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Measuring the degree of localization of quantum states in phase space is essential for the description of the
dynamics and equilibration of quantum systems, but this topic is far from being understood. There is no unique
way to measure localization, and individual measures can reflect different aspects of the same quantum state.
Here we present a general scheme to define localization in measure spaces, which is based on what we call
Rényi occupations, from which any measure of localization can be derived. We apply this scheme to the four-
dimensional unbounded phase space of the interacting spin-boson Dicke model. In particular, we make a detailed
comparison of two localization measures based on the Husimi function in the regime where the model is chaotic,
namely, one that projects the Husimi function over the finite phase space of the spin and another that uses the
Husimi function defined over classical energy shells. We elucidate the origin of their differences, showing that in
unbounded spaces the definition of maximal delocalization requires a bounded reference subspace, with different
selections leading to contextual answers.
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I. INTRODUCTION

The term dynamical localization was coined to denote the
quantum limitation of classical diffusion in the chaotic regime
[1,2]. It was first observed in periodically kicked rotors and
later it was also found in different systems, as the hydrogen
atom in a monochromatic field and Rydberg atoms [3–5],
as well as related to the Anderson localization present in
one-dimensional disordered systems [6,7]. The phenomenon
was also observed in conservative systems, such as the band-
random-matrix model and quantum billiards [8–14], and more
recent studies have focused its onset on many-body systems
[15–17].

A usual way to measure delocalization is the exponential
of entropy [18], which, under different names, is widely used
throughout different areas of science. For example, in ecology,
the diversity indices are used to count the number of species
in a population [19]. In information science and linguistics,
the perplexity quantifies how well a probabilistic model fits
some data [20,21]. In physics, localization, understood as the
exponential of entropy, is defined with respect to a given
space. Using the phase space, one may draw a connection
between the structures of classical dynamics and those of the
quantum realm [22]. Quantum states may be represented in
the phase space through the so-called Husimi function [23],
and the exponential of the Wehrl entropy [24], which is the
Shannon entropy of the Husimi function (or more generally
Rényi-Wehrl entropies [25]), may be used to measure the
localization of quantum states in that space.

In addition to a particular entropy and space, it may
be necessary to choose specific subspaces or projections
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of the Husimi function in order to talk about maximally
delocalized states. When the measure space is unbounded
(i.e., has infinite volume), one may find states that are ar-
bitrarily delocalized and needs to choose a region of finite
volume which serves as a benchmark. We will see that there
is no universal way to do this, and a series of fundamental
choices which have direct repercussions on the behavior of
the localization measures must me made.

Recent studies [26,27] have used the exponential of the
Rényi-Wehrl entropies to measure the localization of eigen-
states in the phase space of the Dicke model. This model is a
collective many-body system [28] initially introduced to ex-
plain the phenomenon of superradiance [29–32]. It describes
a set of two-level atoms interacting collectively with a quan-
tized radiation field and has been used extensively to study
different phenomena, such as out-of-time-ordered correlators
[33–35], quantum scarring [27,36–39], and nonequilibrium
dynamics [32,40–44]. Some experimental realizations of this
model involve superconducting circuits [45], cavity assisted
Raman transitions [46,47], and trapped ions [48,49].

One purpose of this work is to identify the general math-
ematical framework from which any measure of localization
can be derived. We will call these measures, which are ex-
ponentials of the Rényi entropies, Rényi volumes [50], and
from them we will define the Rényi occupations, which are
relative localization measures with respect to a finite reference
volume. These general localization measures simplify to the
usual generalized participation ratios for the case of a discrete
set [51,52].

In this work two Rényi occupations based on Husimi func-
tions are explored in detail in the unbounded phase space
of the Dicke model. The first one is defined in the atomic
phase space of the model, where the reference volume is de-
fined in the Bloch sphere [26]. The second Rényi occupation
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is defined over classical energy shells, where the reference
volume corresponds to the volume of the classical energy
shell [27]. These two measures serve as examples for our
general framework. We compare their behavior for eigenstates
in the chaotic regime of the model and also their dynamical
evolution for nonstationary states. Their dissimilar behaviors
prove our assertion that there is no universal way to identify
maximal delocalization in unbounded spaces.

The article is organized as follows. In Sec. II we expose
a general method to define localization measures in bounded
or unbounded spaces, discrete or continuous. In Sec. III we
introduce the Dicke model and its classical limit. In Sec. IV
we focus on localization measures in the four-dimensional
phase space of the Dicke model, constructing two different
Rényi occupations. In Sec. V we compare the behaviors of
both Rényi occupations for different kinds of states, such as
eigenstates, evolved coherent states, and mixed coherent states
in time and in space. A summary and our conclusions are
presented in Sec. VI.

II. RÉNYI OCCUPATION IN GENERAL SPACES

Consider a space X with a measure V that generates an
integral

∫
X dV (x) •. This space may be discrete, in which

case V (�) = |�| (� ⊆ X ) is the counting measure, whose
integral is just a sum

∫
X dV (x)• = ∑

x∈X •. Regardless of the
space, we will call V (�) = ∫

�
dV (x) ∈ [0,∞] the volume of

� ⊆ X . In X , we have normalized functions ϕ : X → [0,∞)
[i.e.,

∫
X dV (x)ϕ(x) = 1], which we will call probability dis-

tributions.1

For any bounded measurable subset � ⊆ X , the uniform
probability distribution on � is given by

ϕ�(x) =
{ 1

V (�) for x ∈ �

0 otherwise.
(1)

We define the volume occupied by any probability distribution
ϕ in X , V (X, ϕ), by imposing the following properties.

(i) The volume occupied by a uniform probability is
V (X, ϕ�) = V (�).

(ii) The volume is a homogeneous function of degree one
under scaling of the measure V (�), that is,

V (X ′, ϕ′) = kV (X, ϕ), (2)

where X ′ = X is the same space, but with volume element
dV ′ = kdV , and ϕ′(x) = ϕ(x)/k, with k > 0.

