the free energy stored in the
staircase). Note that the avalanches undergo weak localization
by the potential field �(�n), at no contradiction with the
fact that the staircase system can generate extreme avalanches
with the significant (far beyond the Gaussian expectation)
likelihood.

F. Subdiffusion of transport barriers

Let us now revisit the statement at the end of Sec. III that
there is no transport of waves in NLSE (1), if s < 1. We repeat
ourselves in saying that this forceful statement applies to clas-
sical waves for which the discontinuities of the escape path
to infinity act as the topological barriers in phase space im-
peding field spreading to long distances. In a complex system
with a broad fluctuation spectrum, however, it is virtually un-
avoidable that there is a certain population of low-frequency,
long-wavelength modes for which the classical approach as
of NLSE (1) would appear to be too crude, actually calling
for a full operator (i.e., “quantum”) description instead. Of the
effects that resist the discontinuity limitations [26] imposed by
s < 1, we mention under-barrier propagation and other tun-
neling processes alike, yet omitted the important possibility
that nonlinear structures may develop. In the full operator
description, the quantum analog of NLSE (1) predicts that
there is a subdiffusive spreading of the nonlinear wave packet
in accordance with a sublinear dispersion law [see Eq. (34) of
Ref. [28]]

〈(�n)2(t )〉 � t1/(s+1). (51)

The scaling in Eq. (51) is obtained by combining the
quantum generalization of dynamical equations (25) with
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Fermi’s golden rule [133] for transitions between states. For
s → 1, the behavior on the right-hand side of Eq. (51) is
square-root like leading to the familiar “half-diffusion,” i.e.,
〈(�n)2(t )〉 � t1/2. This scaling finds support in results of di-
rect numerical simulations of quantum NLSE dynamics based
on the Hubbard model [134]. Using for s the SOC value
s = (

√
17 − 1)/4, from Eq. (51) we have a more precise esti-

mate 1/(s + 1) = (
√

17 − 3)/2 � 0.56.
In the staircase self-organization, the time dependence in

Eq. (51) corresponds to a stochastic spreading of the staircase
jets along n as a result of their nonlinear interaction. This
spreading is actually very slow: subdiffusive. At the time this
paper was being written, we had no experimental indication
whether such a spreading might or might not be the case in L-
mode tokamak plasma. A priori we might expect the spreading
law in Eq. (51) to apply at relatively long wavelengths not
shorter at least than the Rhines length [109] for the electro-
static drift-wave turbulence. This, together with the fact that
the electrostatic Rhines length 	Rh, determines the spacing
between the jets, might suggest an interesting scenario for the
decay of the staircase, according to which the staircase jets
would migrate in the direction of the tokamak minor radius
until they merge together into singular structures, a process fa-
vored by the inverse energy cascade in the turbulence domain.
If this scenario is true, then one might also predict that the
lifetime of the staircase would scale with the Rhines length
as �tlife � 	

2(s+1)
Rh � (E/B)s+1, implying a rather strong de-

pendence on the radial electric field E (ironically, stronger
turbulence implies longer lifetimes). The crucial question is
whether the staircases evolve naturally in the direction of this
scaling law, or instead their eventual dissipation is governed
by processes like Coulomb collisions and/or quasilinear dif-
fusion on microscopic scales.

VI. SUMMARY AND CONCLUSIONS

Our work addresses several important questions concern-
ing the physics of plasma staircase. First, we have argued that
the plasma staircase operates as a wave packet of coupled
nonlinear oscillators, the jet zonal flows, interacting with each
other by emitting and absorbing the plasma avalanches and
voids. While a universal analytical method that is valid in
all aspects of the staircase dynamics would be an impossible
task, we could nevertheless formulate a simplified yet rele-
vant theoretical approach based on a modified NLSE with a
subquadratic power nonlinearity [28]. Dealing with the sub-
quadratic power has led us to explore mathematical methods
that were not quite common with the fusion physicists; among
these methods were Diophantine equations and the formalism
of backbone map [26].

Theoretically, the subquadratic nonlinearity proves to be a
very appealing type of nonlinear coupling process as it leads
directly to the white Lévy noise in a system with distributed
interactions. In a self-consistent description, this noise pro-
cess acts as an input driving force for radial transport by
plasma avalanches. We considered the avalanches as coherent
structures driven by complex processes of mode coupling in
magnetically confined fusion plasma consistently with the
implication of an NLSE.

