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Self-organized spiral patterns at the edge of an order-disorder nonequilibrium phase transition
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We present a spatially extended version of the Wood–Van den Broeck–Kawai–Lindenberg stochastic phase-
coupled oscillator model. Our model is embedded in two-dimensional (2d) array with a range-dependent
interaction. The Wood–Van den Broeck–Kawai–Lindenberg model is known to present a phase transition from
a disordered state to a globally oscillatory phase in which the majority of the units are in the same discrete
phase. Here we address a parameter combination in which such global oscillations are not present. We explore
the role of the interaction range from a nearest neighbor coupling in which a disordered phase is observed
and the global coupling in which the population concentrate in a single phase. We find that for intermediate
interaction range the system presents spiral wave patterns that are strongly influenced by the initial conditions
and can spontaneously emerge from the stochastic nature of the model. Our results present a spatial oscillatory
pattern not observed previously in the Wood–Van den Broeck–Kawai–Lindenberg model and are corroborated
by a spatially extended mean-field calculation.
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I. INTRODUCTION

The study of discrete state stochastic oscillators has re-
ceived a great deal of attention in the past decade. This kind
of systems is used to model a wide range of different systems.
We can highlight numerous studies that present models in
which a network of coupled oscillators undergoes a phase
transition to a synchronized phase when the coupling strength
exceeds a certain threshold; see, for instance, Refs. [1–12].

A specific model of three state oscillators exhaustively
studied by Wood and collaborators [9–12], referred here
as the Wood–Van den Broeck–Kawai–Lindenberg model, is
composed by oscillators coupled by the transition rates that
depends on the number of units in each state. A phase tran-
sition from a disordered phase to a synchronized phase was
fully characterized for this system. Afterward, it was shown
that this model presents a second transition from the syn-
chronized phase to a phase in which the system is dominated
by one state with a few units on the other states [13,14].
Most of these results focused on a globally coupled system
and the effects of fluctuations due to finite numbers [15].
More recently, we explored the effects of a nonlocal cou-
pling on a one-dimensional array. With this coupling, the
system presents very rich dynamics with not only disordered
and synchronized phases but also the formation of traveling
waves [16].

In this paper, we focus on a two-dimensional system with
nonlocal interactions that presents a rich variety of spatial

patterns. Our system is a two-dimensional lattice of three
state oscillators with unidirectional transitions governed by
Markov processes. The transition rates of each unit presents a
dependence on the states of all the units in the neighborhood.
Here we set the interaction parameter value (corresponding to
the phase dominated by a single state in the globally coupled
model) and explore the range of the neighborhood. For a
small interaction range the oscillators interact with only a
few other oscillators and a disordered state emerges, while
a middle range interaction leads to the formation of circular
waves with spiral-like sources, and for large interaction ranges
a coarsening transient occurs that leads the system to a state
in which almost the entire population of oscillators are in the
same state; this behavior is in agreement with results for the
global coupled system.

The paper is organized as follows: In Sec. II, we describe
our model. In Secs. III and IV, we present results obtained
from numerical simulations. In Sec. V, we present a mean-
field approach to the investigated model. In Sec. VI, we
present our conclusions.

II. MODEL

Inspired by the work of Wood [9–12], in this paper we
explore a set of Markovian three-state stochastic oscillators
with unidirectional transitions as in the schematic picture of
Fig. 1, arranged in a two-dimensional lattice. This particular
model of stochastic oscillator recently gained attention for
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FIG. 1. Schematic picture of a three-state stochastic oscillator
with unidirectional transitions.

being one of the simplest models of discrete-state stochastic
oscillators that undergo a transition to a synchronized state.

