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The study of nonlinear oscillator chains in classical many-body dynamics has a storied history going back to
the seminal work of Fermi et al. [Los Alamos Scientific Laboratory Report No. LA-1940, 1955 (unpublished)].
We introduce a family of such systems which consist of chains of N harmonically coupled particles with the
nonlinearity introduced by confining the motion of each individual particle to a box or stadium with hard walls.
The stadia are arranged on a one-dimensional lattice but they individually do not have to be one dimensional,
thus permitting the introduction of chaos already at the lattice scale. For the most part we study the case where
the motion is entirely one dimensional. We find that the system exhibits a mixed phase space for any finite value
of N. Computations of Lyapunov spectra at randomly picked phase space locations and a direct comparison
between Hamiltonian evolution and phase space averages indicate that the regular regions of phase space are
not significant at large system sizes. While the continuum limit of our model is itself a singular limit of the
integrable sinh Gordon theory, we do not see any evidence for the kind of nonergodicity famously seen in
the work of Fermi et al. Finally, we examine the chain with particles confined to two-dimensional stadia where

the individual stadium is already chaotic and find a much more chaotic phase space at small system sizes.
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I. INTRODUCTION

The connection between Hamiltonian many-body chaos
and the foundations of statistical mechanics has been an in-
tensive research field for more than 60 years. Most recently,
the focus has centered on the quantum setting and the high-
lights of this line of work include the eigenstate thermalization
hypothesis [1-3] and the complementary discovery of the
absence of thermalization in many-body localized systems
[4-T7].

An important role on the classical side has been played by
studies of one-dimensional mass-spring systems or oscillator
chains with anharmonicities. The purely harmonic chains are
of course integrable and their normal modes give rise to an
extensive set of conserved quantities. The challenge has been
to add anharmonicities or nonlinearities and to see ergodic
behavior emerge. Indeed, one of the most celebrated parts of
this body of work is the Fermi-Pasta-Ulam-Tsingsou (FPUT)
problem [8—10], whose identification is really what started off
the field in the first case. As is well known, the eponymous
authors intended to analyze the energy sharing among the
normal modes in a perturbed linear chain with weak cubic or
quartic anharmonicities, taking advantage of the then newly
developed computers. To their surprise, instead of equiparti-
tion the system showed signatures of recurrences even after
long times.

The resulting investigations led to an understanding of
both this phenomenon and its limitations, during a period of
explosive growth in our understanding of nonlinear dynamics
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in classical systems and the phenomenon of chaos. Here we
should flag the work of Chirikov and Izrailev, who identified
an energy separating the nonergodic behavior found by Fermi
et al. from ergodic motion, based on the resonance-overlap
criterion [11]. For sufficiently small nonlinear interactions the
resonances of the associated perturbations do not overlap, so
chaotic layers stay constrained to small phase space regions.
When neighboring resonances overlap the chaotic layers can
spread over the entire phase space, leading to an enhanced
energy sharing among different normal modes. Indeed, Fermi
et al. had suggested, in more modern language, that the critical
energy density required for resonance overlap vanishes in
the limit of large particle numbers such that equipartition is
obtained in the thermodynamic limit [10].

The understanding of the low-energy regime came from
looking at the continuum limit of Fermi e al. for specific
initial conditions and finding that it is the integrable (normal
or modified) Korteweg—de Vries equation that, e.g., gives rise
to the formation of solitons [12]; see also [13] for a recent
connection for more generic initial conditions with integrable
systems. The analysis of the latter and related models has also
given deeper insight into the role of stable phase space islands
for the global nonlinear dynamics (e.g., for information about
discrete breathers see [14,15] and references therein).

In this paper we introduce a family of nonlinear oscilla-
tor chains and initiate their study. We are motivated by two
objectives. First, these models have a degree of tractability as
they involve linear time evolution interrupted by instantaneous
nonlinearities, in a fashion similar to Chirikov’s standard map
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FIG. 1. Sketch of our system. Each site obeys billiard constraint
while it is connected via a harmonic potential to its nearest neighbor.
Periodic boundary conditions are assumed at the ends of the chain.

(also known as a kicked rotor) for low-dimensional chaos
(see, e.g., [16]). Second, they provide an interesting point of
departure for examining the nature of the phase space in the
infinite volume limit as they permit us to introduce a high
degree of chaos at the level of a single degree of freedom. This
creates the possibility that we will observe clear signatures of
many-body chaos for relatively modest numbers of degrees of
freedom even in the interacting system.

The models are easily described. We arrange a set of n-
dimensional stadia, billiard tables, or domains with hard walls
on a d-dimensional regular lattice and populate each with a
single particle. Then we couple the particles with harmonic
springs. From the viewpoint of many-body physics, these
systems fall in the class of discretized classical field theories
with n independent fields in d space dimensions. It may be
worth mentioning that, conversely to the FPUT problem, our
choice of on-site constraint breaks the translation invariance
and the total momentum is not conserved anymore. Depend-
ing on the choice of geometry for the stadia, we can build in
various internal symmetry groups and we expect equilibrium
computations on these models to show the same qualitative
behavior as their more familiar relatives, e.g., multicomponent
Landau-Ginzburg-Wilson models with quartic interactions. In
this paper we will study examples ind = 1 withn = 1 with a
Z, symmetry (see Fig. 1) and n = 2 with Z, x Z, symmetry.

