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External-field-induced dynamics of a charged particle on a closed helix
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We investigate the dynamics of a charged particle confined to move on a toroidal helix while being driven
by an external time-dependent electric field. The underlying phase space is analyzed for linearly and circularly
polarized fields. For small driving amplitudes and a linearly polarized field, we find a split up of the chaotic part
of the phase space, which prevents the particle from inverting its direction of motion. This allows for a nonzero
average velocity of chaotic trajectories without breaking the well-known symmetries commonly responsible for
directed transport. Within our chosen normalized units, the resulting average transport velocity is constant and
does not change significantly with the driving amplitude. A very similar effect is found in case of the circularly
polarized field and low driving amplitudes. Furthermore, when driving with a circularly polarized field, we
unravel a second mechanism of the split up of the chaotic phase space region for very large driving amplitudes.
There exists a wide range of parameter values for which trajectories may travel between the two chaotic
regions by crossing a permeable cantorus. The limitations of these phenomena, as well as their implication
on manipulating directed transport in helical geometries are discussed.
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I. INTRODUCTION

Helical structures and patterns can be frequently found in
nature, with systems ranging from molecules such as DNA or
amino acids to self-assembled configurations of particles in
nanotubes [1]. Especially for quasi-one-dimensional (quasi-
1D) structures, the helical geometry can offer advantages such
as increased stability and resistance to deformations [2,3]. In
the last decades great progress was made in attempts to syn-
thesize artificial 1D nanostructures, such as helical CNT’s [4],
with hopes for applications in nanoelectronic circuits [5–8].
Therefore, there is a great interest in understanding how the
electronic properties of 1D structures are affected by helical
geometries.

Already in minimal models, intriguing phenomena can
result from the geometric confinement to a 1D helix. It was
demonstrated that, due to the geometry, ballistic long-range
Coulomb interacting particles on a 1D helical path can form
bound states [9,10] and can even build 1D lattice structures
[10–12]. Novel physics resulting from this behavior has been
reported in several works discussing relevant setups [13–20].
Effects range from mechanical properties, such as an unusual
electrostatic bending response [12], to intriguing nonlinear
dynamics, such as the scattering of bound states at an inho-
mogeneity in the 1D path [13] or the tuning of the dispersion
relation of a 1D chain of bound particles by varying the
helix radius [14]. In the latter example, a degeneracy of the
band structure for a specific helix radius was identified, which
prevents excitations from dispersing through the system.

*asiemens@physnet.uni-hamburg.de
†pschmelc@physnet.uni-hamburg.de

In helical systems, the novel effects typically emerge due
to the fact that the acting forces are partially compensated by
confining forces of the helix, and are therefore not limited
to Coulomb interactions. Effects of dipole-dipole interactions
[16–18], as well as external electric fields [11,20] have been
explored. Previous investigations of external electric fields
considered adiabatically varying forces and demonstrated the
possibility of using an external electric field for controlled
state transfer [20], and inducing crystalline lattice ordering
of particles [11]. For crystalline particles on a closed helix
exposed to a static electric field, an unconventional pinned-
to-sliding transition has been observed [19]. Investigating
the dynamics of confined particles being driven by time-
dependent external forces is therefore a natural next step.

Periodic driving is at the core of many intriguing phenom-
ena, such as resonances and chaos. In driven systems, already
simple models can often yield quite complex dynamics and
give valuable insight into real physical systems. For exam-
ple, the model of a driven Morse oscillator can give insight
into the (vibrational) stability of molecules [21]. In the same
spirit, particles in driven double well potentials have been
studied to explain the tunneling dynamics (or the suppres-
sion thereof) through a potential barrier [22–28]. Studies of
driven Hamiltonian systems, i.e., particle dynamics in time-
dependent periodic potentials, often possesses a focus on the
manipulation of transport phenomena due to the choice of the
driving potential. There, the transport of diffusive trajectories
is usually induced by breaking certain spatiotemporal sym-
metries [29–35]. However, other manipulation techniques,
such as the possibility of switching between ballistic and
diffusive motion by introducing localized disorder [36], have
been demonstrated. Furthermore, the presence of spatially
varying forces has been linked to a variety of intriguing
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phenomena, such as the formation of density waves [37].
Based on this understanding of driven systems, a plethora of
applications, including velocity filters [37,38], spectrometers
[39–41], or batteries extracting energy from thermal fluctua-
tions [32–34,41–46], have been proposed.

