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Antipredator behavior in the rock-paper-scissors model
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When faced with an imminent risk of predation, many animals react to escape consumption. Antipredator
strategies are performed by individuals acting as a group to intimidate predators and minimize the damage when
attacked. We study the antipredator prey response in spatial tritrophic systems with cyclic species dominance
using the rock-paper-scissors game. The impact of the antipredator behavior is local, with the predation proba-
bility reducing exponentially with the number of prey in the predator’s neighborhood. In contrast to the standard
Lotka-Volterra implementation of the rock-paper-scissors model, where no spiral waves appear, our outcomes
show that the antipredator behavior leads to spiral patterns from random initial conditions. The results show
that the predation risk decreases exponentially with the level of antipredator strength. Finally, we investigate the
coexistence probability and verify that antipredator behavior may jeopardize biodiversity for high mobility. Our
findings may help biologists to understand ecosystems formed by species whose individuals behave strategically
to resist predation.
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I. INTRODUCTION

The spatial segregation of species is a fundamental issue in
ecology [1]. To this purpose, many authors have conducted
experimental and theoretical studies to understand how in-
teractions among individuals are responsible for ecosystem
formation and stability [2,3]. In this scenario, the experiments
with bacteria Escherichia coli unveiled the role of space to
preserve biodiversity [4]. There is a cyclic dominance among
three bacteria strains that can be described by the rock-paper-
scissors game rules [5]. However, the cyclic dominance is
not sufficient to guarantee coexistence, but individuals must
interact locally. The consequence is the formation of spatial
domains occupied mostly by individuals of the same species
[6]. The same phenomenon is observed in groups of lizards
[7] and coral reefs [8].

Given the relevance of the cyclic dominance in maintaining
biodiversity, stochastic simulations of the rock-paper-scissors
model have been an essential tool to comprehend how spatial
patterns appear and affect species persistence [9,10]. The sim-
ulations may be realized either considering a conservation law
for the total number of individuals (Lotka-Volterra implemen-
tation [11,12]) or with the presence of a variable density of
empty spaces (May-Leonard implementation [13–15]). This
paper focuses on the Lotka-Volterra version, where random
mobility competes with local predation interaction. In this
case, the spiral patterns observed in the May-Leonard stochas-
tic simulations of the rock-paper-scissors models are not
present, as shown in Ref. [16] (see also Refs. [17–20] for
generalizations of the rock-paper-scissors game).
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It is well known that behavioral strategies play a vital
role in evolutionary biology [3]. For example, movement
strategies drive individuals either searching for natural re-
sources (see Refs. [21,22]) or seeking refuge against enemies
[23,24]. Recently, it has been shown that behavioral move-
ment tactics may give advantages to species that compete
for space in cyclic models [25]. Another well-known animal
behavior is the resistance against predation [26]. For exam-
ple, many vertebrates and invertebrates perform Thanatonis
(death feigning) tactics to inhibit predator attack [27,28].
As an antipredator strategy, prey mites Tetranychus urticae
emit an odor when exposed to the predatory mite Phytoseiu-
lus persimilis to reduce the oviposition, and the consequent
predator population growth [29]. It has also been reported in
Ref. [30] that the western flower thrips Frankliniella occiden-
talis can kill the eggs of their predator, the predatory mite
Iphiseius degenerans. To protect themselves against predators,
spider mites also vary the nest size, and web density [31–33].
Furthermore, antipredator behavior leads individuals to form
groups [34]. Lizards Lampropholis delicata live together to
join efforts to respond to predation threat [35]. The alarm
vocalizations alerting against the presence of predators is one
of the benefits observed in groups of California bighorn sheep
Ovis canadensis californiana [36]. In addition, experiments
have shown that the antipredator behavior is crucial to sta-
bilize the predator-prey system at a population level [37].
Studies of the effects of grouping on predator-prey interac-
tions in cyclic models are scarce in the literature. Recently,
some authors presented the results for a generalization for
four species [38]. They investigated the system’s stability
when both predators and preys congregate to maximize their
performance in the game.