From the viewpoint of single-particle chaos theory, our
models immediately connect to the study of single-particle
classical and quantum chaos in hard-wall billiard systems
[17-22], such as the stadium billiard [23], which are among
the simplest systems to exhibit chaotic dynamics. Indeed,
different shapes of the billiard [24] or additionally applied
external fields [25,26] lead to integrable, weakly or strongly
chaotic classical dynamics. The most common case is that
the Hamiltonian dynamics is not fully ergodic but charac-
terized by a mixed phase space where locally integrable or
near-integrable dynamics coexists with regions governed by
unstable hyperbolic dynamics [27,28]. Hence we see that our
models allow for substantial chaos to be built in at the lattice
scale as advertised above. There could be also some adiabatic
invariant slowing down the thermalization significantly, as
recently investigated in [29].

In the balance of the paper we begin by more formally
defining our models in Sec. II. Next we study the phase
space for n = 1 (scalar field at each site) and N = 2 parti-
cles via Poincaré surfaces of section to get a sense of the
dynamics. The main regular regions (stable islands for such a
low-dimensional case) are identified, together with the central
periodic orbit. For larger values of N the whole Lyapunov
spectrum is first analyzed for arbitrary initial conditions. In
the thermodynamic limit the positive part of the Lyapunov
spectrum converges numerically to a smooth curve and shows

no vanishing Lyapunov exponents (up to one corresponding
to the energy conservation) for the choice of initial conditions
in the chaotic sea (see Sec. III). Further, we consider special
initial conditions, which generalize the stable islands seen for
N = 2.1In Sec. III C we consider smooth initial configurations
where the chain starts as a rigid bar. While the continuum
limit is integrable, we observe energy sharing among normal
modes, caused by the singular confinement potential. Also,
we probe the short-wavelength limit by analyzing the exci-
tations of a single particle. It turns out that the confinement
potential suppresses energy sharing among different particles
in this limit. In Sec. IV we compare the results for two-particle
correlation functions obtained by the canonical ensemble and
by molecular dynamics; we can see very good agreement,
reinforcing the idea that most of the phase space is chaotic.
Nevertheless, small deviations between both results imply the
existence of invariant phase space regions where the dynam-
ics is locally integrable. In Sec. V we introduce and briefly
discuss the model for n = 2, for which there can be chaos at
each site of the lattice.

II. MODELS

A. The n = 1, Z,-symmetric chain

We present here two possible ways to define our model: a
discretized field theory with periodic boundary conditions or
a closed chain. First consider a discretized field theory on a
lattice of N sites with a unit mesh, where ¢; denotes the value
of the field at the ith site. The Lagrangian for the field is

i il
= 52 _ 2 § : N2 )
L= Egmfpz 2 izl((pt-‘rl (p,) V((p,), (1)

where m and k are the mass and spring constant of the field,
respectively. Note that periodic boundary conditions are as-
sumed. The local, or on-site, potential V (¢) is taken to mimic
the presence of hard walls:

0 for0<¢ <@
oo otherwise.

Vip) = { €5
Rescaling the field via @ = ¢;/@o and the time via 7 =
Jk/m t, the Lagrangian (1) can be rewritten, after dropping
the tildes, as

ke? al dy; 2 X
=2 [Z (d—‘> — > @i — @) — vw,-)}.
i=1 ! i=1
Later we will rather use the Hamiltonian formulation and
measure the energy in units of kgog /2. Relabeling the field
value as x; and the corresponding momentum as p;, the final
Hamiltonian is

N
H=Y pi+ 0 —x)+V), 3)

i=1
with the potential

0 forO0<x <1
oo otherwise,

Vi) = { @)

i.e., if a particle hits the wall, the sign of its incoming momen-
tum is reversed. The Hamiltonian (3) will be the central object
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in our study. We can arrive at our field potential as the limit
lim,_, o0 (x — %)2” . The choice p = 2 yields the standard inter-
acting Klein-Gordon field in d = 1, which has been studied
at length previously [30-33]. Our model is also similar to a
model used for DNA denaturation, where the hard-wall limit
appears as the singular limit of the exponential damping of the
interaction term [34].

The second way of introducing our model is to consider a
closed chain of N classical particles with harmonic nearest-
neighbor interactions, each moving in one dimension while
sitting in a box of length L = Na, where a is the distance
between two particles at rest. When one is interested in the
variations around the equilibrium, it is relevant to introduce
the deviation of the position of each particle from its rest
position: ¢; = x; — a. The Lagrangian for such a closed chain
is

1 N , k N ,
£=§;m<p,~ —5§<a+¢i+l — o) =V(p), (5

with the same definition for m and k as above. The key ingre-
dient of our model is in the choice for the local potential

0 for0O<gp<a
oo otherwise.

Vip) = { (6)
Due to our choice of a closed chain, i.e., periodic boundary
conditions, only the quadratic term remains in the interaction
part. Performing the change of variables ¢; = ¢;/a and 7 =
k/mt leads again to the Hamiltonian (3) through the above-
mentioned steps.

The Hamiltonian (3) is invariant under the map, which
reverts every position as

x> 1 —x;.

As it is an involution it gives rises to a Z, symmetry. The
Hamilton equations of motion are

Xi = 2p;,
) )
pi = 2(xip1 — 2x; + xi—1)

up to reflections at the walls.