As in the Wood–Van den Broeck–Kawai–Lindenberg
model of three-state stochastic oscillators, the transition rates
depend on the density of units in each state. For our model,
we also take into account the spatial distribution of the units
and we define the transition rates as

gi = exp [a(νi+1 − νi )], (1)

in which gi represents the rate of the transition for a unit
in state i to the state i + 1, a is the coupling parameter and
controls how strong is the coupling between the units, and νi

is the density of units in the state i weighted by the kernel fσ .
Hence, we can write νi as

νi(�r, t ) =
∑
�r′∈�

fσ (�r′)si(�r + �r′, t ), (2)

where �r is the position vector of a given unit, � is the set of �r
for all units in the array, and si is 1 if the unit is in state i and
0 if the unit is in any other state. By the use of the convolution
theorem, this computation can be done considerably more
quickly, as discussed in the Appendix. For our simulations,
we used the interaction kernel fσ (�r) as

fσ (�r) =
⎧⎨
⎩

Nn, for |�r| < σ
Nn
2 , for |�r| = σ

0, for |�r| > σ

, (3)

where Nn is a normalization constant that confines νi to the
interval between 0 and 1. In our model, we use periodic
boundary conditions, and we always consider σ smaller than
half the length of the system, not counting the contribution of
each oscillator for νs twice.

III. SPIRAL-LIKE STRUCTURES AT THE EDGE
OF AN ORDER-DISORDER NONEQUILIBRIUM

PHASE TRANSITION

It is well known that the Wood–Van den Broeck–
Kawai–Lindenberg model presents a phase transition to a
synchronized oscillatory state in which most of the oscillators
cycle through the three discrete states in unison [10–12]. This
transition to the synchronized phase is well explored; the
critical point occurs for the coupling parameter ac = 1.5, with
the synchronized phase occurring for strong coupling and a

disordered phase for weak coupling [9]. Further increase in
the coupling parameter can induce a second phase transition
with a critical point ac ≈ 3.1. This second transition occurs
between a globally oscillatory phase and an ordered phase in
which the system gets “stuck” with almost all units in the same
state [13]. From the bifurcation diagram of the mean-field
dynamical equations, an infinite period bifurcation [17] can
be observed; this bifurcation disrupts the synchronized state,
generating three symmetric ordered states.

Characterization of the transition from the disordered to
oscillatory phase in a locally coupled lattice shows that this
phase transition presents signatures of the XY universality
class [9] with a lower critical dimension dlc = 2 and upper
critical dimension dlc = 4, such that no synchronized phase is
observed for the two-dimensional locally coupled case.

In our simulations, we used a square lattice with periodic
boundary conditions. The coupling parameter was kept con-
stant, a = 3.5, such that even in the global coupling limit
(σ → L) the global oscillations are absent. We explored the
effect of interaction range and how the system behaves on this
route from a disordered phase observed for nearest neighbor
interaction and an ordered phase with the global coupling.

Results from the stochastic simulation of this arrangement
are summarized in Fig. 2. We could observe three kinds
of dynamics shown on the three top panels of Fig. 2: On
the left panel is the nearest neighbor (σ = 1) case, showing
a disordered phase with no distinguishable pattern. In the
middle panel is shown the case with a “medium interaction
range” (σ = 3.5) with a clear spiral-like wave pattern; in this
regime, the system presents interesting dynamics with spiral-
like structures circulating and generating the waves [18]. On
the right panel, we present a snapshot for sufficiently long-
range interactions (σ = 7); in this case the ordered phase
arises and most units are “frozen” in the same phase.

In order to identify the phase transition to the or-
dered phase, we use the Kuramoto order parameter [19,20]
defined as

reiψ = 1

N

N∑
j=1

eiθ j , (4)

in which θ j is the phase of the oscillator j, taken to be
2π ( k−1

3 ), where k is the state of oscillator j, and in our case
k ∈ {1, 2, 3}. This complex order parameter tells us the aver-
age phase of the population ψ and the amplitude r measures
the coherence of the population. For the specific case of three
discrete states, r = 0 (disordered phase) if the oscillators are
evenly distributed in the states. In the case that all the popula-
tion is concentrated in a given state, r = 1 (ordered phase).