In Appendix A we show that these two conditions naturally
lead to the expression

Vα (X, ϕ) =
(∫

X
dV (x)ϕ(x)α

)1/(1−α)

, (3)

which is the exponential of the Rényi entropy of order α � 0,
Hα (X, ϕ) = ln[

∫
X dV (x)ϕ(x)α]/(1 − α) [18,53]. In the limit

α → 1 we get

V1(X, ϕ) = exp

(
−

∫
X

dV (x)ϕ(x) ln ϕ(x)

)
, (4)

1If the space is discrete, then this probability density function is just
the probability at each point xi ∈ X , pi = ϕ(xi ).

which is the exponential of the Shannon entropy H1(X, ϕ)
[54]. Due to this close relation with the Rényi entropies, we
call Vα (X, ϕ) the Rényi volume of order α [50,55].

The numbers Vα (X, ϕ) are always positive and grow as
ϕ spreads more over X . For nonuniform distributions ϕ the
Rényi volume is the volume of the effective region occupied
by ϕ and its value depends strongly on α. In any case, the
Rényi volume of ϕ measures how delocalized ϕ is.

When the space X is bounded, that is, V (X ) < ∞,
then Vα (X, ϕ) � V (X ) and the maximum Rényi volume
Vα (X, ϕ) = V (X ) is attained by the uniform distribution over
X . Moreover, if α �= 0, then Vα (X, ϕ) = V (X ) occurs only for
the uniform distribution. Thus, for a bounded space X , we can
define the Rényi occupation of order α of ϕ in X through the
ratio

Lα (X, ϕ) = Vα (X, ϕ)

V (X )
∈ (0, 1]. (5)

In contrast, if X is unbounded, that is, V (X ) = ∞, we may
find distributions ϕ that are arbitrarily delocalized. This can be
seen by considering � ⊆ X such that V (�) is arbitrarily large
and taking the uniform distribution in �. Thus, an unbounded
space does not allow one to define a Rényi occupation di-
rectly. However, one may consider a smaller space X̃ which
is bounded and transform the probability distributions from
X to X̃ . A general method to perform this involves three
fundamental steps.

(1) Choose a smaller space X̃ , which may be some region
of X .

(2) Choose a new volume element dṼ for X̃ such that the
total volume is finite Ṽ (X̃ ) < ∞.

(3) Choose a transformation of the probability distribu-
tions ϕ : X → [0,∞) into probability distributions ϕ̃ : X̃ →
[0,∞).

By following these three steps one may use Eq. (5) with X̃
and ϕ̃ to define a Rényi occupation Lα (X̃ , ϕ̃).

The fact that the exponential of an entropy provides a
measure of localization [18] should not be surprising: En-
tropies are, by virtue of Boltzmann’s entropy formula, the
logarithm of the number of microstates that give rise to a
certain macroscopic state. If we imagine X to be the space
of possible microstates of a system and ϕ to be a distribution
in X , then we can measure the level of delocalization of ϕ in
X by just counting the number of microstates that compose it.

We close this section with a simple well-known example
of the Rényi volume Vα found in discrete spaces. If B =
{|φk〉 | k ∈ N ⊆ N} is a basis of some Hilbert space of di-
mension |N |, each state |ψ〉 defines the probability function
ϕψ (|φk〉) = |〈ψ |φk〉|2. Setting V to be the counting measure,
Eq. (3) becomes

Vα (B, ϕψ ) =
(∑

k∈N

|〈ψ |φk〉|2α

)1/(1−α)

, (6)

which corresponds to the generalized quantum participation
ratios [51,52], where the case α = 2 reduces to

V2(B, ϕψ ) = PR =
(∑

k∈N

|〈ψ |φk〉|4
)−1

, (7)
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the standard quantum participation ratio, which has been used
as a standard measure of the localization of state |ψ〉 in the
basis B [56].

III. DICKE MODEL

In the following sections, we will study the Rényi occu-
pations in the Dicke model, which describes the interaction
between a set of two-level systems and a single-mode
confined electromagnetic field [28]. Setting h̄ = 1, the Hamil-
tonian of the model can be written as

ĤD = ωâ†â + ω0Ĵz + γ√
N

(Ĵ+ + Ĵ−)(â† + â), (8)

where ω is the radiation frequency of the electromagnetic
field, N is the number of two-level atoms with transition
frequency ω0, and γ is the atom-field coupling strength. In
addition, â† (â) is the bosonic creation (annihilation) opera-
tor of the field mode, Ĵx,y,z = 1

2

∑N
k=1 σ̂ k

x,y,z are the collective
pseudospin operators, and σ̂x,y,z are the Pauli matrices which
satisfy the SU(2) algebra. In addition, Ĵ+ (Ĵ−) is the raising
(lowering) collective pseudospin operator, defined by Ĵ± =
Ĵx ± iĴy.

The squared total pseudospin operator Ĵ
2 = Ĵ2

x + Ĵ2
y + Ĵ2

z
has eigenvalues j( j + 1), which specify different invariant
subspaces of the model. In this work, we use the maximum
pseudospin value j = N /2, which defines the totally symmet-
ric atomic subspace that includes the ground state.

The Dicke model develops a quantum phase transition
when its coupling strength reaches the critical value γc =√

ωω0/2 [29,30,57,58]. At that point the system goes from
a normal phase (γ < γc) to a superradiant phase (γ > γc).

The model displays regular and chaotic behavior, depend-
ing on the Hamiltonian parameters and excitation energies
[59]. Here we consider a coupling in the superradiant phase,
γ = 2γc = 1, where the system is in the strong-coupling hard-
chaos regime. Also, we choose the resonant frequency case
ω = ω0 = 1 and use energies rescaled to the system size j =
30. The diagonalization techniques for the Dicke Hamiltonian
are fully explained in Appendix B.

Classical limit of the Dicke model

A classical Dicke Hamiltonian is obtained by taking the
expectation value of the quantum Hamiltonian ĤD under the
tensor product of bosonic Glauber and atomic Bloch coherent
states |x〉 = |q, p〉 ⊗ |Q, P〉 [36,44,59–63] and dividing it by
the system size j,

hcl(x) = 〈x|ĤD|x〉
j

= ω

2
(q2 + p2) + ω0

2
Z2 + 2γ qQ

√
1 − Z2

4
− ω0, (9)

where Z2 = Q2 + P2. The bosonic Glauber and atomic Bloch
coherent states are, respectively,

|q, p〉 = e−( j/4)(q2+p2 )e[
√

j/2(q+ip)]â† |0〉,

|Q, P〉 =
(

1 − Z2

4

) j

e[(Q+iP)/
√

4−Z2]Ĵ+| j,− j〉, (10)

where |0〉 is the photon vacuum and | j,− j〉 is the state with
all the atoms in the ground state.