B. The n = 2, (Z, x Z,)-symmetric chain

The introduced model can be easily generalized to mul-
ticomponent scalar fields, which allows for arbitrary and a
larger variety of confining geometries. For later use, we in-
troduce a doublet of scalar fields in a stadium billiard

N
H = Zpi + Pi,. + (i1 — X)* + Qi — )7 + V(x, 0),

i=1

®)

where V (x, y) is the confinement potential for a Bunimovich

stadium billiard [23] with » = 0.5 and b = 0.5 (see Fig. 2).

In particular, when hitting the wall the linear combination

of py; and p,, giving the momentum in the normal direc-

tion is reversed, whereas the linear combination defining the

tangential momentum is conserved. In that setting, even the

single-particle motion is chaotic. We will use that particular
geometry in Sec. V.

FIG. 2. Sketch of the stadium billiard. For later purposes, we use
r = 0.5 and b = 0.5. The lines stand for the symmetry axes.

As the Hamiltonians (3) and (8) and the constraints are time
independent, the total energy E is a constant of motion. Hence
E and N remain as the only free parameters of the problem
and the energy density # = E /N is used as the relevant control
parameter. This choice of scaling is different from the recent
study of the largest Lyapunov exponent as reported in the
FPUT problem [35]. For later reference we further introduce
the frequencies of the normal modes

wi=4sin(ijzv), 0<i<N-—1 9)

of the free problem, i.e., V (x;) =0.

C. Limiting cases

Before we present and analyze our numerical simulations
we consider two relevant limiting cases with respect to the
energy density. Due to the presence of the walls, the maximum
scaled distance between any two particles is smaller than 1,
and hence the interaction energy is bounded (by N). For en-
ergy densities # > 1, the minimum kinetic energy per particle
is therefore ey, = h — 1, leading to a minimum momentum
per particle pumin = y/€kin = v — 1. If in the regime h > 1
(or pmin > 1) the effect of the interaction between different
particles is neglected, the system reduces to N independent
particles in a billiard. This regime seems the most favorable
to see the recently introduced glassy dynamics [32], even if
we did not investigate it specifically. On the contrary, the limit
h <« 1 resembles a tight, nearly free harmonic chain, where
the energies of the individual normal modes are redistributed
from time to time due to infrequent collisions with the walls.
As shown below, in this case, the dynamics of the system is
weakly chaotic, still leading to an information loss of the ini-
tial configuration. These two extreme regimes of 4 are roughly
separated at i ~ 1, which is expected to be the most chaotic
regime. We finally note that for 4 > 1 the entire configuration
space is accessible due to the upper bound for the interaction.

II1. PHASE-SPACE ANALYSIS FOR THE
SCALAR (n = 1) MODEL

A. Two particles: Poincaré surface of sections

It is instructive to start with two particles (N = 2),
each having only one degree of freedom (n = 1), since the
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FIG. 3. Poincaré surfaces of section visualizing the N = 2 par-
ticle dynamics induced by the Hamiltonian (10) for energy density
(a)h =0.01,(b) h =0.1, (c) h = 1, and (d) » = 10. Different colors
mark different trajectories. About 250 initial conditions are used by
choosing x;(0) and p;(0) on a regular 16 x 16 grid on the accessible
phase space with x,(0) = 0.5 and p,(0) < 0.

underlying dynamics is still easy to visualize. The Hamilto-
nian reads

Hy, = pi +p5 + (2 — x1)%, (10)

where 0 < x1, x, < 1.

Figure 3 shows Poincaré surfaces of section (PSOS) of the
corresponding phase space: The canonical coordinates x; ()
and p,(¢) of the first particle are plotted at each time ¢ when
the second particle reaches the symmetry point x, = 0.5 with
momentum p,(¢) < 0. The system exhibits clear features of
integrable dynamics for large #, as visible in Fig. 3(d): The
PSOS displays cuts through tori in phase space, each creating
a single quasismooth curve. This regime of large & can be seen
as a perturbation of the noninteracting case where the PSOS
would simply consist of horizontal lines. Conversely, at small
or moderate i [see Figs. 3(a) and 3(b)], larger regions of the
PSOS appear uniformly filled, indicating ergodic dynamics.

At intermediate energy density 4 = 1 [see Fig. 3(c)], the
phase space is dominated by two large stable islands centered
around two fixed points. Note that the lower one persists
even in the limit of small 4. Indeed, for all energy densi-
ties, there exists a stable fixed point at x;(0) = x,(0) = 0.5
and p;(0) = p»(0). The positions of both particles coincide,
which minimizes the interaction, and they move together as
one single entity. It is easy to determine that this corresponds
indeed to x1(0) = x(0) = 0.5 and p;(0) = p»(0) = Vh, as
also illustrated in Fig. 3. We will later consider the generaliza-
tion of this fixed point for a chain of N particles. The vicinity
of this phase space point can then be described by a smooth
continuum limit. For energy densities 2 2 1, the second stable
island emerges at x;(0) = 0.5 and p;(0) — 0 for h — o0
[36]. While in this case the second particle bounces rapidly
off the walls, the position of the first particle at the center
of the box is only slightly disturbed. Again, we will detail

the generalization of such an excitation of a single particle or
driven motion.