Motivated by the complexity arising when particles are
confined to curved space, we investigate in this work the
influence of time periodic forces on particles in helical
confinement. As a prototype, we consider a single particle
confined to a toroidal helix, being driven by either an oscil-
lating or a rotating electric field. The combination of driving
and confining forces leads to spatially and temporally varying
effective forces. For a wide range of driving amplitudes, the
systems phase space resembles that of a particle in either a
standing wave (oscillating driving field) or a running wave
(rotating driving field). However, for very low driving ampli-
tudes, as well as for large driving amplitudes in case of the
oscillating field, we identify two different scenarios by which
the chaotic phase space region can be split. We explain how
these splits are induced by the different scales of oscillations
in the driving potential, and how they influence the corre-
sponding transport phenomena.

Our paper is structured as follows. Section II contains
the parametrization of the toroidal helix, a discussion of the
Lagrangian, and the general equations of motion for our setup.
We further discuss the considered driving laws. In Secs. III
and IV we investigate and analyze the dynamics in the pres-
ence of driving with a linearly polarized and a circularly
polarized electric field, respectively. Finally, in Sec. V we
provide our conclusions.

II. PARTICLES IN HELICAL GEOMETRIES
WITH EXTERNAL DRIVING

We consider a single particle with charge q confined to
move along a toroidal helix [see Fig. 1(a) for a visualization].
The parametrization of the particle’s positions is then given by
the following equation:

r(u) :=
⎛
⎝(R + r cos(u)) cos(u/M )

(R + r cos(u)) sin(u/M )
r sin(u)

⎞
⎠, u ∈ [0, 2πM], (1)

where R is the torus radius determining how strongly our
helix is bent, r is the radius of the helix, and M is the total
number of helical windings. Since the path is closed we have
r(u) = r(u + 2πM ), and the parameters obey the following
restriction, R = Mh/2π , where h is the pitch of the helix.
When u changes by an amount of 2π , the particle moves the
distance of one winding on the helix. When u changes by an
amount of 2πM, the particle circles once around the torus and
is exactly at the same position it started in.

The driving force is assumed to be caused by an external
electric field E. The potential energy V (u, t ) of the particle is
then given by

V (u, t ) = qE(t ) · r(u). (2)

Our system is then described by the following Lagrangian:

L = m

2

(
dr(u)

dt

)2

− qE · r(u). (3)

FIG. 1. (a) A 3D illustration of the parametric function r(u), for
M = 10, r = 0.8, and R = 2.5. (b) The potential Vx (u) created by a
static field in the x direction shown for toroidal helices with M = 10,
R = 2.5, and helix radii of r = 0.2 (orange) and r = 1 (dotted gray).
(c) The potential landscape Vx (u, t ) for a linearly polarized oscil-
lating field in x direction shown for t = 0 (orange) and t = π/ω

(dashed gray). The inset in the top right corner visualizes the driving
direction of the field (red) for a top view of the setup. (d) The poten-
tial landscape Vxy(u, t ) for driving with a circularly polarized field in
the xy plane shown for the times t = [0, π/ωM, 2π/ωM]. After the
time t = 2π/ωM the motion of the potential repeats, being shifted
by �u = 2π . Again, the inset in the top right corner visualizes the
driving field (red) for a top view of the setup.

Equation (3) already accounts for the confining forces of
the setup by only allowing positions r(u) on the parametric
helical curve. Since r(u) is known, we can already evaluate
the derivative in the kinetic energy term and rewrite Eq. (3) as

L = m

2
ζ (u)

(
du

dt

)2

− qE · r(u), (4)

where ζ (u) := [dr(u)/du]2 = r2 + [R + r cos(u)]2/M2.
From this, we obtain the following equations of motion for an
arbitrary driving field E(t ):

ζ (u)
d2u

dt2
= 1

2

dζ (u)

du

(
du

dt

)2

− qE(t )

m

dr(u)

du
. (5)

Let us now take a closer look at the driving potential
V (u, t ) = qE(t ) · r(u) created by the electric field. Even in
the static case, i.e., without time dependence, the potential can
become quite complex and possesses multiple minima. This is
shown in Fig. 1(b) for a static field parallel to the x axis. In this
case the electric field is given by E = Eex and the potential
energy becomes

Vx(u) = qE [R + r cos(u)] cos(u/M ). (6)

This potential consists of two terms: The R cos(u/M ) term
creates a long-wavelength cosine-shaped potential that is
maximal at the position that extends most into the x direction
(for u = 0 or u = 2πM) and minimal for the position extend-
ing most into the negative x direction (for u = πM). Since it
is caused by the overall toroidal shape of the curve r(u) we
will call this the torus-induced potential (TIP). On top of that,
there is a smaller modulation given by the r cos(u) cos(u/M )
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term. Since this modulation originates from the helix wind-
ings we will call this the winding-induced potential (WIP).
The amplitude of the WIP can be modulated via the helix
radius r [shown in Fig. 1(b) for r = 0.2 and r = 1]. Due to
the cos(u/M ) dependence, the WIP oscillational amplitude
also changes with the position on the torus. The ampli-
tude is largest for u ∈ [0, πM, 2πM] and vanishes for u ∈
[πM/2, 3πM/2]. The number of minima in the modulation
is determined by the number of helical windings M.