In this paper, we investigate the role of the antipreda-
tor behavior in cyclic nonhierarchical tritrophic systems. We
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FIG. 1. Illustration of the predation interaction rules among
species in the rock-paper-scissors model.

consider that (i) individuals of all species have the same ability
to respond to predation when threatened; (ii) the efficiency of
the antipredator response depends on the prey group size. Our
goal is to understand how the local dynamics of predator-prey
interactions change population growth and biodiversity. To
this purpose, we consider the Lotka-Volterra implementation
of the rock-paper-scissors game, where interactions are pre-
dation and mobility. We introduce a local effect on predation,
reducing the predation probability as a function of the prey
group size. This means that each predator has an effective
predation probability which depends on its local reality—the
number of prey in the neighborhood. We also consider an
antipredator strength factor to model the responsiveness to
predators. The outline of this paper is as follows. In Sec. II,
we introduce the model describing how the stochastic rules
are implemented and how antipredator behavior is modeled.
In Sec. III, we show the effects of the antipredator behav-
ior on the spatial patterns, comparing the results with the
standard Lotka-Volterra implementation of the rock-paper-
scissors game. In Sec. IV, we investigate the dynamics of the
spatial densities in the presence of the antipredator response.
We quantify the spatial patterns using the autocorrelation
function for various levels of antipredator strength in Sec. V.
The impact of the antipredator behavior on an individual’s
predation risk is presented in Sec. VI, while the biodiversity
maintenance in terms of the individual’s mobility is addressed
in Sec. VII. Finally, our comments and conclusions appear in
Sec. VIII.

II. THE MODEL

We consider a system composed of three species that dom-
inate each other according to the popular rock-paper-scissors
game rules, as illustrated in Fig. 1; the arrows indicate a cyclic
trophic dominance among the species. The different species
are labeled by i (or j) with i, j = 1, ..., 3, with the cyclic
identification i = i + 3 α where α is an integer. Accordingly,
individuals of species i prey on individuals of species i + 1.
The dynamics of individuals’ spatial organization happen in
a square lattice with periodic boundary conditions. We follow
the Lotka-Volterra numerical implementation, where the total
number of individuals is conserved [11,12]. In this scenario,
the total number of individuals is always equal to N , the total

number of grid points; each grid point contains one individual.
The possible interactions are

(1) Predation: i j → i i , with j = i + 1. Every time one
predation interaction occurs, the grid point occupied by the
individual of species i + 1 is occupied by a offspring of
species i.

(2) Mobility: i � → � i , where � means an individual of
any species. When moving, an individual of species i switches
positions with another individual of any species.

This work considers that individuals of every species
perform antipredator behavior: predation is harmed by a de-
fensive response of the prey group surrounding the predator.
The collective antipredator action leads to a decrease in preda-
tion probability that depends on the group size and the preys’
resistance level. To implement the model, we first define an
antipredator effect range, R, as the maximum distance that one
prey can interfere with the predator action, which is measured
in units of the lattice spacing. For a predator of species i, the
effective predation probability is a function of the fraction of
individuals of species i + 1 within a disk of radius R, centered
at the predator. Defining that Gmax is the maximum group
size—the number of individuals that fit within a disk of radius
—and considering that G is the actual group size surrounding
the prey, the effective predation probability is given by

peff = p e−κ G
Gmax , (1)

where κ is the antipredator strength factor, a real parameter
defined as κ � 0, indicating how the preys’ opposition jeopar-
dizes predation. κ = 0 represents the standard model, where
predation probability is given by peff = p. When prey fully
compose the predator’s neighborhood, G = Gmax, predation
probability is minimal: peff = p e−κ . Conversely, when one
prey is alone, it does not have the help of its cospecifics to
react to the predator. In this case, the likelihood of being
consumed is maximal: peff = p e−κ/Gmax .