B. N particles and general initial conditions

For a larger number of particles it becomes quickly pro-
hibitive to probe the entire phase space with a narrow grid of
initial conditions. Instead, we calculate the Lyapunov spectra
for M = 100 different, randomly chosen initial conditions for
various given total energies in order to explore how ergodic
the phase space dynamics is for different 4.

The exponential divergence in time of two neighboring tra-
jectories starting with a small deviation 6I"(0) from an initial
point I"(0) in phase space is quantified through the maximal
Lyapunov exponent that is defined as

N lim L1 8L

[0),8I©) = tgglo p n IST(0)|°
We numerically compute this exponential growth rate in the
2N-dimensional phase space. For each initial condition, there
exist 2N different Lyapunov exponents, which we sort in
decreasing order A; > --- > Ay (see, e.g., [37] for an im-
plementation procedure). In a closed Hamiltonian system the
symplectic structure of the dynamical map implies that the
phase space volume is conserved and the Lyapunov exponents
are connected via the pairing rule A; = —Xoy_; (see, e.g.,
[38]). Hence it is sufficient to consider only the first half
of those exponents. To compute the Lyapunov exponents we
follow the trajectories for a time range up to 10° collisions,
depending on energy density 4 and particle number N, until
a convergence within 3% of relative accuracy is achieved for
the positive Lyapunov exponents.

The resulting Lyapunov spectra are depicted in Fig. 4.
Figures 4(a)-4(c) show, for increasing energy density, N — 1
positive Lyapunov exponents, so there are no global integrals
of motion save the total energy. The different spectra in each
panel exhibit convergence towards continuous curves with
increasing N as the number N —1 of points increases and
the error bars shrink. Note that the fact that one finds N —1
positive Lyapunov exponents does not preclude the presence
of stable regions in phase space. The numerical convergence
towards a continuous curve was already made for the standard
FPUT chain [39], a three-dimensional Lennard-Jones poten-
tial [40-42], and a hard-sphere gas [43]. When considering
a larger number of initial conditions (i.e., a finer grid of
initial points on the constant energy surface), the error bars
get smaller, hence a better convergence towards a smooth
curve. This convergence of the Lyapunov spectra towards a
continuous curve indicates a dominant phase space region of
unstable motion, i.e., chaotic dynamics. While we see a clear
decrease of the smallest Lyapunov exponent for increasing N
at any value of A, our numerics do not enable us to draw a
definite conclusion about the limit.

Y

C. Regular regions in phase space

In this section we describe more precisely three different
families of so-called regular initial conditions, i.e., they may
lead to a nonergodic long time behavior (hence a failure
of thermalization). The goal is first to emphasize the mixed
character of the many-body phase space. Second we discuss
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FIG. 4. Positive part of the Lyapunov spectrum, as a function of
the (rescaled) index, for different particle numbers N and different
energy densities (a) h = 0.1, (b) A = 1, and (c) h = 10. The maximal
Lyapunov exponent (for i = 1) reaches a maximum when / varies
around /1 ~ 1.

the size of some families of regular initial conditions to un-
derstand how large their contribution is when going to the
infinite-size limit. Two of the families generalize the two
stable islands we identified for N = 2, but the third is different
for the case of large N.

1. Near-uniform motion

In order to explore whether stable regular phase space
regions exist in the large-N limit, we begin with the
many-particle generalization of the two-particle fixed point
(x1(0), x2(0), p1(0), p2(0)) = (0.5, 0.5, po, po), with py < 0,
in Fig. 3. For more than two particles, it is given by the
conditions p;(0) = p;(0) and x;(0) = x;(0) for any i, j €

{1, ..., N}. It corresponds to a common motion of all particles
sitting at the same position as a rigid body. One should stress
that the rigid motion exists at any given value of the total
energy.

To analyze the stability behavior of this fixed point we
study the properties of trajectories in its vicinity. To this end
we consider trajectories with an excitation of the first normal
mode in analogy to the original FPUT setting and introduce,
as a convenient measure, the time-dependent center-of-mass
energy

gyl ’
Eem (t) =+ (Z m(t)) : (12)
i=1
The rigid-body fixed point is the only phase space point obey-
ing the condition E; 1, (0)/E = 1. This can be proven briefly as
follows. Certainly this fixed point obeys this condition. Now
assume this condition is obeyed at a certain time for a given
trajectory. This means in particular that all the particles sit at
the same position inside their respective boxes (otherwise the
potential energy would be nonzero). If no particle reaches the
wall, then the center-of-mass energy is a conserved quantity
(because the evolution is free) and the condition is satisfied.
If a particle reaches a wall, so do all the others because
they sit at the same position inside their boxes. This means
that all the momenta are simultaneously reversed: p; — —p;.
Then the center-of-mass momentum also has its sign reversed:
> . pi > —>_. pi. The energy of the center of mass remains
unchanged and the condition E.., /E = 1 again holds after
this collision. The time evolution of E., (t) for a typical
trajectory of N = 100 particles near the fixed point is shown
in Fig. 5(a). The largest amount of energy remains in the
center-of-mass degree of freedom until # &~ 400. For an energy
density 4 = 0.01, the average momentum per particle along
these trajectories is /A ~ 0.1, implying that the center of
mass keeps its energy for almost 80 reflections with the wall.
Afterwards, the energy is distributed among the other nor-
mal modes within a few further reflections. This observation
makes it reasonable to introduce the notion of a relaxation
time t,, i.e., the timescale on which the energy mode distri-
bution starts to spread, associated with a non-negligible width
in the set of modes:

Eem (1) < (13)

. { Ec.m.(o)}
T, = min {¢t —_— .
2

The results for 7, are presented in Figs. 5(b) and 5(c) for
different energy densities (averaged over 100 different initial
conditions), showing, on the whole, a moderate increase with
increasing particle number.