In this work we focus on two different time-dependent
fields: Driving with a field oscillating parallel to the x axis, and
driving with a field rotating in the xy plane. In the first case,
the driving field becomes E(t ) = E cos(ωt )ex. The resulting
potential Vx(u, t ) is a standing wave with the shape shown in
Fig. 1(c)

Vx(u, t ) = qE [R + r cos(u)] cos(u/M ) cos(ωt ). (7)

When we consider an electric field rotating in the xy plane
the driving becomes slightly more complex. In this case, the
electric field can be written as E(t ) = E{cos(ωt ), sin(ωt ), 0}
and the potential landscape becomes

Vxy(u, t ) = −qE cos(ωt − u/M )[R + r cos(u)]. (8)

Figure 1(d) visualizes the time evolution of this potential
by showing the potential landscape at different times t . The
three curves in the figure correspond to the cases t = 0 (or-
ange), t = π/ωM (gray), and t = 2π/ωM (blue). Due to the
symmetries of the toroidal helix, we only need to consider
the time �t = 2π/ωM needed to rotate by one winding to
understand the driving, since the potential movement repeats
after this time; it is just shifted by a distance of �u = 2π . The
time evolution of the potential landscape resembles a crawling
motion: The local extrema of the potential oscillate between
being a potential minimum and a potential maximum, with a
constant phase shift of 2π/M between neighboring minima
(or maxima). A video showing the time evolution of Vxy(u, t )
can be found in the Supplemental Material [47]. It should also
be noted that for Vxy(u, t ) the equations of motion are not sym-
metric with regard to the spatiotemporal symmetries given by
(u → −u + �u, t → t + τ ) and (u → u + �u, t → −t + τ );
a necessary criterion for directed transport within the chaotic
sea [29,31]. In contrast, these symmetries are conserved for
Vx(u, t ).

We can eliminate redundant parameters by introducing di-
mensionless units. Without loss of generality, we choose to
express distances in units of 2h/π and time in units of ω/2π .
We also normalize the particle mass and charge to m = q = 1
(which is the same as absorbing both values in the driving
amplitude). The remaining independent system parameters
are the winding number M, the helix radius r, and the driving
amplitude E .

A final remark on our computational approach is in order:
The equations of motion are numerically integrated with the
Dormand-Prince method, a Runge-Kutta method with vari-
able step size. The maximal step size of our time steps was
chosen as �t = 0.01. It was verified that this maximum step
size produces accurate results even for driving amplitudes as
large as E > 2000, which is much larger than any driving
amplitude used in this work.

III. PARTICLE DYNAMICS FOR A LINEARLY
POLARIZED FIELD

In this section we will analyze the dynamics when the
system is driven by an electric field oscillating parallel to the
x axis. For this we will examine the phase space of the system
and understand how it is decomposed for different parameter
regimes. The dimensions of the phase space are made up of the
three parameters: position u, momentum p, and time t . Since
our Lagrangian is periodic in time, we can use a Poincaré sur-
face of sections (PSOS)– -specifically a stroboscopic map—to
visualize the phase space in a two-dimensional stroboscopic
u(p) dependence. Note, that our momentum p refers to the
canonical momentum given by

p = du/dt

m(r2 + {[R + r cos(u)]/M}2)
. (9)

We start our investigation by considering a toroidal helix
with M = 10 and r = 0.2. Figure 2 shows the PSOS of the
system for electric field amplitudes E = 80, E = 20, and E =
4. As we will see, the phase space for large and intermediate
driving amplitudes will closely resemble that of a particle in
a standing wave [48]. However, for low driving amplitudes,
we observe novel features of the dynamics arising from the
interplay of WIP and TIP. The investigation of these dynamics
and their implication for manipulating directed transport will
be the main result of this section.