We assumed random initial conditions, where each grid
point is given an individual of an arbitrary species. Initially,
the total numbers of individuals of every species are the same:
Ii = N /3, for i = 1, 2, 3. The interactions were implemented
by assuming the Moore neighborhood, i.e., individuals may
interact with one of their eight immediate neighbors. The
simulation algorithm follows three steps: (i) sorting a random
individual to be the active one; (ii) drawing one of its eight
neighbor sites to be the passive individual; (iii) randomly
choosing an interaction to be executed by the active individual
(m and peff are the mobility and predation probabilities). If
the active and passive individuals [steps (i) and (ii)] allow
the raffled interaction [step (iii)] to be performed, one time
step is counted. Otherwise, the three steps are redone. Our
time unit is called generation, which is the necessary time to
N interactions to occur. Throughout this paper, we present
results obtained for R = 3, which means that the prey group
size surrounding a predator varies in the range 0 � G � 28.

III. SPATIAL PATTERNS

We begin the numerical study by performing a single simu-
lation for the cases κ = 0 (the standard model), κ = 1, κ = 3,
and κ = 5. The realizations run in square lattices with 6002

sites for a time span of 5000 generations, assuming p = 2/3
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FIG. 2. Snapshots of simulations of the rock-paper-scissors
game illustrated in Fig. 1 running in square lattices with 6002 grid
points. Each dot shows an individual according to the color scheme
in Fig. 1. All simulations started from the same random initial con-
ditions. The upper left, upper right, lower left, and lower right panels
show the results for κ = 0 (the standard model), κ = 1, κ = 3, and
κ = 5.

and m = 1/3. The dynamics of the spatial patterns are shown
in videos in Refs. [39–42]. The snapshots depicted in the
upper left, upper right, lower left, and lower right panels
show the spatial configuration at the end of the simulations
for κ = 0, κ = 1, κ = 3, and κ = 5, respectively. The colors
follow the scheme in Fig. 1, where orange, dark blue, and cyan
dots show individuals of species 1, 2, and 3, respectively.

The aleatory distribution of individuals leads to a high pre-
dation rate in the initial stage of the simulation. In the standard
model (κ = 0), predators find and consume prey everywhere
without resistance. The local species segregation continuously
changes because of the cyclic predation interactions. For ex-
ample, when a group of individuals of species 1 appears, it
is consumed and substituted by individuals of species 2. The
new spatial domain of species 2 is, in its turn, destroyed by
individuals of species 3, that serve as food for species 1.
The consequence is the formation of irregular groups during
the simulation, as shown in the upper left panel of Fig. 2. The
video [39] shows the dynamics of the spatial patterns for the
standard model during the entire simulation.

When antipredator behavior is considered, predation is no
longer as likely probable to any predator. There is a local
effect on the predation probability: the larger the prey group
size, the more difficult it is to eat the prey. Because of this,
predators that are close to conspecifics have more chances
of devouring the prey. This accounts for the growth of the
species spatial domains, leading to spiral patterns. As one
sees in the upper right, lower left, and lower right panels of
Fig. 2, κ influences the spatial pattern formation. The more
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FIG. 3. Temporal changes of spatial species densities ρ in the
simulations presented in Fig. 2. The grey, yellow, blue, and red lines
represent the results for antipredator strength factor κ = 0 (standard
model), κ = 1, κ = 3, and κ = 5, respectively.

intense the prey’s resistance, the less likely predation to occur
away from the boundaries of predator-dominated domains.
Moreover, for higher κ , fewer predation interactions happen,
increasing the effective mobility rate, and consequently, the
spatial domain size ([14]). Videos [40] (κ = 1), [41] (κ = 3),
and [42] (κ = 5) show the dynamics of the species spatial
segregation.

IV. DYNAMICS OF SPECIES DENSITIES

To quantify the population dynamics, we computed the
spatial density ρ, defined as the fraction of the grid oc-
cupied by individuals of one species. Due to the cyclic
tritrophic chain’s symmetry–inherent to the rock-paper-
scissors model–the average spatial densities are the same for
each species. Therefore, we concentrate only on the spa-
tial density of species 1, that is function of time t , i.e.,
ρ(t ) = I1(t )/N .

The temporal changes in spatial densities of the simula-
tions showed in Fig. 2 were depicted in Fig. 3. The grey
line shows the dynamics of ρ for the standard model [39],
while the yellow, blue, and red lines represent the results for
antipredator strength factor κ = 1 [40], κ = 3 [41], and κ = 5
[42], respectively. The outcomes show that the territorial dom-
inance of species i (i = 1, 2, 3) is cyclic, as expected in the
predator-prey models [11,12]. The amplitude and frequency
of the spatial densities increase for larger κ , resulting from
the spiral pattern formation.