Our numerical analysis shows moreover that 7, increases
exponentially with the ratio E., (0)/E towards the fixed
point. This is a further indication that the fixed point becomes
unstable with increasing particle number.

This trend is stabilized with increasing particle number N;
we could not find any recurrences as in the FPUT model, even
when going to significantly longer times (of the order of 10%).
Together with the exponential sensitivity of the relaxation
time 7, with respect to the initial condition, this lets us claim
that the rigid-body fixed point stays unstable in the large-N
regime. It is worth noting that the above-defined relaxation
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FIG. 5. (a) Typical time evolution of E. ., (t) [Eq. (12)] for a
trajectory near the stable N-particle fixed point with initial conditions
E.n.(0)/E =0.95 and 7 = 0.01. One can detect the relaxation of
the center-of-mass mode after a time ¢ ~ 400, which corresponds to
roughly 80 subsequent reflections on the wall. (To get a smoother
curve the selected times are those for which no particle is too close
to the walls.) (b) Dependence of the relaxation time 7, on the ratio
E.n.(0)/E for different particle numbers. Dashed lines show 42 = 0.1
and solid lines 7 = 0.01.

time scales as the period of the motion inside the box when
varying h: Rescaling by the period, i.e., multiplying by Vh,
our data show a fair collapse for the relaxation time.

2. Localized solutions

The second family of regular initial conditions general-
izes the asymmetric high-energy solution that centers a stable
island for N = 2. For illustrative purposes, we pick the max-
imally asymmetric such solution. This amounts to dealing
with the lattice scale physics when looking at the system
as a discretized field theory. More precisely, consider the

excitation of a single particle, with the initial condition

X(0)=05 1<i<N,
_ \/E fori=1 (14)
pi(0) = {0 otherwise,

i.e., the energy is stored in the kinetic energy of the first
particle. This initial condition is also relevant to investigate
the analogy in a larger dimension of the second stable fixed
point visible for N = 2 in Fig. 3(c). In order to test whether
the dynamics of the remaining particles is directly affected by
the presence of the wall, we define the following quantity:

x5 = maxx () — 0.5. (15)

max

Whenever x)'* reaches the threshold value 0.5, the particle
next to the initially excited one is touching the wall. This
stands for a test for energy relaxation: If the next particle is
not excited enough to touch the wall, this means that energy
equipartition among all particles cannot take place.

We start with N = 3 particles. The equation of motion for
the neighbor of the initially excited particle is given by [see
(N]

Xy =4(x; — x2) +4(x3 — x2). (16)

By symmetry, one has further x, = x3, and the equation of
motion reduces to

X + wixy = wixy, (17)

where wy = 2 is the nonzero mode frequency of the chain with
three particles. We now solve an approximating problem when
the excitation energy E is large. The dynamics of the initially
excited particle, at site 1, is identified with a free particle, i.e.,
not feeling the interaction with its neighbors. Its neighbor is
then treated as a driven harmonic oscillator following (17).

The solution of the equations of motion inside a box of
length 1, obeying the initial conditions (14), is simply given
by a periodic triangular function

» 2VEt — 2k + 1,
x1(t) =
1 —2VEt +2k + 3,

2k—1
2%k + 3

W =

2k +
2%k + 3,
(18)

with k an integer number. This can be rewritten as a Fourier
series
(—=1)

1 4
t)y=-+ — ———— sin(2k + Dwt, 19
x1(t) 2+n2k2>(;(2k+1)2 sin(2k + Do (19)

with w = 27+/E the frequency of oscillations inside the box
in our units.

The expression (19) is then inserted as a driving for the
nearest neighbor x; (¢). This yields the form for the solution of
7,

1
Xxp(t) = Asin(wpt) + 5
o (— 1)

+ 4 >
72 wf — (2K + 1)2a? (2k+1)

sin(2k + 1)wt,

(20)
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where A is the amplitude of the homogeneous part. It can be
determined by the initial conditions to be

—1)k
T on? ;; (2k + 1)2w? (2(k +)1) @h
Then x7'** is given by
x™ = |A| + B, (22)
where B is the amplitude of the driven term
2 Z (2k + 1)2w? (2k + 1) 3)

k>0

The comparison between the numerically obtained am-
plitudes and the analytical approximations can be seen in
Fig. 6(a). The separation between a fast moving free particle
and its neighbors being driven by it provides a very effi-
cient approximation for large energies £ > 1. For energies
around E =~ 1, this approximation breaks down. This is clearly
expected, since in that regime the dynamics of the initially
excited particle becomes strongly affected by the interaction
with its neighbors as the interaction energy is comparable to
its kinetic energy. Therefore, it does not follow the trajectory
of a free particle as in Eq. (19). Moreover, it is remarkable that
X3 < 0.5 for large energies. This means that the dynamics of
the neighbors of the highly excited particle is not affected by
the presence of the wall; hence the energy sharing is strongly
suppressed.