In Fig. 2(a), for E = 80, we observe a mixed phase
space that mainly allows three different kinds of trajectories:
Chaotic trajectories, and two types of (quasi)periodic trajecto-
ries, which we will refer to as Type-I and Type-II trajectories.
Type-I trajectories (marked I and I in the figure) are invariant
spanning curves [49,50] for which the particle momentum
is too large to be significantly affected by the driving. The
driving results only in a weak modulation of their dynamics.
Towards smaller momenta the Type-I trajectories border on a
sea of chaotic trajectories, which contains two large regular
islands. These regular islands correspond to the Type-II tra-
jectories and describe motion around the torus in phase with
the driving period, i.e., after one driving period the particle
on a Type-II trajectory has circled the torus exactly once.
Both regular islands describe the same kind of motion, but
in opposite directions.

As one might expect, the size of the chaotic portion of
phase space decreases when the driving amplitude is de-
creased. This can be seen in Fig. 2(b) where E = 20. The
Type-I trajectories, as well as the two main fixed points we
identified in the previous figure are still present. However,
the chaotic region now occupies a much smaller momentum
range of the phase space. In addition, at the center of the
chaotic region around p ≈ 0 additional fixed points appear in
the phase space, e.g., at [u, p] ≈ [10.5, 0.45], [15.7, 0.8], and
[20.7,0.45]. They correspond to initial conditions in which
the particle stays within a narrow range of u and is hardly
affected by the driving. The reason for their appearance is
as follows: When the driving amplitude decreases, so does
the acceleration of the particle. Below a certain threshold the
particle has hardly moved before the driving field accelerates
the particle in the opposite direction. With decreasing driving
amplitude an increasing amount of trajectories with initial
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FIG. 2. Poincaré surfaces of sections (PSOS) for a particle on the toroidal helix, driven by a linearly polarized oscillating field for (a) E =
80, (b) E = 20, and (c) E = 4. Different colors are assigned to the trajectories for easier differentiation. Each PSOS features between 45 and
75 trajectories, each simulated for 2000 driving periods. (Quasi)periodic trajectories between the two chaotic regions (around p = 0) in (c) are
only shown in the inset [top left of (c)] to emphasize the splitting of the chaotic sea into two parts in the main figure. The inset in (b) visualizes
the particle motion on Vx (u) for the three different types of trajectories (I–III) during a driving period in the range u ∈ [−2πM/3, 2πM/3]. The
symbols I–III mark the inverse of trajectories (I–III), i.e., trajectories moving in the opposite direction. (I) Quasifree trajectories that are too
fast to be significantly affected by the driving. (II) Trajectories belonging to the large regular islands with the fixed points at |p| ≈ 5.35, which
move around the torus once during every driving period. (III) The chaotic trajectories (after the chaotic sea has split) move by one winding
during each driving period.

conditions around p = 0 will exhibit this behavior. The effect
on the phase space can be seen in Fig. 2(c) for E = 4 (note the
adjusted range of p values). Here the driving amplitude is suf-
ficiently small, such that for every u there is a (quasi)periodic
trajectory [pictured only in the inset of Fig. 2(c)] close to
p = 0 that is hardly affected by the driving and mostly stays
in place. An interesting result is, that the appearance of these
trajectories is splitting the chaotic sea into two parts: One with
p > 0 [marked III in Fig. 2(c)] and one with p < 0 (marked
III), which we will refer to as Type-III trajectories. This has
significant consequences for the dynamics. Type-III trajec-
tories starting in the chaotic region with p > 0 will remain
there and maintain a strictly positive momentum. Inverting the
direction of movement is impossible, since that requires slow-
ing down and crossing the region of regular islands around
p = 0. The same is of course true for trajectories starting
in the chaotic region with p < 0. In other words: When the
chaotic sea splits up, we transition from a single chaotic sea
in which all trajectories have an average velocity of zero, to
two completely separated (symmetric) chaotic seas in which
chaotic trajectories have an average velocity of either +2π

(upper chaotic sea) or −2π (lower chaotic sea).
In Fig. 3 we take a closer look at this split up of the chaotic

sea. A close up of the split appearing in the PSOS is shown
in Figs. 3(a)–3(c). For clarity, the PSOS’s of Figs. 3(a)–3(c)
only contain initial conditions from the chaotic region with
p < 0. In Fig. 3(a), at E = 7, the emerging (quasi)periodic
regions around p = 0 are clearly visible. However, changing
the direction of motion is still possible and happens indeed
frequently. The momentum evolution p(t ) of a representative
example trajectory is shown in Fig. 3(d) (blue curve). From
this p(t ) curve we can see that already for E = 7 there are
effectively two momentum ranges the particle can be con-
fined to. The particle frequently switches between having

either positive or negative momentum for extended periods of
time.