Arguing that the particles could be trapped and convected
by the avalanches, a probabilistic picture of the micro-
scopic transport has been drawn using a Lévy fractional
Fokker-Planck equation with self-consistent potential field
(we supplemented the self-consistent equation with the famil-
iar Brownian diffusion due to Coulomb collisions and other
frictional processes alike, as well as by the apposite sources
and sinks to assess the behavior near the origin). This model
description is very nontrivial, as it brings the nonlocality,
contained in the Lévy fractional derivatives, in contact with
the nonlinearity, contained in the potential field.

Mathematically, the nonlocal (Riesz) derivative occurring
in FFPE (33) (and the associated white Lévy noise driving the
transport) is a direct consequence of the competing nonlocal
ordering assumed in NLSE (1) in terms of the subquadratic
power exponent (s < 1). In the absence of a competing order-
ing, the resulting transport equation would be obviously local
in space, with the Laplacian operator substituting the Riesz
operator in Eq. (31). One sees that it is the subquadratic NLSE
(1), with s < 1, which is the relevant equation to understand
the origin of nonlocal transport (through couplings between
waves), and not the familiar, quadratic NLSE, with s = 1.

Based on the idea that the plasma staircase resides at a
state of marginal stability, we could predict the shape of the
potential function at the marginality, and eventually obtain
the whole set of power exponents characterizing the plasma
staircase. In particular, we have found that the plasma stair-
case generates a power-law-like event-size distribution of
plasma avalanches, with room for large-magnitude and ex-
treme events, and we have supported this conclusion by results
from direct numerical simulations using the GYSELA code.

In general, the simulations have confirmed that the stair-
case self-organization is inherent to L-mode plasma, being
especially very clear when the turbulence is near critical, i.e.,
when the turbulence drive is close to or slightly above the
linear instability threshold. Also, we have seen that the state
of marginal stability bears signatures enabling to associate it
with a complex system in a state of self-organized criticality,
or SOC. That said, the critical exponents, which we obtained,
were not consistent with the critical exponents of major sand-
pile SOC models and their generalizations, suggesting that
the plasma staircase belongs to a different class of SOC. The
critical state is characterized by the self-consistently occurring
white Lévy noise driving the plasma avalanches through a
grid of self-consistently generated bulk transport barriers (the
jets of the staircase), and mathematically corresponds to a
very nontrivial value of the subquadratic power exponent, i.e.,
s = (

√
17 − 1)/4 � 0.78. This fancy value is an exact result

of the NLSE model.
In the vicinity of the criticality, the plasma avalanches

undergo weak localization, while the asymptotic probability
density decays as a power law, with finite second moments.
It is understood that the finiteness of the moments is imposed
directly by the self-consistent potential field at the edge of the
localization-delocalization transition. This finding supports
the idea [7,81] that a Lévy flyer could be confined within
a semitransparent transport barrier, even though the escape
probability appears to be so large that the outward flux goes,
still, quite beyond the Gaussian level.
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While the main focus of this study was on the classical
model in NLSE (1), an extension towards a full quantum
(operator-based) equation has been addressed. Of the main
physics consequences deriving from this extension we men-
tioned the possibility for the staircase transport barriers to
diffuse along the tokamak minor radius in accordance with
the subdiffusive scaling law 〈(�n)2(t )〉 � t0.56 for t → +∞.
It is not possible, for the moment being, to prove or disprove
this scaling law based on evidence from experiments or from
gyrokinetic numerical simulations. Also, it is not yet clear if
the very phenomenon of subdiffusion of the transport barriers
is there for L-mode plasma. Analysis in this general area
remains to be carried out.

All in all, we have seen that modern statistical physics
has an important contribution to make in understanding the
formation of the plasma staircase, and we expect the analytic
methods, devised in this work, to guide further progresses in
the study of strongly coupled dynamical systems with nonlo-
cal ordering.
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APPENDIX: DERIVATION OF THE LÉVY FRACTIONAL
FOKKER-PLANCK EQUATION