On the bottom panel of Fig. 2 we present r as a function of
σ ; these results were obtained from the following simulation
scheme: We started from a homogeneous condition (all units
in the same state) with σ = 1 and we evolve the dynamics
for a long time (2 × 104 time steps); after this long time
evolution we change the σ value and use the final state as
the starting condition. We used this scheme for an increasing
σ (points linked by continuous lines) and for decreasing σ

(points linked by dashed lines).
We used three lattice sizes of side, L = 128 (red circles),

L = 256 (blue triangles), and L = 512 (green diamonds).
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FIG. 2. Top: Snapshots of the steady state for three different interaction ranges with L = 512. σ = 1 in the left panel, σ = 3.5 in the middle
panel, and σ = 7 on the right panel. On the bottom, we present the Kuramoto order parameter as a function of the interaction range σ . Here
we explored lattices with different sizes L = 128 (red circles), 256 (blue triangles), and 512 (green diamonds). We use the final state for each
σ value as the initial condition for the next one; we denote increasing σ with points linked by a continuous line and decreasing σ with points
linked by dashed lines.

This simulation scheme clearly shows a coexistence region in
which the system presents spiral-like wave patterns (Fig. 2,
top middle panel) and the ordered phase (Fig. 2, top right
panel), depending on the initial conditions. For decreasing σ ,
we observe a decay in r associated with the formation of the
spiral-like wave pattern for σ ≈ 5 independent of lattice size.
For increasing σ , a sharp increase in r associated with the
ordered phase occurs for different values of σ depending on
lattice size such that the coexistence is observed in a larger
range of σ for larger lattices. It is important to note that
the spiral-like wave pattern is characterized by r ≈ 0 being
on the edge of the transition to the ordered state. It is also
worth noting that the area between hysteresis curves can be
affected by the cooling time between the adjustments on the
control parameter σ ; to obtain the bottom panel of Fig. 2
a long cooling time was used, such that a slight decrease
was observed for L = 128 using a cooling time twice as
long. For the larger values of L, no difference of the area
between the hysteresis curves was observed as we doubled the
cooling time.

Further investigation shows that the spiral-like wave pat-
terns increase in size as we increase σ , as shown on Fig. 3.
On the left panel, we can observe the pattern obtained for
σ = 4: The system always evolves to sustain such pattern
independent of the initial conditions. On the middle panel, we
can observe that the spiral-like structures on the pattern are
large. This state can only be obtained if the system presents
a nonhomogeneous initial condition; it does not emerge for
an homogeneous initial condition as can be observed on the
lower panel of Fig. 2. On the right panel of Fig. 3, we observe
the pattern for σ = 20; in such a case, only a single sta-
ble spiral-like structure is observed. For sufficiently large σ ,

the lattice does not support the existence of the central spiral-
like structure, since the generated wave interacts with the
central spiral-like structure.

We can observe that r assumes low values for local cou-
pling; for sufficiently long-range interactions the ordered
phase (high value of r) is observed. This was expected since it
reproduces the two-dimensional local coupling limit and the
global coupling [10].

For very short interaction range (σ < 3), a disordered state
such as presented in top left panel of Fig. 2 is observed; the
spiral-like pattern spontaneously emerges for σ ≈ 3 indepen-
dent of the initial conditions. As we increase the interaction
range (σ ≈ 5), the spiral-like pattern emergence becomes
strongly dependent on the initial conditions.

This dependence can be explained as following: For short-
range interactions, a small pattern is required to support the
emergence of vortex-like structures; this pattern can emerge
spontaneously due to the stochastic nature of the units. As
the interaction range increases, a larger pattern is required
to support the existence of the spiral-like structures. In our
simulation scheme for Fig. 2, we use the final state of the
previous value of σ as the initial state for the next simulation
(with different value of sigma). For the case in which the
simulation starts with an already existing spiral-like pattern,
the spiral-like structures tend to persist (increasing σ simu-
lations). For the case of an absence of spiral-like structures
in the initial state, the emergence of the spiral-like struc-
tures occurs only for short-range interactions (decreasing σ

simulations).
The above description is corroborated by our mean-field

analysis in the Sec. V.
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FIG. 3. Snapshots of the spiral-like pattern in three different interaction ranges: σ = 4 in the left panel, σ = 10 in the middle panel, and
σ = 20 on the right panel. The lattice size is L = 256.