When the driving amplitude is decreased further to E = 4
[see Fig. 3(b)], the two chaotic phase space regions are almost
separated from each other. An inversion of the direction of
movement now happens much less frequently. In the phase
space this can be seen from the decreasing density for p > 0.
From the corresponding example trajectory in Fig. 3(d) (red
curve), we see that the momentum inversion now also takes a
much longer time than for E = 7. It takes our example trajec-
tory almost ∼2200 driving periods to change its momentum
from p < 0 to p > 0.

Finally, for E = 3 [Fig. 3(c)], the two phase space regions
are completely separated from each other. None of our tra-
jectories cross into the phase space region with p > 0. In this
regime, the dynamics of all simulated trajectories resemble
that of our example trajectory in Fig. 3(d) (yellow curve):
The trajectories are chaotic while sustaining a strictly negative
momentum.

A better understanding of the Type-III trajectories can be
gained from statistical averages. We consider the average
velocity vav , as well as the mean switch time ts. For a set of tra-
jectories u(ui, pi, t ) with initial conditions u(t = 0) = ui and
p(t = 0) = pi the average velocity is determined by averaging
the mean velocities of all trajectories

vav = 1

NT

N∑
i=1

∫ T

0

du(ui, pi, t )

dt
dt, (10)

where T is the simulation time of individual trajectories. We
define the mean switch time as the average time a particle
spends with p > 0 (or p < 0) before inverting the direction of
its motion. Note, that within our numerical simulations, there
are limitations regarding the calculation and accuracy of ts.
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FIG. 3. (a)–(c) PSOS created from ∼103 trajectories with initial
conditions in the chaotic sea (u ∈ [0, 1] and p ∈ [−0.42, −0.62]).
Each particle was simulated for 5000 driving periods. The appear-
ance of stable trajectories around p = 0 splits the chaotic sea into two
seas, when the driving amplitude E is decreased. (d) Representative
example trajectories emanating in the chaotic sea for p < 0 for E = 3
(yellow), E = 4 (orange), and E = 7 (blue). The two momentum
regimes the particles are confined to are clearly visible. Transition
between the two regimes is more likely for larger driving amplitudes.
(e) The average transport velocity vav and switch time ts as a function
of the driving amplitude. Each data point was obtained from simula-
tion numbers and times similar to those of (a)–(c).

We can only determine ts accurately from our simulations,
if we (on average) observe at least one switch in the time
T . Since each trajectory was simulated for T = 5000 driving
periods, our value of ts is accurate for values below ts � 2500.
In practice, we simulate 103 trajectories for 5000 time steps,
count the total number of switches n in all simulations, and
then calculate ts = 0.5 107/n.

Figure 3(e) shows both vav and ts as a function of the
driving amplitude. For better insight into the dynamics of
the Type-III trajectories both curves were only obtained from
trajectories with p(t = 0) > 0. Until the split up of the chaotic
region at about E = 4 both quantities increase with decreasing
driving amplitude. From ts we see that long before the two
chaotic regions are separated from each other, the particles
perform very long flights without inverting the direction of
their motion. Even for E = 7, where the chaotic regions
are still reasonably well connected in the phase space [see
Fig. 3(a)], we have a mean switch time of ts > 600 driving
periods.

In the figure, our mean switch time exceeds the critical
value of ts = 2500 for driving amplitudes E < 6. As stated
above, we cannot accurately calculate ts in this regime of
driving amplitudes because the change of the direction of
motion happens too infrequently. Consequently, in this regime
the choice of initial conditions [p(t = 0) < 0] becomes ap-
parent in the statistics of vav . While ts > 2500, the average
velocity vav increases with increasing ts. When the two chaotic
phase space regions splits up at around E = 4, vav reaches a
plateau [see vav in Fig. 3(e)]. After the split up, the Type-III
trajectories have a consistent mean velocity of slightly less
than vav ≈ 2π . This velocity corresponds to a position change
of about one helix winding during each driving period. More
precisely, each driving period the chaotic Type-III trajectories
move between neighboring minima in the WIP. Therefore, the
dynamics of Type-III trajectories are similar to the Type-II
trajectories, except that they are mostly determined by the
minima of the WIP with the TIP being a perturbation that
is mostly responsible for the chaos. In contrast, the Type-II
trajectories are mostly determined by the minima of the TIP,
with the WIP acting as a perturbation. For even lower driving
amplitudes the perturbation due to the TIP becomes small
enough for the Type-III trajectories to stabilize into a series
of fixed points [similar to the ones shown in Fig. 4(a) for a
rotating driving field].