The species densities are also depicted in a ternary diagram
in Fig. 4 for κ = 0 (grey line), κ = 1 (brown line), κ = 3
(green line), and κ = 5 (pink line). Even though the fluctu-
ations of the species densities increase for larger κ , species
coexist because the spatial domain average size is smaller than
the grid size [13,43].

V. AUTOCORRELATION FUNCTION

The spatial autocorrelation function quantifies the species
spatial segregation, measuring how individuals of the same
species are spatially correlated. Again, we focus on computing
the autocorrelation function of species 1.
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FIG. 4. Ternary diagram of the species densities in the tritrophic
systems presented in Fig. 2. The orbits for the cases κ = 0, κ = 1,
κ = 3, and κ = 5, are showed by the grey, brown, green, and pink
lines, respectively.

The autocorrelation function is computed from the inverse
Fourier transform of the spectral density as

C(�r′) = F−1{S(�k)}
C(0)

, (2)

where S(�k) is given by

S(�k) =
∑

kx,ky

ϕ(�κ ), (3)

with ϕ(�κ ) being the following Fourier transform:

ϕ(�κ ) = F {φ(�r) − 〈φ〉}. (4)

The function φ(�r) represents the spatial distribution of in-
dividuals of species 1 (φ(�r) = 0 and φ(�r) = 1 indicate the
absence and the presence of an individual of species 1 in the
position �r in the lattice, respectively).

The spatial autocorrelation function is computed as

C(r′) =
∑

|�r′|=x+y

C(�r′)
min(2N − (x + y + 1), (x + y + 1)

. (5)

Finally, we found the spatial domains’ scale for C(l ) = 0.15,
where l is the characteristic length.

Figure 5 shows how the spatial autocorrelation function
changes in terms of the radial coordinate r, for various values
of κ . The results were averaged from a set of 100 simulations
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FIG. 5. Autocorrelation functions C(r). The grey, yellow, blue,
red, and green lines show the outcomes for κ = 0, κ = 1, κ = 3, κ =
5, and κ = 7, respectively. The horizontal dashed black line indicates
the threshold assumed to calculate the characteristic length. The inset
shows the characteristic length as a function of κ .
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FIG. 6. Mean predation risk as a function of the antipredator
strength factor. The results were averaged from a set of 100 simu-
lations of squares lattices with 3002 points. The error bars shows the
standard deviation.

with lattices with N = 3002; each simulation started from dif-
ferent random initial conditions. The spatial configuration was
captured after 3000 generations, for p = 2/3 and m = 1/3.
The yellow, blue, red, and green lines show the autocorrelation
functions for κ = 1, κ = 3, κ = 5, and κ = 7, respectively,
in the upper panel. The grey line shows the autocorrelation
function for the standard model, κ = 0. The horizontal black
line represents the threshold considered to calculate the length
scale, C(l ) = 0.15. The inset shows the characteristic length
in terms of κ . Accordingly, in the presence of the local effects
of the antipredator behavior, the spatial clustering of individ-
uals of the same species is remarkably augmented, reflecting
the visualized effects in the spatial patterns.

VI. PREDATION RISK

Now, we aim to comprehend how collective antipredator
behavior reduces the chances of an individual being killed.
For this reason, we compute the predation risk ζ . Because of
the symmetry of the rock-paper-scissors model, individuals of
every species have the same predation risk. We then focus on
calculating ζ for species 1.

We first count the total number of individuals of species 1
at the beginning of each generation. Subsequently, we count
how many individuals of species 1 are consumed during the
generation. The ratio between the number of preyed individ-
uals and the initial amount is defined as the predation risk, ζ .
To avoid the noise inherent in the pattern formation period, we
calculate the predation risk considering only the second half
of the simulation. Besides, we averaged the results every 30
generations.