The classical Hamiltonian hcl(x) has a four-dimensional
phase space M in the coordinates x = (q, p; Q, P). The
rescaled classical energy ε = E/ j that corresponds to hcl de-
fines an effective Planck constant h̄eff = 1/ j [64].

IV. RÉNYI OCCUPATIONS IN THE PHASE SPACE
OF THE DICKE MODEL

A. Husimi function

The Husimi function is a quasiprobability distribution
function [23,65] defined as the expectation value of the
density matrix ρ̂ of an arbitrary state in the overcomplete
coherent-state basis {|x〉 | x = (q, p; Q, P)},

Qρ̂ (x) = 〈x|ρ̂|x〉. (11)

The Husimi function is a Wigner function [66] smoothed by
a Gaussian weight and it is used to visualize how a state ρ̂

is distributed in the phase space. In contrast to the Wigner
function, the Husimi function is everywhere non-negative.
When ρ̂ = |ψ〉〈ψ | is a pure state, it can be written as

Qψ (x) = |〈ψ |x〉|2. (12)

B. Rényi volume in the phase space

As the first step to study the Rényi occupations, we
will calculate the Rényi volume for the phase space of the
Dicke model M with the canonical volume element dV (x) =
dqd pdQdP, which we will denote by dx. Each state ρ̂ gen-
erates a probability distribution ϕρ̂ (x) via the Husimi function
[see Eq. (11)]

ϕρ̂ (x) = 1

C
Qρ̂ (x), (13)

where C = ∫
M dxQρ̂ (x) = [2π/ j] × [4π/(2 j + 1)] ensures

normalization.
By using Eqs. (3) and (4) with X = M and ϕ = ϕρ̂ , we get

V1(M, ρ̂ ) = C exp

(
− 1

C

∫
M

dxQρ̂ (x) lnQρ̂ (x)

)
(14)

and

Vα (M, ρ̂ ) = Cα/(α−1)

(∫
M

dxQα
ρ̂ (x)

)1/(1−α)

(15)

for α � 0. Equation (14) is the exponential of the Wehrl
entropy [24]. These types of measures have been studied in
the SU(2) two-dimensional phase space in Refs. [25,67].

By definition, Vα (M, ρ̂ ) > 0, but the quantum uncertainty
principle actually provides a positive lower bound on the
localization of a quantum state in the phase space. Namely,
if α � h̄2

eff,

Vα (M, ρ̂ ) � (2π h̄eff )
2α2/(α−1), (16)

where h̄eff = 1/ j (see Appendix C for details). Nevertheless,
there is no upper bound on the Rényi volume occupied by a
quantum state because the phase space of the Dicke model
is unbounded, V (M) = ∫

M dx = ∞. Thus, we can find arbi-
trarily delocalized states.
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TABLE I. Fundamental steps made in the construction of the
Rényi occupations of order α (see Sec. II), defined in the atomic
subspace of the Dicke model Lα (A, ρ̂ ) and over classical energy
shells Lα (ε, ρ̂ ).

Step 1 Step 2 Step 3

Rényi Subspace Volume element Volume Distribution
occupation X̃ dV V (X̃ ) ϕX̃ ,ρ̂

Lα (A, ρ̂ ) A dQdP 4π
Q̃ρ̂ (Q,P)

C

Lα (ε, ρ̂ ) Mε δ(hcl(x) − ε)dx 4π 2ν(ε)
Qρ̂ (x)

Cε

In order to define a Rényi occupation in the phase space
of the Dicke model M, we may apply the measure outlined
in Sec. II for unbounded spaces. This is done by restricting
the measure to bounded regions of M. We will focus on
two different Rényi occupations for M, which use the atomic
subspace and the classical energy shells as bounded regions.

C. Rényi occupation in the atomic subspace

A Rényi occupation using the atomic subspace of the Dicke
model was originally studied in Ref. [26]. The complete phase
space of the Dicke model consists of a bounded (atomic) sub-
space and an unbounded (bosonic) subspace. In some sense,
selecting the atomic subspace as the finite-volume reference
region seems to be the most natural choice to construct a
Rényi occupation. This can be done by following steps 1–3
of Sec. II (see Table I for a summary of the steps). First, we
choose the atomic subspace

A = {(Q, P) | Q2 + P2 � 4} (step 1), (17)

with the canonical area element

dV (Q, P) = dQdP (step 2). (18)

The subspace A is bounded with respect to V ,

V (A) =
∫
A

dQ dP = 4π. (19)

For each state ρ̂ consider the probability distribution given by
the projection of the Husimi function into A,

ϕA,ρ̂ (Q, P) = 1

C
Q̃ρ̂ (Q, P) (step 3), (20)

where

Q̃ρ̂ (Q, P) =
∫∫

dq d pQρ̂ (q, p; Q, P) (21)

and C = [2π/ j] × [4π/(2 j + 1)] ensures normalization.
Using Eq. (5) with X = A, ϕ = ϕA,ρ̂ , and V (A) =
4π , we obtain the Rényi occupations on the atomic

subspace

L1(A, ρ̂ )

= C

4π
exp

(
− 1

C

∫
A

dQ dP Q̃ρ̂ (Q, P) ln Q̃ρ̂ (Q, P)

)
(22)

and

Lα (A, ρ̂ ) = Cα/(α−1)

4π

(∫
A

dQ dP Q̃α
ρ̂ (Q, P)

)1/(1−α)

. (23)

The Rényi occupation of order α = 2, which we will hence-
forth focus on, reads

L2(A, ρ̂ ) = C2

4π

(∫
A

dQ dP Q̃2
ρ̂ (Q, P)

)−1

, (24)

which along with that of order α = 1, was studied in detail
in Ref. [26] for eigenstates ρ̂ = |Ek〉〈Ek| of the Dicke model.
In that work, these Rényi occupations were also multiplied by
an additional factor which equals the percentage of A that is
covered by classical chaotic trajectories, and a linear relation
between L1(A, ρ̂ ) and L2(A, ρ̂ ) was found for some of the
eigenstates in the chaotic regime.