Since the Type-III trajectories emerge due to the WIP, it
is no surprise that the occurrence of the phase space split
depends on the helix radius r. For larger values of r, the
(quasi)periodic trajectories around the Type-III fixed points
will already stabilize for larger values of E , since the relative
strength of the perturbation due to the TIP decreases. For a
large enough r, it is possible for the Type-III fixed points to
stabilize before the chaotic region is splitting up. In extreme
cases this may even prevent the occurrence of chaotic Type-III
trajectories.

The only independent system parameter we did not dis-
cuss so far is the winding number M. Changing M does not
significantly affect the overall dynamics. However, due to the
relation R = Mh/2π and our choice of units (thereby setting
h = π/2), changing M will change the torus radius R, thereby
changing the momentum of the Type-II trajectories. This, in
turn, changes, e.g., the driving amplitude required for a mixed
phase space as shown in Fig. 2(a). This also changes the ratio
of r/R and may cause the periodic Type-III fixed points to
stabilize at different driving amplitudes. Increasing M also
increases the number of extrema in the WIP, leading to more
fixed points in the (quasi)periodic Type-III trajectories once
they stabilize. Besides this, however, the split up of the chaotic
phase space region is mostly unaffected.

IV. PARTICLE DYNAMICS IN THE PRESENCE
OF A CIRCULARLY POLARIZED FIELD

Another intriguing split up in the phase space can be ob-
served when driving with a circularly polarized field in the
xy plane. In this case, the driving law is characterized by the
time-dependent potential landscape Vxy(u, t ) given in Eq. (8).
In this section, we will encounter trajectories that are very
similar to the Type-I-III trajectories that were classified in
Sec. III. We will again refer to them as Type-I, -II, and -III
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FIG. 4. Poincaré surfaces of sections (PSOS) for a particle on a
toroidal helix driven by a circularly polarized field in the xy-plane.
The inset in (c) visualizes the dynamics of different trajectories
(I, II, and III) on Vxy(u, t ) in the range u ∈ [−2πM/3, 2πM/3]. The
symbols I–III mark the inverse of trajectories (I–III), i.e., trajectories
moving in the opposite direction. (I) Quasifree trajectories that are
too fast to be significantly affected by the driving. (II) Trajectories
that are trapped in a well of the potential Vxy and move around the
torus once during every driving period. (III) Chaotic and regular
trajectories that (after the chaotic sea has split) move one helical
winding during each driving period. The PSOS are shown for driving
amplitudes of (a) E = 3, (b) E = 10, (c) E = 40, (d) E = 400, and
(e) E = 1000. In (e) the coloring was changed to emphasize the split
of the chaotic region; except for one highlighted periodic trajectory
(black) all data points are colored blue. The two chaotic regions
correspond to chaotic motion that is trapped in the moving potential,
and chaotic motion that is (on average) slower than the moving
potential. The yellow curve in (f) shows the motion of the highlighted
(black) trajectory of (e) in the moving potential.

trajectories. Type-I trajectories are again invariant spanning
curves that limit the momentum of chaotic trajectories and
are hardly affected by the driving. Type-II trajectories move
around the torus in phase with the driving. This time, however,
the potential Vxy describes a running wave, and the Type-II
trajectories correspond to particles that are trapped in one
of the moving potential wells. Type-III trajectories refer to
trajectories that are unable to invert their direction of move-
ment and move between successive minima of Vxy during each
driving period with an average velocity of vav = 2π .

An overview of the phase space for M = 10 and r = 0.2 is
given in Figs. 4(a)–4(e). For a large part, the phase space is
very similar to the one shown in the previous section: There is
a large regular island of Type-II trajectories corresponding to
motion around the torus in phase with the driving period. The

size of the corresponding chaotic region increases with the
driving amplitude and leads to a mixed phase space for large
E . The chaotic region is surrounded by Type-I trajectories.
Also, the r sin(u) dependence of Vav leads to the presence of
Type-III trajectories for very low driving amplitudes, which,
due to perturbations in form of the R-dependent term in Vav ,
can be chaotic and lead to a splitting of the chaotic sea similar
to the one discussed in Sec. III. At the same time, however,
there are major differences. Since our driving law breaks par-
ity and time inversion symmetries in the equations of motion,
the resulting phase space is not symmetric anymore. Instead
of two fixed points with Type-II trajectories as in Fig. 2,
there is now only one that corresponds to motion around the
torus with the same direction as the rotation of the driving
field. Furthermore, the emergence of Type-III trajectories with
decreasing driving amplitude is not symmetric anymore. For
our example parameters (quasi)periodic Type-III trajectories
with p > 0 emerge even before the split of the chaotic sea has
begun [see Fig. 4(b)].