It is possible to build a similar simple approximation
for larger particle numbers N > 3. Our numerical results in
Fig. 6(b) show that this phenomenon crucially persists for
larger values of N. Indeed, one can now describe the intuition
behind this behavior: The central particle generates a high-
frequency drive acting on the rest of the chain. As long as
the smallest frequency in this drive lies well above the band-
width of the chain in the linear approximation, the response
is strongly nonresonant and hence weak. Further, at these
frequencies, the chain only supports evanescent waves and
so the energy deposited into the central site cannot escape to
infinity. This leads us to the conclusion that there is an absence
of energy relaxation in the thermodynamic limit for the initial
conditions of the type (14). Perhaps we can extend these to
nonzero energy density states by creating a superlattice of
such “hot”sites, but we have not investigated this carefully. We
note that this is the analog of the KAM question in this system
where we weakly couple the nonlinear degrees of freedom in
each individual stadium. Absent the coupling, the system is
integrable.

3. Quasilinear solutions

Next we discuss another family of low-energy solutions
which do not have any analog for N = 2. These are sensitive
to the nonlinearity for small times but then become insensitive
to it for a very long time, probably of the order of the Poincaré
recurrence time for the linear problem, which is clearly ex-
tremely long for large systems (discussed below).

Let us start with the simple observation that any initial
condition which leads to a time evolution where each position

100 {(2)

10t M

f
*/

&\l \
8
102 %%"
o™
o™
103 ,
100 10! 102
E

max

10° 101 102
E

FIG. 6. Amplitude of the motion of the nearest-neighbor particle
after the excitation of a single site as a function of the energy of the
excitation. The red dashed lines indicate the threshold at which the
neighboring particle touches the wall for a time up to 103. (a) N = 3.
Blue circles represent the numerical solution of the full chain, black
triangles the homogeneous part of the analytical solution given by
Eq. (21), and black stars the driven part of the analytical solution
given by Eq. (23). (b) Variation of x3* as a function of the number
of particles N. Blue circles represent N = 3, orange stars N = 5, red
squares N = 7, green crosses N = 11, purple hexagons N = 33, and
brown triangles N = 65.

of the chain x;(¢) obeys

0<x()<1, 1Li<N,

is also an acceptable solution for the problems with the wall.
Those solutions follow a linear time evolution, identical to
the free chain. In particular, those initial conditions have a
Lyapunov spectrum which is trivial: Every Lyapunov expo-
nent is exactly 0. The conserved quantities are the energies
of the linear modes of the harmonic chain. Among those
solutions there is a particularly interesting class: the solutions
which start with a zero momentum of the center of mass. We
found that, quite surprisingly, those solutions can be deformed
in the presence of the walls to solutions, which will first touch
the walls and then follow a purely linear time evolution.
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FIG. 7. Trajectories of the particles inside a chain of length N =
64. The initial conditions are given by (24) with E = 10/72; hence
the rattling frequency is slightly off the band of the linear modes. The
blue dashed line shows x; (¢), the red dash-dotted line x, (¢), the black
dotted line x3(¢), and the green solid lines examples of x;(¢) fori > 4.
The inset shows x3(¢) on a longer time range.

It may be fruitful at this stage to draw an analogy with
the Caldeira-Leggett model [44], which has become one of
the paradigmatic models for classical and quantum open sys-
tems. In that model a particle is in contact with a thermal
bath, which leads to friction. In our model, for those initials
conditions both initially excited particles experience a partial
damping (some energy is leaking to the other site) followed
by a long sequence of linear time evolution. Of course, for
a finite chain, there will a Poincaré recurrence time, where
the chain goes arbitrarily close to its initial configuration.
From a thermodynamic perspective, i.e., when sending N to
infinity, this recurrence time diverges. Hence the time evolu-
tion, after a short damping episode, becomes linear and never
feels the walls again. Due to this effectively integrable long
time behavior, this set of initial conditions encodes a lack of
thermalization despite some contacts with the walls. We find
that those trajectories form a continuous family parametrized
by their total energy E, which is bounded when required to
observe this late linear evolution. Still, those initial conditions
are not creating strictly stable regions in the phase space:
Any perturbation of such a trajectory, leading to a nonzero
center-of-mass momentum, is likely to be ergodic.

To make the description clearer we choose N = 64 and
look at the initial conditions

x(0)=0.5, 1<i<N,

+JVE/2 fori=1 (24)
pi(0)=3—VE/2 fori=2

0 otherwise,

i.e., every particle is at rest in the middle of the box, save two,
which are given an initial velocity. For small enough E this
leads to solutions never reaching the box ends, hence trivial
solutions of the problem with walls. In Fig. 7 it is shown
that, for moderate value of E, the initially excited particles are
touching the wall exactly once. They redistribute some energy
to the chain. Their remaining energy is not enough to have

them touching the wall a second time and the whole chain
then follows a free evolution. In particular, we cannot see any
contact with the wall on a time range which is several orders
of magnitude larger than both the traveling time inside the
box (of order 1) and the longest period of the linear mode (of
order N). Using the method described in [45], we estimate
the Poincaré recurrence time for the size N = 64 to be of
the order of 10°2. More precisely, this time is estimated to
get a revival at a distance of the initial point less than 5%.
This is significantly less than any closest approach distance
seen in the inset of Fig. 7. This is the reason why we choose
here the value N = 64: We could not have an estimate of the
recurrence time for larger values of N. Nevertheless, we could
run simulations for the chain for up to N = 1024 (data not
shown) and see the regime of linear evolution last over a time
range longer than any other above-mentioned timescales.