D. Rényi occupation over classical energy shells

Because of the energy conservation, the temporal evolution
of any initial state under a time-independent Hamiltonian will
maintain the same average energy. States with a well-defined
energy center will remain close to the corresponding classical
energy shell in the phase space.

This motivates us to define another Rényi occupation by
using the bounded classical energy shells as reference sub-
spaces, as it was done in Ref. [27]. This can be achieved by
applying steps 1–3 of Sec. II as follows (see Table I for a
summary).

Consider the classical energy shell at energy ε,

Mε = {x = (q, p; Q, P) | hcl(x) = ε} (step 1), (25)

with the surface volume element

dV (x) = δ(hcl(x) − ε)dx (step 2), (26)

which we will denote by ds. The subspace Mε is bounded
with respect to V . In fact, the finite value V (Mε ) can be
calculated through the quantity

ν(ε) = 1

4π2
V (Mε ) = 1

4π2

∫
Mε

ds, (27)

which is the lowest-order semiclassical approximation for the
quantum density of states obtained through the Gutzwiller
trace formula [68,69]. See Ref. [61] for a detailed analytical
expression of this semiclassical density of states ν(ε).

For each state ρ̂, consider the probability distribution given
by the restriction of the Husimi function to Mε ,

ϕε,ρ̂ (x) = 1

Cε

Qρ̂ (x) (step 3), (28)

where Cε = ∫
Mε

dsQρ̂ (x) ensures normalization. Using
Eq. (5) with X = Mε , ϕ = ϕε,ρ̂ , and V (Mε ) = 4π2ν(ε), we
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FIG. 1. Shown on top is the energy profile Cε of the Husimi function over the classical energy shell at ε for selected eigenstates ρ̂k with
k = 268, 543, 708, 955 in the energy region εk ∈ (−1.2, −0.43). Shown on the bottom is the Rényi occupation L2(ε, ρ̂k ) [see Eq. (31)] as
a function of the energy ε for the same selected eigenstates. In both the top and bottom panels, the vertical dashed black lines indicate the
eigenenergies εk of the corresponding eigenstates ρ̂k . The system size is j = 30.

obtain the set of Rényi occupations over the energy shell at ε,

L1(ε, ρ̂) = Cε

4π2ν(ε)
exp

(
− 1

Cε

∫
Mε

dsQρ̂ (x) lnQρ̂ (x)

)
(29)

and

Lα (ε, ρ̂ ) = Cα/(α−1)
ε

4π2ν(ε)

(∫
Mε

dsQα
ρ̂ (x)

)1/(1−α)

. (30)

The Rényi occupation of order α = 2,

L2(ε, ρ̂ ) = C2
ε

4π2ν(ε)

(∫
Mε

dsQ2
ρ̂ (x)

)−1

, (31)

was used in Ref. [27] to measure localization of eigenstates
and temporally averaged evolved states in the Dicke model
in relation to the phenomenon of quantum scarring. It was
also used as a measure of quantum ergodicity. Henceforth,
we will focus on this specific case α = 2 and leave a detailed
study of the dependence on the order α and its relation to
multifractality [51,70–76] for future work.

Given a quantum state ρ̂ with mean energy ερ̂ = tr(ρ̂ĤD),
we may measure its localization in the phase-space energy
shell at any energy ε through L2(ε, ρ̂). Nevertheless, for
eigenstates ρ̂k = |Ek〉〈Ek|, a natural choice is ε = ερ̂k = εk .
Moreover, L2(ε, ρ̂k ) remains almost constant for the ener-
gies around εk = Ek/ j that are significantly populated by the
state ρ̂k . The top panels of Fig. 1 show the energy profiles
Cε = ∫

Mε
dsQρ̂ (x) of four selected eigenstates, one (k =

268) located in a mixed energy region where regularity and
chaos coexist and three (k = 543, 708, 955) located in the
fully chaotic-energy regime. These energy profiles show that
the Husimi functions of the respective eigenstates are con-
centrated in energy shells with relevant values in an interval
around ε ∼ εk , while the bottom panels show that L2(ε, ρ̂k )
is almost constant in the region of significant population. It is
worth mentioning that we have found that the Rényi occupa-
tion L2(ε, ρ̂k ) can be more sensitive to ε at low energies due
to the regularity of the dynamics and because at energies close
to the ground-state energy εGS = −2.125, the classical energy
shells are very small and their size increases rapidly as energy

does. Nevertheless, for the energy regime studied in this work,
these effects are negligible.

V. PROPERTIES OF RÉNYI OCCUPATIONS IN THE
PHASE SPACE OF THE DICKE MODEL

The Rényi occupations that we presented in the preced-
ing section have been used to measure the localization of
the eigenstates in the chaotic regime [26,27]. The statistical
properties of the localization of eigenstates can be tied to the
chaoticity of quantum systems. For example, a relatively low
value of Rényi occupation can be a signal of quantum scar-
ring. The localization of the eigenstates also has an impact on
the evolution of nonstationary states, such as coherent states.
Thus, studying the dynamical evolution of the localization of
coherent states also provides very useful information about
the dynamical properties of the system.

In this section we compare the Rényi occupations of
the Husimi projection over the atomic subspace L2(A, ρ̂ )
[see Eq. (24)] and over classical energy shells L2(ε, ρ̂ ) [see
Eq. (31)], for eigenstates, time-evolved coherent states, and
coherent states mixed in phase space.

A. Localization of eigenstates

For a set of 501 eigenstates of the Dicke model ρ̂k =
|Ek〉〈Ek| with k ∈ [3121, 3621], located in the chaotic-energy
region εk ∈ (1, 1.274), we compute both Rényi occupations
L2(A, ρ̂k ) and L2(εk, ρ̂k ). The distributions for both occu-
pations are shown in Fig. 2. In this figure we see that the
occupation L2(A, ρ̂k ) clusters around the mean value L2 ∼
0.9, which means that the Husimi projections of all eigenstates
in this chaotic region are almost completely delocalized in the
atomic Bloch sphere A. On the other hand, the occupation
L2(εk, ρ̂k ) clusters around a mean value L2 ∼ 0.4, indicating
that all eigenstates occupy less that half of the classical energy
shell at εk .