The most interesting difference, however, emerges for very
large driving amplitudes. Whereas in the case of a linearly os-
cillating driving field a larger driving amplitude mostly leads
to an increased chaotic region, new structures can emerge in
the phase space when driving with a rotating large ampli-
tude field. For very large driving amplitudes [see Fig. 4(e)]
regular (quasi)periodic trajectories appear and split up the
chaotic sea into two regions. These (quasi)periodic trajecto-
ries correspond to Type-II trajectories that move around the
toroidal helix in phase with the driving. This can be seen from
Fig. 4(f), which shows the path of the highlighted (black)
trajectory from Fig. 4(e) in the driving potential. For conve-
nience, the data is plotted in a moving reference frame that is
moving in phase with the driving potential.

The two different chaotic regions in Fig. 4(e) correspond
to different kinds of chaotic motion. The chaotic region sur-
rounded by the newly stabilized periodic Type-II trajectories
consists entirely of trajectories that are trapped in a valley
of our driving potential. While the motion is chaotic, each
trajectory will on average move in phase with the driving,
once around the toroidal helix during each driving period.
These trajectories are consequently also Type-II trajectories—
just chaotic and not (quasi)periodic. With increasing driving
amplitude, the chaotic Type-II trajectories will stabilize into
periodic Type-II trajectories.

Before the driving amplitude is large enough to stabilize
any of these new (quasi)periodic Type-II trajectories, there
is a long intermediary range of driving amplitudes during
which the two chaotic regions are separated from each other
by a permeable cantorus (i.e., an unstable KAM torus). A
corresponding phase space is shown in Fig. 4(d). The pres-
ence of the cantorus allows for an appealing dynamics of the
chaotic trajectories. When they cross the cantorus, they switch
between two different kinds of chaotic motion. An example
for such a trajectory is shown in Fig. 5(a) for a driving am-
plitude of E = 500. The plotted trajectory u(t ) + 2πMt has
a negative (or positive) slope if the particle is moving faster
(or slower) around the torus than the rotating driving field.
The particle in the figure starts in the chaotic region outside
of the cantorus barrier (i.e., it is not a Type-II trajectory).
In this region it will (on average) be too slow to move in
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FIG. 5. (a) Example trajectory in a comoving reference frame
that moves in phase with the driving field. When the particle crosses
the cantorus and becomes a chaotic Type-II trajectory, u(t ) − 2πMt
will become constant, which is demonstrated in the inset. (b)–
(d) Each figure shows a PSOS for six trajectories (with the same
initial conditions for each figure) for (b) E = 300, (c) E = 400, and
(d) E = 500. In (b) and (c) only one of the six trajectories manages
to cross the cantorus, whereas in (c) all trajectories frequently switch
between the two types of chaotic motion. (e) Average velocity for
particles started in the chaotic sea with initial conditions chosen close
to [u, p] ≈ [15π, 0]. Each data point was obtained from 103 trajec-
tories, each simulated for 104 driving periods. The chaotic Type-II
trajectories are faster than those from the other chaotic region, so the
velocity decreases with decreasing permeability of the cantorus.

phase with the driving field. Once it crosses the cantorus, the
dynamics become that of a chaotic Type-II trajectory. This is
highlighted by the inset, which zooms into a small region of
the trajectory during which the particle crosses the cantorus,
briefly becomes a chaotic Type-II trajectory, and then crosses
the cantorus again into the other chaotic region. The times par-
ticles spend as chaotic Type-II trajectories follow a power law
with a critical exponent that depends on the driving amplitude
and the permeability of the cantorus.

The permeability of the cantorus does not simply decrease
with the driving amplitude until the two chaotic regions are
separated from each other. It switches multiple times between
being more or less permeable before the driving amplitude
is large enough to separate the two chaotic regions. This is
demonstrated in Figs. 5(b)–5(d). They each show the PSOS
of six trajectories (with the same initial conditions [u, p] used
for each figure) for various driving amplitudes. For E = 300

and E = 400, the two regions are almost separated from each
other and in both cases only one of the trajectories manages
to cross the cantorus. Despite the vast difference in driving
amplitudes, there is very little difference in the permeability
of the cantorus. In contrast, for E = 500 all of the trajectories
switch frequently between the two regions. In this case, the
presence of a cantorus is not even obvious from the phase
space alone. Only when looking at the individual trajectories
[such as the one shown in Fig. 5(a)], we can distinguish
between the different chaotic dynamics of the two chaotic
regions.