D. Continuum limit

After reviewing some explicit examples of regular initial
conditions, we discuss the continuum limit of the model in
case, following the FPUT case, it sheds light on such matters.
This limit is achieved when one replaces the discrete particle
positions x;(t) by a continuous scalar field ¢(x, ¢). First one
may consider the presence of only one wall in the (scalar) field
space at ¢ = 0. The wall can be seen as the limit of a smooth
confining potential. One option for the potential is

e~

Vi(g) = ,

o

o > 0. (25)

In the limit of @ — oo the field ¢ is constrained to be non-
negative, hence a wall effect. The Euler-Lagrange equation
for the field theory with this potential is easy to obtain,

37— 3*p =e 7, (26)

where one recognizes the Liouville field theory, which is
known to be integrable [46].

Next one can repeat the same game for a field constrained
in a one-dimensional box, say, 0 < ¢ < 1. The smoothing
potential is now

e 4 o¥(—00)

W)= ——, a>0, 27
o

where ¢p = 1 is the width of the box in the limit ¢ —
oco. In that case we find this leads to a deformation of
the sinh Gordon field theory, which is also integrable (see
Appendix D).

To summarize, we believe that the underlying integrable
continuum limit is deeply singular, the reflection on the wall
leads to discontinuities in the time derivative of the field, and
a continuum approximation requires a significant effort to be
justified. Interestingly, when devising a smoothed version of
the model with a steep trapping potential instead of hard walls,
this leads to a fully integrable field theory.

IV. RECOVERY OF STATISTICAL MECHANICS FOR THE
n =1 MODEL: CANONICAL AVERAGES

In the following we study the validity of the (classical)
ergodic hypothesis for statistical properties such as the mean
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energy per particle and spatial two-point correlator. We aim to
compare the statistical average performed within the canon-
ical ensemble and the time averages along few very long
trajectories using molecular dynamics simulations. While the
canonical averaging implicitly assumes global ergodicity, the
existence of nonergodic phase space regions leads to devia-
tions in the molecular dynamics results. As was shown in the
preceding section, the excitation of a single site may con-
tribute to enhance two-particle correlations. The deviations

J

N2 a1 1
Z(ﬂ>=(3> der--/ dxy Ty, x2) -~ Ty eyt oy )T ey 1),
0 0

B

where the transfer operator Ty is defined via a symmetric
kernel T(x, y) on a compact space. There is a discrete set of
eigenvalues A;(fB) for the integral equation [50]

1

/ Ty(x DOy = M(B)fi (). (29)
0

where f; is the eigenfunction associated with A;(8). The par-

tition function of a chain with N particles, defined in (28), can

be rewritten with those eigenvalues

T N/2 o N/2 400
Z(B) = (E) Te(7;) = (E) douY. (0
=0

Since the spectrum of Ty is discrete for positive 8, only the
largest term Aq(B)" is relevant in the limit N — oo. The
average energy per particle is given by [48]

1 0 1 Ao(B)
hB)=———loglZ(P)] =~ — — 2=, (31)
P ="Nop = 5 T %)
For our model the kernel of the transfer operator T is
Tg(x,y) =exp[-B(x —y)’l, 0<x,y<1l. (32

As we could not analytically solve the eigenvalue equation
(29), we discretized the space to convert the integral equation
into a linear system. Taking the matrix defining this system of
size 10° x 10 was enough to ensure the numerical error to be
less than 1%. The result for the temperature-energy relation
is shown in Fig. 8. The high- and low-energy limits of the
model already indicated a nontrivial temperature dependence
of the energy density. In view of our previous considerations
in Sec. II, the system resembles, on the one hand, N inde-
pendent trapped particles in the high-energy limit, implying
one quadratic degree of freedom per particle in the limit
B — 0. On the other hand, for 8 — oo one expects an energy-
temperature relation similar to a harmonic oscillator and thus
two quadratic degrees of freedom per particle. Our numerical
canonical solution confirms that this is indeed the case. The
corresponding blue solid curve in Fig. 8 shows a crossover
from & = 0.1 and & = 1 between the regimes when there are
approximately one or two quadratic degrees of freedom per
particle. The high-temperature behavior is further analytically
supported and understood in terms of a more advanced ap-
proximation for the leading eigenvalue of the transfer operator
T (see Appendix C).

between molecular dynamics and the canonical ensemble are
therefore a useful tool to get a quantitative understanding of
the size of these nonergodic regions.

Since the Hamiltonian of our system contains only nearest-
neighbor interactions, the corresponding partition function
can be computed based on a transfer matrix approach
[[47-49]. Here we develop the main ideas and provide de-
tails of the transfer matrix approach for our problem in
Appendix C. Consider a partition function of the form

(28)

(

The transfer matrix approach can also give predictions for
the spatial correlation functions (see Appendix C). Consider
the two-point correlator

C@@) = (xjxjri) — (X) (xj4i)- (33)
Without long-range order it is decaying exponentially as
C(i) ~ exp(—i/&), where £ denotes the correlation length.
The dominant contribution of the correlation function is of
order (%)’, where 1 is the second largest eigenvalue of T, as
shown in Appendix C, thus leading to the correlation length

(34)

1
E(B) = —g7v
B)
log (5373)
Using a recently derived approximation [51] for the integral
equation (29), one can also check that the critical exponent
for the correlation length coincides with the value from the

10t

10°

10!