IV. MAXIMUM SYNCHRONIZED CLUSTER
SIZE AS AN INDICATIVE OF EXISTENCE

OF SPIRAL-LIKE STRUCTURES

Since the Kuramoto order parameter fails to identify the
emergence of spiral-like structures, we propose the maximum
size of a cluster of synchronized units for such, and it is
formally defined as

cmax = 〈3(n1maxn2maxn3max)1/3〉, (5)

where nkmax = Nkmax
N , with Nkmax being the largest cluster in

state k, N is the total number of lattice sites, and 〈.〉 denotes a
temporal mean. In the synchronized region, the largest clusters
of the three populations are all large, so cmax is large, while
cmax is small either if all clusters are small or even if one or
two clusters are large as long as at least one cluster is small.
The factor 3 is a normalization factor so that the maximum
value of cmax is 1 (there is only one cluster of each population
and the clusters are of the same size, so that n1max = n2max =
n3max = 1/3).

Figure 4 presents cmax calculated for lattices of different
sizes; the same simulation scheme used in Fig. 2 was used
here. The same color code used for Fig. 2 was used here with
L = 128 (red circles), L = 256 (blue triangles), and L = 512
(green diamonds) with continuous (dashed) line indicating
the increasing (decreasing) σ . The cmax measurement can
detect the presence of spiral-like structures in the system;
observe that cmax increases for values of σ in which spiral-
like structures are observed and rapidly vanishes for values
of σ in which spiral-like structures collapses and only the
ordered state is observed. Using cmax and the Kuramoto order

parameter, one can determine in which phase a given lattice
is observed. If both are 0, the system is in a disordered state;
if r = 0 and cmax > 0, spiral-like structures are present; and if
both r > 0 and cmax = 0, the system is in the ordered phase.

V. MEAN-FIELD APPROACH

We have also explored the appearance of all this type of
waving patterns in the mean-field (noiseless) version of the
model. In order to do a mean-field analysis for this model, we
start with the master equation for the probability pi(�k, t ) that a
unit on the position �k of the lattice is in state i at time t . Also,
we have the probability normalization condition, expressed
by p1(�k, t ) + p2(�k, t ) + p3(�k, t ) = 1; using this condition, we
can obtain the probability dynamics from only two equations:

ṗ1(�k, t ) = g3(�k, t ) − [g1(�k, t ) + g3(�k, t )]p1(�k, t )

− g3(�k, t )p2(�k, t ), (6)

ṗ2(�k, t ) = −g2(�k, t )p2(�k, t ) + g1(�k, t )p1(�k, t ),

with gi(�k, t ) defined by Eq. (1) and pi(�k, t ) as the probability
of finding a unit in state i in position �k at time t .

We can solve this system using the mean-field approxima-
tion, relating si with the probabilities pi:

νi(�k, t ) ≈ 〈νi(�k, t )〉 =
∑
�

fσ (�k′)pi(�k + �k′, t ). (7)

Observe that the normalization constant Nn keeps νi bounded
between 0 and 1.

FIG. 4. Maximum synchronized cluster size as a function of the interaction range σ . Here we explored lattices with different sizes L = 128
(red circles), 256 (blue triangles), and 512 (green diamonds). Unlike the Kuramoto order parameter, this new parameter allows the detection
of spiral-like structures, being zero when spiral-like structures are absent.
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FIG. 5. Snapshots of the initial condition and the evolution to the
steady state for the solution of the mean-field equations (σ = 1).

Equations (6) can be solved numerically using the mean-
field approximation (7).

In our numerical solution, a 256 × 256 lattice was used,
and at each point of the lattice we integrated the differen-
tial equations for p1(�k, t ) and p2(�k, t ) using a fourth-order
Runge-Kutta algorithm. Observe that this approach allows us
to investigate the evolution of the system without any noise,
intrinsic to the stochastic nature of the model. In this case,
the steady state is highly sensitive to the initial conditions
for p1(�k, t ) and p2(�k, t ). This fact is corroborated by Figs. 5
and 6; both figures were obtained from the solution of the
mean-field equations with σ = 1, and the left panel of each
figure shows the initial condition for each case [18].