The average velocity is different for both chaotic regions,
and we shall use this to analyze the split up of the chaotic
region. This is shown in Fig. 5(e). It shows the average ve-
locity vav as a function of the driving amplitude. Each data
point was obtained from 103 trajectories started in the chaotic
region around [u, p] ≈ [15π, 0], and with simulation times of
104 driving periods for each trajectory. Note, that for very low
E , when the Type-III trajectories for p > 0 and p < 0 are sep-
arated by invariant spanning curves (i.e., Type-I trajectories),
we chose initial conditions with p < 0, leading to some bias in
the data for very low E . Note also, that the curve may slightly
change for different simulation times, if the switch time for
the cantorus crossing exceeds the simulation time.

At first, for very low E , vav decreases with increasing driv-
ing amplitude, which is caused by a combination of Type-III
trajectories disappearing with increasing E , and a bias in our
initial conditions [compare vav in Fig. 3(e) and discussion
thereof]. Then, vav will (mostly) increase with increasing
driving amplitude until E ≈ 270. This increase is due to the
chaotic sea expanding and changing its mean momentum.
Above E ≈ 270, the cantorus appears and splits the chaotic
region in two, resulting in a sharp drop of vav . From then on,
there are peaks in vav whenever the trajectories can frequently
switch between the two chaotic regions: (e.g., the plateau
around E = 500). Around E ∼ 900, the cantorus stabilizes
into periodic Type-II trajectories and the two chaotic regions
become fully separated from each other.

Similar to the phase space splitting for low driving ampli-
tudes discussed in Sec. III, this split likely originates from the
two different scales of oscillations in the driving potential. The
cantorus orbits are mainly stabilized due to the large scale
oscillation ∼qER cos(ωt − u/M ) of the running wave, with
the smaller oscillations ∼qEr cos(u) cos(ωt − u/M ) acting as
a perturbation that (for a wide parameter range) prevents the
Type-II trajectories from stabilizing and becoming periodic.
Due to the position dependence of the smaller oscillations,
the perturbation is always stronger for trajectories that are
tightly bound, i.e., closer to the fixed point, than for those with
greater variations of u̇(t ) − vav . This perturbation increases
with increasing the helix radius r and therefore a larger he-
lix radius requires larger driving amplitudes for the chaotic
region to split up. Similar to the discussion of Sec. III, the
winding number M changes the ratio of r/R and the velocity
of the Type-II trajectories. This can influence the general
parameter regimes in which the split up of the chaotic phase
space region is encountered, however, we did not observe any
changes in the underlying physics when varying the winding
number M.

052217-7



ANSGAR SIEMENS AND PETER SCHMELCHER PHYSICAL REVIEW E 103, 052217 (2021)

V. SUMMARY AND CONCLUSION

We have investigated the dynamics of a charged particle
confined to a toroidal helix, which is exposed to external driv-
ing forces originating from a time-dependent electric field.
The main results consist in the phenomenological description
and understanding of two different mechanisms for the split
up of the chaotic phase space region, both with their own
interesting consequences for the dynamics. We showed that
for low driving amplitudes the two different spatial scales of
oscillating potential lead to a split up of the chaotic region
around p = 0. This prevents chaotic trajectories to invert the
direction of their motion and leads to a consistent average
velocity of |vav| ≈ 2π for all diffusive trajectories. Especially
notable is that this split allows for chaotic particle trajec-
tories with nonzero average velocity, even in a case where
the spatiotemporal symmetries that are usually associated
with chaotic transport are not broken by the driving field.
Our understanding of this split and the resulting dynam-
ics is certainly also of interest in the context of Brownian
motors.

Specifically for driving with a circularly polarized field in
the xy plane, we found another mechanism for the split up
of the chaotic sea, this time splitting off a chaotic region in
which particles are trapped in a valley of the driving potential.
Trajectories confined to this separate region of the phase space

move around the torus in phase with the driving field and
will have a consistent average velocity of vav = 2πM. Before
this region is completely separated from the remainder of the
chaotic sea, there is a very large range of driving amplitudes
for which the trajectories can switch between the two chaotic
regions by crossing a permeable cantorus. The probability
of crossing the cantorus fluctuates heavily with the driving
amplitude. The origin of this separation has been identified as
a small perturbation of the driving potential, that is most in-
fluential around the extrema of the running wave and vanishes
in between those extrema.

The presented split ups of the chaotic phase space region
are not unique to setups with confining forces and mainly
depend on the different scales of oscillations in the driving
potential. A realization of similar physics in a driven lattice
with spatially varying forces, or with ultracold atoms in an
optical lattice seem feasible. Furthermore, recent experiments
have demonstrated the possibility of confining neutral atoms
to a helical path [51], however, in such setups, the realization
of our driving forces may be a challenge.
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