The striking differences between both Rényi occupations
L2(A, ρ̂k ) and L2(εk, ρ̂k ) indicate that they gauge different
aspects of the same eigenstates and show that one has to be
cautious in interpreting the values provided by different local-
ization measures. Below we provide several numerical tests
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FIG. 2. Statistical distributions of the Rényi occupations L2(A, ρ̂k ) (blue bars) and L2(εk, ρ̂k ) (green bars) [see Eqs. (24) and (31)] for a
set of 501 eigenstates ρ̂k with k ∈ [3121, 3621], located in the chaotic-energy region εk ∈ (1.0, 1.274). The inset shows their corresponding
cumulative distributions. The system size is j = 30.

allowing us to clarify the origin of the differences obtained
for both Rényi occupations.

B. Localization of evolved coherent states

Consider initial Glauber-Bloch coherent states ρ̂x = |x〉〈x|,
with coordinates x = (q0, p0; Q0, P0) and mean energy εx =
hcl(x), which are highly localized in the phase space. The time
evolution of ρ̂x is given by

ρ̂x(t ) = Û (t )|x〉〈x|Û †(t ), (32)

where Û †(t ) = e−iĤDt . We study how the initial state ρ̂x

delocalizes as it evolves in time by considering the Rényi
occupations L2(A, ρ̂x(t )) and L2(εx, ρ̂x(t )). In Fig. 3(a) we
see that L2(A, ρ̂x(t )) quickly saturates to 1, indicating that the
evolved coherent state becomes fully delocalized in the atomic
subspace A. On the other hand, the measure L2(εx, ρ̂x(t ))
saturates to a value of 1

2 , indicating that an evolved coherent
state never delocalizes completely, being able to cover at most
half of the energy shell at large times. This is in accord with
the results of Ref. [27], where it was found that L2 � 1

2 for
any pure state, and complete delocalization within a classical
energy shell can only be reached when temporal averages are
performed.

For this reason, in Fig. 3(b) we plot the values of the
Rényi occupations L2(A, ρx(T )) and L2(εx, ρx(T )) for the
time-averaged state

ρx(T ) = 1

T

∫ T

0
dt ρ̂x(t ). (33)

We see that the Rényi occupation L2(εx, ρx(T )) saturates to
1 at a time larger than the saturation time of the instanta-
neous localization of the evolved state ρ̂(t ). In contrast, for
L2(A, ρx(T )), a dip appears around T = 2, which is absent
in L2(εx, ρx(T )). This is explained by the atomic and bosonic
projections, shown in the top and middle panels of Fig. 3(b),
respectively. At T = 1, the atomic projection of ρx(T ) looks
like a closed orbit, which starts to retrace itself at T = 2,
producing an apparent increased localization which is clearly
visible as a bright area in the third atomic projection. How-
ever, this apparently closed orbit is not closed in the complete
phase space. One sees from the bosonic projection in T = 2

that, in fact, the state is not revisiting the same region but
delocalizing over the bosonic variables. This effect is absent
in L2(εx, ρx(T )), where no projection is performed. In that
case, the temporal average only smooths out the quantum
fluctuations, allowing for a less abrupt route to saturation with
a slightly larger saturation time.

C. Separation of coherent states in the
atomic and bosonic planes

To further study the different behaviors of the Rényi occu-
pations L2(A, ρ̂ ) and L2(ε, ρ̂), we investigate what happens
when we consider a mixed state formed by two coherent
states whose centroids are gradually separated in different
directions. By doing this, we want to investigate how sensitive
the measures are to a gradual delocalization in both the atomic
(Q, P) and bosonic (q, p) coordinate planes. We consider the
mixed state of a pair of coherent states

ρ̂M(D) = 1
2 (ρ̂x + ρ̂y), (34)

where the state ρ̂x = |x〉〈x| remains fixed at position x while
the position y of state ρ̂y = |y〉〈y| is varied and their phase-
space distance given by

D =
√

(qx − qy)2 + (px − py)2 + �2, (35)

where

cos � = cos θx cos θy + cos(φx − φy) sin θx sin θy, (36)

with cos θ = 1 − (Q2 + P2)/2 and tan φ = −P/Q. The coor-
dinates of y start with both states at the same position D = 0
and are changed such that the mean energy εM and energy
width of |y〉 remain constant. These conditions ensure that the
changes in the occupation measures come exclusively from
the separation of the coherent state and not from changes in
the properties of the coherent states |y〉.

First we separate the states in the atomic plane (Q, P)
by letting py = px be constant and changing qy slightly to
maintain the mean energy of |y〉 constant. Figure 4(a) shows
the projection of ρ̂M(D) in both the atomic and bosonic
coordinate planes (top square panels) and the values of
the Rényi occupations as a function of the separation D
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FIG. 3. The top square panels show the Husimi function projected in the atomic coordinate plane (Q, P) at different times t and T for
both (a) the pure ρ̂x(t ) state and (b) the time-mixed ρx(T ) coherent state [see Eqs. (32) and (33)]. The bottom rectangular panels show the
Rényi occupations L2(A, ρ̂x(t )) [L2(A, ρx(t ))] (solid blue curve) and L2(εx, ρ̂x(t )) [L2(εx, ρx(t ))] (solid green curve) [see Eqs. (24) and (31)]
for (a) a pure initial coherent state ρ̂x(t ) and (b) the time-mixed coherent state ρx(T ) in the chaotic-energy region εx = 1. The selected initial
coherent state ρ̂x is defined by the phase-space coordinates x = (2.894, 0; −0.4, 0) with energy width σx = 0.693 (units of ε). Horizontal
dashed green and blue lines indicate the asymptotic value of each measure in both panels. Vertical dashed black lines indicate the value of t
and T where the Husimi projections are shown. The system size is j = 30.

(bottom rectangular panel). The Rényi occupations are di-
vided by their values at D = 0, L2(A, ρ̂M)/L2(A, ρ̂M(0))
and L2(εM, ρ̂M)/L2(εM, ρ̂M(0)), allowing us to compare their
relative growth. We see that in this case both Rényi occu-
pations behaves similarly, increasing to twice their original
value.