In Fig. 5, the initial condition is an homogeneous square
in the center of the lattice; as the system evolves, this ho-
mogeneous domain increases (right panel) and dominates the
whole lattice, resulting in the ordered phase in the transient
regime. This result shows that the disordered state in the
stochastic simulations occur due to the random nature of the
oscillators associated with the short-range interaction (fewer
units interacting results in larger fluctuations) [15].

In Fig. 6, the initial condition is a small spiral-like structure
in the center of the lattice; for this case, the system evolves,
generating a stable spiral-like structure. The steady state of
the system develops such that traveling waves are observed
generated by the central spiral-like structure; a snapshot of this
steady state is shown in the right panel of Fig. 6. For higher
values of σ , larger spiral-like structures as initial conditions
are needed to maintain the central spiral-like structure, and
larger spiral-like patterns are observed at the steady state.

These mean-field results support the dynamics observed
from the stochastic simulations. When we have small values

FIG. 6. Snapshots of the initial condition and the evolution to the
steady state for the solution of the mean-field equations (σ = 1).

of σ , the random nature of the units dominates and only a
disordered phase is observed; as σ increases, small spiral-like
structures spontaneously appear and persist as stable struc-
tures. Once we have a spiral-like pattern formed either by
noise or set as an initial condition, it is stable and persists for
long periods. For larger σ , the spiral-like structures are larger,
up to the point that they interact with themselves due to the
periodic boundary conditions and get annihilated. In the case
where the initial condition is homogeneous, the spiral-like
structures appear only when the interaction range is short
enough to allow the central pattern of the spiral-like structure
to spontaneously appear as a result of fluctuations (in this case,
the emergence of the spiral-like structures depends on σ and
not on the lattice size).

VI. CONCLUSIONS

In this paper, we study the Wood–Van den Broeck–Kawai–
Lindenberg model of discrete phase-coupled oscillators, in
which each oscillator has three discrete phases and cycles
through them in an unidirectional way. Our model departs
from the original Wood–Van den Broeck–Kawai–Lindenberg
model by the inclusion of an interaction range parameter σ

on a two-dimensional lattice. The interaction range parameter
is such that in the case of only nearest neighbor interaction
σ = 1 and the interaction range increases as σ increases.

This model presents a disordered phase dominated by noise
for the limit of nearest neighbor interaction; as we increase
the interaction range spiral-like waves are observed and for
larger values of σ larger spiral-like patterns emerge. Despite
the large spiral-like structures observed for large values of σ ,
the spiral-like structures only emerge spontaneously for small
values of σ as an interplay of noise and the small pattern
necessary for the spiral-like structure formation. For a very
large interaction range, the spiral-like waves interfere with
themselves and cease to be stable; in such a limit, we observe
an ordered phase regime. Our analyses were done through
simulation of the stochastic model and are corroborated by
mean-field calculations.

Our results presents a spatial oscillatory pattern not
observed previously on the Wood–Van den Broeck–Kawai–
Lindenberg model. The oscillatory pattern occurs at the onset
of a order-disorder transition in which the interaction range
acts as a control parameter. It is important to observe that
the spiral-like patterns observed does not represent global
oscillations, in the sense that the system still presents 1

3 of
the population in each discrete phase.
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APPENDIX

In order to speed up the computational simulations pre-
sented in this paper, we took advantage of the discrete
convolution theorem. In the discrete version of the convolu-
tion theorem, the convolution of x and y is defined as

x ∗ y =
N−1∑
m=0

xN (m)yN (n − m), (A1)

in which case xN and yN denote summation sequences.
It is important to notice here the resemblance of the
above definition with Eq. (2). The convolution theorem
states that

F (x ∗ y) = F (x)F (y). (A2)

In order to speed up the calculation of the transition prob-
abilities, one can take advantage of the convolution theorem
and use the fast Fourier transform algorithm to calculate the
values of νi. This method can speed up the calculation of the
transition probabilities significantly.
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