To understand how the predation risk is sensitive to the
antipredator strength factor κ , we run sets of 100 realizations
with different random initial conditions for each value of κ .
The mean value of the predation risk, 〈ζ 〉 is depicted in Fig. 6
for 0 � κ � 7.25. The error bars show the standard deviation;
κ = 0 represents the standard model. We verified that the
predation risk decreases exponentially when the antipredator
strength factor grows. The best fit to the mean predation risk
is given by

〈ζ 〉 = 〈ζ0〉 e−μ κ, (6)

where 〈ζ0〉 = 0.123 ± 3.7 × 10−4 is the predation risk in
the standard model, whereas μ = 0.35 ± 1.6 × 10−3. The fit
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FIG. 7. Coexistence probability as a function of the mobility
probability m. The yellow, blue, red, and green lines show the results
for κ = 1, κ = 3, κ = 3, and κ = 7, respectively. The results were
obtained by running 1000 simulations in lattices with 1202 grid
points running until 1202 generations.

shows the influence of the neighborhood on the predation risk.
This means that μ computes the average antipredator effect
caused by the prey group surrounding every predator.

VII. COEXISTENCE PROBABILITY

Finally, we aim to discover how antipredator behav-
ior jeopardizes biodiversity. To this purpose, we performed
1000 simulations in lattices with 1202 grid points for
0.05 < m < 0.95 in intervals of � m = 0.05. The sim-
ulations started from different random initial conditions
and run for a time span of 1202 generations. Predation
probability was set to p = 1 − m. Coexistence occurs if
at least one individual of each species is present at the
end of the simulation, Ii(t = 1204) �= 0 with i = 1, 2, 3.
Otherwise, the simulation results in extinction. The coexis-
tence probability is the fraction of realizations resulting in
coexistence.

We investigated how coexistence probability is affected by
the antipredator strength factor κ . Figure 7 shows the results
for various values of κ . Yellow, blue, red, and green lines
show the coexistence probability for κ = 1, κ = 3, κ = 5,
and κ = 7, respectively. As Fig. 7 indicates, the coexistence
probability does not behave monotonically. This nonlinearity
is a result of both the change of the spatial patterns resulting
from the increase in κ and the stochasticity caused by the
different mobility probabilities [13].

For m < 0.55, species biodiversity is more threatened
when κ = 3, while m � 0.55, the chances of all species per-
sisting is lower for κ = 7.

VIII. COMMENTS AND CONCLUSIONS

We studied a tritrophic predator-prey system described by
the nonhierarchical cyclic rock-paper-scissors game. In our
model, collective behavior is responsible for the prey group’s
opposition against a predator. Considering that the preda-
tion probability decreases exponentially with the prey group
size and the antipredator strength, we performed a series of
stochastic numerical simulations to understand the effects on
the spatial pattern formation and species spatial densities.
We also investigated the impact on predation risks and the
coexistence probability.

Our main result shows that collective antipredator behavior
leads to spiral pattern formation. Here, the Lotka-Volterra
implementation of the rock-paper-scissors model shows the
presence of spiral waves in on-lattice simulations. In Ref. [16],
the authors claim that this is not possible when a conservation
law for the total number of individuals is assumed, nor is it
likely to form any other visible spatial pattern (this was con-
firmed in our simulations for κ = 0). The authors also claimed
that spiral patterns only appear whether the total number of
individuals on the lattice is no longer conserved [16], the
so-called May-Leonard implementation. In this case, besides
individuals of species 1, 2, and 3, empty spaces are also con-
sidered on the lattice (see Refs. [13–15,20]). Indeed, for the
Lotka-Volterra implementation, spiral patterns were observed
exclusively in off-lattice simulations [44–46]. Here, the spiral
patterns result from the influence of the group size on local
antipredator behavior: individuals on the borders between
predator-dominated and prey-dominated are more likely to
succeed in preying. This is similar to the May-Leonard im-
plementation, where individuals need empty spaces, mostly
present on domain boundaries, to reproduce.

Our findings also show how predation risk decreases ex-
ponentially with the antipredator strength factor. More, we
verified that the collective antipredator behavior might jeop-
ardize biodiversity for higher mobility probabilities. Our
outcomes help to understand how regional conditions affect
predators’ performance and, consequently, change population
dynamics in cyclic models. The results may also shed light on
investigations of complex systems in other areas of nonlinear
science.
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