Consider a Markov stochastic process defined by the evo-
lution equation

f (n, t + �t ) =
∫ +∞

−∞
f (n − �n, t )ϒ(n,�n,�t )d�n,

(A1)
where f (n, t ) is the probability density of finding a particle
(random walker) at time t at point n, and ϒ(n,�n,�t ) is
the transition probability density of the process. Note that the
“density” ϒ(n,�n,�t ) is defined with respect to the incre-
ment space characterized by the variable �n. It may include a
parametric dependence on n, when nonhomogeneous systems
are considered. Here, for the sake of simplicity, we restrict
ourselves to the homogeneous case, and we omit the n depen-
dence in ϒ(n,�n,�t ) to enjoy

f (n, t + �t ) =
∫ +∞

−∞
f (n − �n, t )ϒ(�n,�t )d�n. (A2)

Then, ϒ(�n,�t ) defines the probability density of changing
the spatial coordinate n by a value �n within a time interval
�t independently of the running n value. The integral on the
right of Eq. (A2) is of the convolution type. In the Fourier
space this becomes

f̂ (q, t + �t ) = f̂ (q, t )ϒ̂ (q,�t ), (A3)

where the integral representation

ϒ̂ (q,�t ) = T̂q{ϒ(�n,�t )} ≡
∫ +∞

−∞
ϒ(�n,�t )eiq�nd�n

(A4)
has been used for ϒ̂ (q,�t ), and similarly for f̂ (q, t ). In the
above q denotes the position coordinate in the Fourier space,
T̂q is the operator of the integral transform, and we have in-
troduced a wide hat to mark the resulting Fourier components
(a narrow hat is reserved for the operators). Letting q → 0 in
Eq. (A4), it is found that

lim
q→0

ϒ̂ (q,�t ) =
∫ +∞

−∞
ϒ(�n,�t )d�n. (A5)

The improper integral on the right-hand side is none other
than the probability for the space variable n to acquire any
increment �n during time �t . For memoryless stochastic
processes without trapping, this probability is immediately
seen to be equal to 1, that is, the diffusing particle takes
a displacement anyway in any direction along the n axis.
Therefore,

lim
q→0

ϒ̂ (q,�t ) = 1. (A6)

We consider ϒ̂ (q,�t ) as the average time- and wave-
vector-dependent transition “probability” or the characteristic
function of the stochastic process in Eq. (A2). In general,
ϒ̂ (q,�t ) can be due to many coexisting, independent dy-
namical processes, each characterized by its own (partial)
transition probability ϒ̂h(q,�t ), where h = 1, . . . , m is an
integer counter, making it possible to factorize

ϒ̂ (q,�t ) =
m∏

h=1

ϒ̂h(q,�t ). (A7)

We should stress that, by their definition as Fourier integrals,
ϒ̂h(q,�t ) are given by complex functions of the wave vec-
tor q, and their interpretation as “probabilities” has the only
purpose of factorizing in Eq. (A7). This factorized form is
justified via the asymptotic matching procedure in the limit
q → 0. Without losing in generality, it is sufficient to analyze
a simplified version of Eq. (A7) with only two processes in-
cluded, one corresponding to a white-noise-like process which
we shall mark by the index μ, and the other one correspond-
ing to a regular convection process due to the presence of a
potential force which we shall mark by the index R. We have,
accordingly,

ϒ̂ (q,�t ) = ϒ̂μ(q,�t )ϒ̂R(q,�t ). (A8)

These settings correspond to a set of Langevin equations

dn/dt = v; dv/dt = −ηv + FR + Fμ(t ), (A9)

where η is the fluid viscosity, v is the velocity along the n axis,
FR is the regular force, and Fμ(t ) is the fluctuating (noiselike)
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force. We take Fμ(t ) to be a white Lévy noise with Lévy
index μ (1 < μ � 2). By white Lévy noise Fμ(t ) we mean a
stationary random process, such that the corresponding mo-
tion process, i.e., the time integral of the noise, Lμ(�t ) =∫ t+�t

t Fμ(t ′)dt ′, is a symmetric μ-stable Lévy process with
stationary independent increments and the characteristic func-
tion [76,80]

ϒ̂μ(q,�t ) = exp(−Dμ|q|μ�t ) � 1 − Dμ|q|μ�t . (A10)

The last term gives an asymptotic inverse-power distribution
of jump lengths

χ (�n) ∼ |�n|−(1+μ). (A11)

In the above, the coefficient Dμ is the intensity of the
Lévy noise. As is well known, the characteristic function in
Eq. (A10) generates Lévy flights [79–81].