Now we separate the states in the bosonic plane (q, p),
letting Qy = Qx and Py = Px remain constant, as shown in
Fig. 4(b). Contrary to the previous case, the results show
remarkable differences between L2(A, ρ̂M) and L2(εM, ρ̂M).
While the Rényi occupation L2(εM, ρ̂M) behaves as in the pre-
vious case, doubling its value, L2(A, ρ̂M) remains constant.
We see that the Rényi occupation L2(A, ρ̂M) is not sensitive
to delocalization in the bosonic plane, which is a consequence
of the partial integration over the bosonic variables (q, p) in
Eq. (21) that erases the information about delocalization in the
bosonic plane.

D. Saturation of atomic plane

We now focus on how L2(A, ρ̂ ) and L2(ε, ρ̂ ) respond
to a decreasing localization in the atomic plane (Q, P) but

letting the state be well localized in the bosonic one (q, p).
We consider a mixed state comprised of n coherent states

ρ̂M(n) = 1

n

n∑
i=1

|xi〉〈xi|, (37)

whose centroids xi are homogeneously distributed over an
increasing area of the Bloch sphere, as shown in the top panels
of Fig. 5, but have the same classical energy εM = hcl(xi ).

We computed L2(A, ρ̂M) and L2(εM, ρ̂M) as we increased
the Bloch sphere area occupied by the mixed state by increas-
ing n and plotted the result in Fig. 5. Note that the Rényi
occupation L2(A, ρ̂M) saturates completely to unity when we
fill completely the Bloch sphere, even if the states are highly
localized in the bosonic plane. On the other hand, the Rényi
occupation L2(εM, ρ̂M) is sensitive to the localization of the
mixed state in the bosonic plane and consequently it reaches
a very small value of L2 ∼ 0.07, indicating that the state ρ̂M

only covers approximately 7% of the phase-space volume of
the energy shell at εM. This is understandable when we see
the Husimi projections. Even when the atomic projection fills
completely the Bloch sphere, the bosonic projections show
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FIG. 4. The top square panels show the Husimi function projected in the atomic (Q, P) (blue circles) and bosonic (q, p) (red squares)
coordinate planes at different phase-space separations D. Separation is shown in (a) the atomic plane (Q, P) and (b) the bosonic plane (q, p).
The bottom rectangular panels show the Rényi occupations L2(A, ρ̂M)/L0

2 (solid blue curve) and L2(εM, ρ̂M)/L0
2 (solid green curve) rescaled

to their initial values L0
2 = L2(D = 0) [see Eqs. (24) and (31)] as a function of the phase-space separation D, for mixed coherent states ρ̂M(D)

[see Eq. (34)] with constant energy width (a) σ = 0.429 and (b) σ = 0.342 (units of ε) in the chaotic-energy region εM = 1. Vertical dashed
black lines indicate the value of D where the Husimi projections are shown. The system size is j = 30.

horizontal tubular shapes which cover the available bosonic
space only partially.

These results confirm that the Husimi projection over the
atomic subspace used in the Rényi occupation L2(A, ρ̂M)
loses possible localization of the states in the bosonic plane,
which is not the case for the Rényi occupation L2(εM, ρ̂M),
which is sensitive to the localization of the states in both
planes. In summary, for states well localized in energy, such as
the eigenstates and coherent states considered here, L2(ε, ρ̂)
is a more sensitive measure. However, for states that are delo-
calized in energy, L2(ε, ρ̂ ) could lose important information
about the localization of the states in energy and L2(A, ρ̂ )
may be more adequate.

VI. CONCLUSION

In this paper we have put forward a general mathematical
framework to define occupation (and from it localization) of
quantum states with respect to a given discrete or continuous
measure space. Since the measures obtained are related to
the Rényi entropies of order α � 0, we called them Rényi
occupations of order α. We showed that this mathematical

framework includes two recently employed localization mea-
sures in phase space, used to gauge localization of eigenstates
and coherent states in the chaotic region of the Dicke model.
One of them measures localization of the Husimi function
projected into the atomic phase space, whereas the other mea-
sures the localization of the Husimi function over the energy
shells of the corresponding classical model.

Both Rényi occupations were compared in detail and the
origin of their differences was elucidated. It was shown
that the occupation over the atomic subspace can miss in-
formation about the localization of states in the bosonic
plane. For states well localized in energy, such as eigen-
states and coherent states, the occupation over classical energy
shells is a more suitable measure of localization in phase
space.

We emphasize, however, that there is no unique way to
define localization in phase space. In this article, we have
focused on the Rényi occupations of order α = 2, but orders
α �= 2 can be used to reveal other aspects of the Husimi
distribution either in classical energy shells or in its projection
in the atomic subspace. In general, Rényi occupations with
α > 1 strengthen the contribution of regions with largest dis-
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FIG. 5. The top square panels show the Husimi function projected in the atomic (Q, P) (blue circles) and bosonic (q, p) (red squares)
coordinate planes for different numbers of added states n. The bottom rectangular panel shows Rényi occupations L2(A, ρ̂M) (solid blue
curve) and L2(εM, ρ̂M) (solid green curve) [see Eqs. (24) and (31)] as a function of the number of added states n, for mixed coherent states
ρ̂M(n) [see Eq. (37)] which saturate the atomic plane (Q, P) in the chaotic-energy region εM = 1. Vertical dashed black lines indicate the values
of n where the Husimi projections are shown. The system size is j = 30.

tribution values to the detriment of those with smaller ones;
conversely, Rényi occupations of order α < 1 tend to equally
weight the contributions of the regions where the probability
distribution is different from zero, independently of its value.
A study of the dependence of the Rényi occupations on α

would reveal multifractality in the occupation of the states in
phase space.

Another interesting issue to be explored in the future
is the relationship between the phase-space localization of
nonstationary states, as revealed by the Rényi occupations
introduced here, and the breaking of the eigenstate ther-
malization hypothesis (ETH) [77,78]. It is conjectured that
a necessary condition for the ETH to be valid is that the
infinite-time average of generic nonstationary states reaches
an energy-shell Rényi occupation equal to 1. How the local-
ization measure can help identify states that violate the ETH
is an open question to be explored in future works.
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APPENDIX A: DERIVATION OF THE RÉNYI VOLUME

As in Sec. II, we consider a space X with a measure V ,
which generates a (Lebesgue) integral

∫
X dV (x)•. We will

construct the Rényi volume Vα (X, ϕ) given by Eqs. (4) and
(3) by requiring the function V (X, ϕ) to be equal to V (�)
for a uniform distribution over � ⊆ X , to be bounded by the
volume of X , and to be homogeneous under the scaling of V .

The easiest function that satisfies these properties is
V0(X, ϕ) = V (supp(ϕ)), where supp(ϕ) = {x ∈ X | ϕ(x) �=
0} [which is the limit α → 0 of Eq. (3)]. However, this may
not be very useful, because ϕ may be very small (but not zero)
in some region of X . We would want V (X, ϕ) to be able to
ignore those low-probability regions.

The threshold for when to consider a probability ignor-
able is of course arbitrary. Let us consider any function f :
(0,∞) → R so that the value f (x) establishes how much we
care about the regions where ϕ(x) is less than x. Then it is
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natural to define the weighted mean

F (ϕ) =
∫

X
dV (x)ϕ(x) f (ϕ(x)). (A1)

For a bounded measurable subset � ⊆ X , we define the
uniform probability distribution ϕ�(x) as in Eq. (1). For these
uniform probabilities, we require V f (X, ϕ�) = V (�). This
condition will allow us to find V f (X, ϕ) for any normalized
distribution ϕ.

We have

F (ϕ�) =
∫

�

dV (x)ϕ�(x) f (ϕ�(x)) = f

(
1

V f (X, ϕ�)

)
. (A2)

If we require f to be invertible, then V f (X, ϕ�) =
1/ f −1(F (ϕ�)). Thus, it is natural to extend this formula and
define

V f (X, ϕ) = 1

f −1(F (ϕ))

=
[

f −1

( ∫
X

dV (x)ϕ(x) f (ϕ(x))
)]−1

(A3)

for any distribution ϕ. Note that because f −1 > 0, we have
V f (X, ϕ) > 0. However, without imposing some extra condi-
tions on f , we cannot say anything about the upper bound of
V f (X, ϕ).

Because we wish to interpret V f (X, ϕ) as the volume
of the region occupied by ϕ, we need to first ensure that
V f (X, ϕ) � V (X ) when X is bounded. To guarantee this, we
require that (a) f (x) is strictly increasing and g(x) = x f (x) is
convex. Then, by Jensen’s inequality (cf. [79]), the convexity
of g(x) = x f (x) guarantees that

F (ϕ) =
∫

X
dV (x)g(ϕ(x))

� V (X ) g

(
1

V (X )

∫
X

dV (x)ϕ(x)

)
= f

(
1

V (X )

)
(A4)

for any distribution ϕ with
∫

X dV (x)ϕ(x) = 1. Because f −1 is
increasing if f is increasing, we get

V f (X, ϕ) = 1

f −1(F (ϕ))
� 1

f −1( f (1/V (X )))
= V (X )

= V f (X, ϕX ), (A5)

where ϕX is the uniform distribution on X . Note that the argu-
ment above also works if (b) f (x) is strictly decreasing and
g(x) = x f (x) is concave by replacing f → − f . Moreover,
Jensen’s inequality in Eq. (A4) becomes an equality if and
only if there exist a, b ∈ R such that x f (x) = g(x) = a + bx
for all x ∈ {ϕ(x) | x ∈ X } (i.e., g is linear in the range of ϕ).
If either of the stricter conditions, that is, (a′) f (x) is strictly
increasing and g(x) = x f (x) is strictly convex or (b′) f (x) is
strictly decreasing and g(x) = x f (x) is strictly concave, is sat-
isfied, then g cannot be linear in {ϕ(x) | x ∈ X } unless that set
consists of a single point, in which case ϕ must be constant. So
either of conditions (a′) or (b′) implies that V f (X, ϕ) = V (X )
occurs only when ϕ = ϕX is the uniform distribution.

If f1(x) = ln(x), condition (a′) is satisfied and we obtain
Eq. (4). For fα (x) = xα−1 with α � 0 and α �= 1, condition
(a′) is satisfied if α > 1, condition (b′) is satisfied if 0 < α <

1, and condition (b) [but not condition (b′)] is satisfied if α =
0. In any case, Eq. (A3) yields Eq. (3).

There are many other functions f besides f1(x) = ln(x)
and fα (x) = xα−1 (α > 0, α �= 1) that satisfy condition (a′)
or (b′). However, the measures Vα (X, ϕ) = V fα (X, ϕ) given
by Eqs. (3) and (4) are the only ones that are homogeneous
under scaling of the measure V [see Eq. (2)]. If V f (X, ϕ)
satisfies Eq. (2), it can be shown that f = a fα + b, where
a, b ∈ R with a �= 0 [see Theorem (5.2.19) and Eq. (5.2.26)
of Ref. [80]]. It is straightforward to verify that f ′ = a f + b
implies V f ′ (X, ϕ) = V f (X, ϕ) directly from Eq. (A3). In fact,
the converse is also true [see Theorem (5.2.16) of Ref. [80]].
Thus, if V f (X, ϕ) satisfies Eq. (2), then V f (X, ϕ) = Vα (X, ϕ)
for some α � 0.

APPENDIX B: DIAGONALIZATION BASIS

1. Fock basis

The standard Fock basis is given by the tensor product
|n〉 ⊗ | j, mz〉, where |n〉 (n = 0, 1, 2, . . .) are the eigenstates
of the number operator n̂ = â†â of the infinite-dimensional
bosonic subspace and | j, mz〉 (mz = − j,− j + 1, . . . , j −
1, j) are the eigenstates of the collective pseudospin operator
Ĵz of the finite-dimensional pseudospin subspace with Hilbert-
space dimension 2 j + 1. As the bosonic subspace has infinite
Hilbert-space dimension, we need to truncate it by choosing
a maximal excitation level nmax, which enables us to define
a finite dimension nmax + 1. Then the global Hilbert-space
dimension is given by DFB = (nmax + 1) × (2 j + 1).

For the system size j = 30 selected in this work, we re-
quired nmax = 420 with global dimension DFB = 25 681 to
ensure Dc

FB = 8030 converged eigenstates and eigenvalues.
For the selected Hamiltonian parameters, the energy spectrum
ranges from the ground-state energy εGS = −2.125 up to a
truncated converged energy εT = 3.683.