Focusing on the regular component of the force field FR, it
is convenient to represent the corresponding transition proba-
bility in the form of a plane wave, i.e.,

ϒ̂R(q,�t ) = exp(iqu�t ) � 1 + iqu�t . (A12)

Here, u is the speed of the wave, and qu is the frequency. As
usual, one evaluates the speed u by balancing the regular force
FR to the viscous term in the Langevin equation (A9), yielding
u = FR/η. It is noted that the basic condition in Eq. (A6)
is well satisfied for both the Lévy processes and stationary
convection, just highlighting the Markov property and the
absence of trapping. Putting all the various pieces together,
one obtains

ϒ̂ (q,�t ) = exp(−Dμ|q|μ�t + iqFR�t/η), (A13)

from which Eq. (A6) is evident. The next step is to substitute
Eq. (A13) into (A3), and to allow �t → 0. Then, Taylor
expanding on the left- and right-hand sides in powers of �t ,
and keeping first nonvanishing orders, in the long-wavelength
limit q → 0 it is found that

∂

∂t
f̂ (q, t ) = [−Dμ|q|μ + iqFR/η] f̂ (q, t ). (A14)

When inverted to configuration space, the latter equation
becomes

∂

∂t
f (n, t ) =

[
Dμ

∂μ

∂|n|μ − 1

η

∂

∂n
FR

]
f (n, t ), (A15)

where the symbol ∂μ/∂|n|μ is defined by its Fourier transform
as

T̂q

{
∂μ

∂|n|μ f (n, t )

}
= −|q|μ f̂ (q, t ). (A16)

In the foundations of fractional calculus (e.g., Refs. [87,88])
it is shown that, for 1 < μ < 2,

∂μ

∂|n|μ f (n, t ) = 1

�μ

∂2

∂n2

∫ +∞

−∞

f (n′, t )

|n − n′|μ−1
dn′. (A17)

Equation (A17) reproduces the Riesz fractional derivative in
Eq. (31), with �μ = −2 cos(πμ/2)�(2 − μ).

Relating FR to external potential field with the aid of
FR = −�′(n), and substituting in Eq. (A15), one arrives at
the following Lévy fractional Fokker-Planck equation in the
n space:

∂

∂t
f (n, t ) =

[
Dμ

∂μ

∂|n|μ + 1

η

∂

∂n
�′(n)

]
f (n, t ), (A18)

which results in Eq. (33) of Sec. III.
If we used, in place of Eq. (A10), the characteristic func-

tion of the Brownian white noise, i.e.,

ϒ̂B(q,�t ) = exp(−Dq2�t ) � 1 − Dq2�t, (A19)

we would have obtained, instead of FFPE (A18), the familiar
Fokker-Planck equation

∂

∂t
f (n, t ) =

[
D

∂2

∂n2
+ 1

η

∂

∂n
�′(n)

]
f (n, t ), (A20)

where the stochastic spreading of the probability density cor-
responds to the second-order derivative over the coordinate n,
and the coefficient D is the intensity of the Brownian noise.

Another situation of interest here is when the Lévy and
Brownian noises are present jointly on an equal footing. In
that case, Eq. (A7) becomes a product of three terms, i.e.,
the Lévy term, the Brownian term, and the convection term,
yielding, instead of Eq. (A8),

ϒ̂ (q,�t ) = ϒ̂μ(q,�t )ϒ̂B(q,�t )ϒ̂R(q,�t ). (A21)

The Langevin equations in Eq. (A9) generalize to

dn/dt = v; dv/dt = −ηv + FR + Fμ(t ) + FB(t ), (A22)

where FB(t ) denotes the Brownian noise and is added to the
Lévy noise. Substituting the known characteristic functions
for the Lévy and Brownian noises into Eq. (A21), and going
through steps of the derivation, one arrives at the hybrid FFPE
(34) with both the fractional (Riesz) and ordinary diffusion
terms, weighted by the coefficients Dμ and D, i.e.,

∂

∂t
f (n, t ) =

[
Dμ

∂μ

∂|n|μ + D
∂2

∂n2
+ 1

η

∂

∂n
�′(n)

]
f (n, t ).

(A23)
Note that FFPE (A23) involves space fractional differentiation
only in terms of the generalized diffusion operator, whereas
the convection term due to �(n) is integer and introduces a
potential well for Lévy flights. This last observation elucidates
the fundamentally different roles played by, respectively, the
stochastic and regular forces as they join together to set up the
analytical structure of FFPE.
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