An advantage of using the Fock basis is that one may
compute exact projections of the Husimi function of a state
ρ̂ in both atomic and bosonic subspaces of the Dicke model
by using the closed expressions [37,60]

Q̃ρ̂ (Q, P) = j

2π

∫∫
dq d pQρ̂ (q, p; Q, P)

= A(Q, P)
nmax∑
n=0

j∑
mz=− j

j∑
m′

z=− j

{(
cρ̂

n,mz

)∗
cρ̂

n,m′
z

× GA
mz

(Q, P)
[
GA

m′
z
(Q, P)

]∗}
, (B1)

with A(Q, P) = (
1 − Q2+P2

4

)2 j
, and

GA
mz

(Q, P) =
√(

2 j
j + mz

)(
Q + iP√

4 − Q2 − P2

) j+mz

(B2)

for the atomic projection and

Q̃ρ̂ (q, p) = 2 j + 1

4π

∫∫
dQ dPQρ̂ (q, p; Q, P)

= B(q, p)
nmax∑
n=0

nmax∑
n′=0

j∑
mz=− j

{(
cρ̂

n,mz

)∗
cρ̂

n′,mz

× GB
n (q, p)

[
GB

n′ (q, p)
]∗}

, (B3)
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with B(q, p) = exp[− j
2 (q2 + p2)], and

GB
n (q, p) = 1√

n!

(√
j

2
(q + ip)

)n

(B4)

for the bosonic one. In both expressions, cρ̂
n,mz

are the coeffi-
cients of the state ρ̂ expanded in this basis.

2. Efficient basis

The efficient basis is obtained by taking the eigenbasis of
the Dicke Hamiltonian ĤD [see Eq. (8)] in the limit ω0 → 0.
The first step to construct this basis is to define a displaced an-
nihilation operator Â = â + [2γ /(ω

√
N )]Ĵx. Then a rotation

in the Bloch sphere (Ĵx, Ĵy, Ĵz ) → (Ĵ ′
z, Ĵ ′

y,−Ĵ ′
x ) is performed.

Finally, taking the limit ω0 → 0, one obtains a basis given by
the tensor product |N〉 ⊗ | j, mx〉, where the states are explic-
itly

|N〉 ⊗ | j, mx〉 = (Â†)N

√
N!

|N = 0〉 ⊗ | j, mx〉, (B5)

with |N〉 the eigenstates of the operator Â†Â and |N = 0〉 ⊗
| j, mx〉 the vacuum state of the modified bosonic subspace
which defines coherent states |N = 0〉 = | − 2γ mx/(ω

√
N )〉

in the standard Fock basis for each value of mx, which cor-
responds to the rotated eigenvalue of the original collective
pseudospin operator Ĵx.

The states of the pseudospin subspace are defined in the
same way as in the Fock basis | j, mx〉 (mx = − j,− j +
1, . . . , j − 1, j) with Hilbert-space dimension 2 j + 1. As in
the Fock basis, there are infinitely many states corresponding
to the modified bosonic subspace |N〉 (N = 0, 1, 2, . . .), so a
truncation is also necessary. By choosing a maximal excitation
level Nmax, we determine a finite dimension Nmax + 1 so that
the global Hilbert-space dimension for this basis is given by
DEB = (Nmax + 1) × (2 j + 1).

For the selected system size j = 30, we require Nmax =
200 with global dimension DEB = 12 261 to ensure Dc

EB =
8041 converged eigenstates and eigenvalues. For these Hamil-
tonian parameters, the energy spectrum ranges from the
ground-state energy εGS = −2.125 up to a truncated con-
verged energy εT = 3.688.

Although not used in this work, it is worth noting that the
efficient basis allows us to reach larger system sizes ( j ∼ 100)

in the superradiant phase of the model, which would be un-
reachable by using the standard Fock basis [61,62,81].

APPENDIX C: LOWER BOUND ON
PHASE-SPACE LOCALIZATION

The Lieb conjecture [82,83] guarantees that the coherent
states ρ̂x = |x〉〈x| are the most localized in the phase space of
the Dicke model. Thus, Vα (M, ρ̂x) is a lower bound on the
Rényi volume in phase space for any state. We will define this
value as given by Eqs. (3) and (4). Because all coherent states
are translations of each other and V is invariant under transla-
tions in M (V is the Haar measure for the group of translations
of M), it suffices to calculate Vα (M, ρ̂c) for one coherent
state ρ̂c = |c〉〈c| centered at c ∈ M. For convenience, let us
choose c = (0, 0, 0, 0), so |c〉 = |q = p = Q = P = 0〉. The
Husimi function of |c〉 is given by [44,84]

Qc(x) = exp
(
− j

2
(q2 + p2)

)(
1 − P2 + Q2

4

)2 j

. (C1)

Inserting Eq. (C1) into Eq. (3) and performing the integration,
we get

Vα (M, ρ̂c) = 8π2h̄2
eff(h̄eff + 2)α/(1−α)[α(2α + h̄eff )]

1/(α−1)

= (2π h̄eff )
2α2/(α−1) + O

(
h̄3

eff

)
, (C2)

where h̄eff = 1/ j. Using limα→1 α2/(α−1) = e2, we get
V1(M, ρ̂c) = (2π h̄eff e)2 + O(h̄3

eff ), which can also be veri-
fied by directly integrating Eq. (4),

V1(M, ρ̂c) = (2π h̄eff )2e(h̄eff+4)/(h̄eff+2)

h̄eff + 2

= (2π h̄eff e)2 + O
(
h̄3

eff

)
. (C3)

The higher-order terms O(h̄3
eff ) are small provided that

α � h̄2
eff, in which case Eq. (16) is valid. If α is of the order

of h̄2
eff or smaller, this is not true anymore. In fact, in the limit

of α → 0,

V0(M, ρ̂c) = V ({x ∈ M | Qc(x) �= 0}) = V (M) = ∞.

(C4)
This happens because, as α becomes smaller, the Rényi vol-
ume Vα (M, ρ̂ ) loses the ability to differentiate between the
regions where Qρ̂ is big and the regions where it is small but
nonzero. Thus, the Rényi volumes in phase space Vα (M, ρ̂ )
are more useful when α � h̄2

eff.
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