1072

10! 100 10t 102
B

FIG. 8. Average energy density & as a function of the inverse
temperature . The blue solid line shows the canonical average
energy density and the black dashed lines indicate the trivial energy-
temperature relations (8) = é for two quadratic degrees of freedom
per particle and h(B) = ﬁ for one degree of freedom per parti-
cle. Those limiting cases are further justified in Appendix C. The
red dashed curve shows the refined high-temperature approximation
(C14).
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FIG. 9. Two-particle correlation function C(i) [Eq. (33)]. Molec-
ular dynamics simulations are performed for different particle
numbers for an energy density 2 = 0.1 for scaled times up to t = 10°
and arbitrary initial conditions. The black dashed curve shows the
results of the transfer matrix method with 8 = 8.55. The blue dotted
curve shows C(i) near the arigid-bodya trajectory. The inset shows
a close-up of C(i). An increasing deviation between the molecular
dynamics and canonical ensemble with decreasing particle number
is visible.

C(é)

universality class of the Ising model:

ExT™!, T—o.

After uncovering the temperature-energy relation, it is now
possible to compare the predictions of the canonical ensemble
average and molecular dynamics [52]. To this end we consider
the two-point correlation function C(7) [Eq. (33)] with (x;) =
0.5 due to symmetry. In our numerical results the average
is taken over the site index n and the canonical ensemble or
single trajectory until # = 10° to bound the absolute error by
2 x 107*. Quasi-integrable dynamics in or close to the identi-
fied stable island in Sec. III B gives rise to large correlations of
neighboring particles. Since the canonical ensemble averages
over the entire phase space, one expects the molecular dynam-
ics to give smaller predictions for the correlation function. As
can be seen in Fig. 9, this is indeed the case. The difference
between the canonical ensemble and molecular dynamics in-
creases with decreasing particle number N. This shows the
increasing impact of nonergodic phase space regions on the
global phase space dynamics of the system when the total
number of particle is reduced. In contrast, i.e., with increasing
N, the data indicate better and better agreement between both
procedures.

V. TWO-COMPONENT (n = 2) SCALAR MODEL

So far we have been discussing a single scalar field at-
tached to each lattice site. Adding a second scalar field
significantly enriches the model as then the local dynamics at
each site can be made chaotic. Even more, one could devise in
advance which type of chaotic dynamics (weakly or strongly
mixing) each site will follow.

100 |
86 & -EER TR 8- 3 6 - 558 -BED|
&
10!
ES
102
103 - ‘
100 10! 102

E

FIG. 10. (a) Same as Fig. 6(b) when each site of the chain carries
a vector, whose amplitude is now confined inside a stadium billiard.
Blue circles show N = 3, orange stars N = 5, red squares N =7,
green crosses N = 11, purple hexagons N = 33, and brown triangles
N = 65.

First one may ask for each site to be trapped in a rectan-
gular billiard. In that case both the Hamiltonian (8) and the
boundary conditions separate between the x and y directions.
Therefore, all our previous discussion about n =1 can be
immediately transcribed here. One could, for example, devise
initial conditions which lead to quasilinear evolution for the x
component of the field at each site, whereas the y component
follows a localized behavior.

The picture changes drastically when the boundary con-
ditions start to couple both components of the local field. In
particular, we consider the Hamiltonian (8) where each local
field x;(¢) or y;(¢) forms a two-dimensional vector, whose end
point is confined inside the stadium billiard so that the local
dynamics is now chaotic.

The protocol of a single-site excitation to search for
quasilocalized solutions is now as follows: One particle is
given a very large initial kinetic energy in an arbitrary di-
rection, whereas the others stand still. We repeat the same
analysis as above and compute the maximum amplitude of y,.
The results, which are shown in Fig. 10, clearly show that the
energy sharing is no longer suppressed (in comparison with
Fig. 6). Instead, one can see that the initial driving of one
particle excites its nearest-neighboring particles in such a way
that they will be affected by the presence of the wall.

This can be understood considering the Fourier spectrum
of the driving particle motion, as can be seen in Fig. 11.
We consider the y component of the driving particle motion
up to times of 7 = 1.3 x 10, i.e., before achieving energy
relaxation. Then a Fourier transform is performed on y;(¢).
While the Fourier spectrum of the box is discrete and far
off-resonance, the chaotic motion in the stadium billiard leads
to a continuous spectrum. The low-frequency components are
closer to resonance and now allow for energy sharing. This
contribution originates from time intervals where the particle
is propagating mostly in the x direction. The low-y component
leads to an enhanced energy sharing.

VI. CONCLUSION

We have introduced a family of models of coupled
classical nonlinear oscillators. These models can exist on
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FIG. 11. Fourier spectrum for the motion of the first excited
particle, with £ = 15.0 and N = 3, in the stadium billiard (n = 2)
[blue (dark gray)] and in the box (n = 1) [orange (light gray)].

d-dimensional lattices and involve n scalar fields per site
which are confined to a chosen domain (the billiard table or
stadium). We focused on the simplest situation of a chain
(d = 1) of N sites, where the scalar field (n = 1) at each site
is confined inside a box. We performed extensive numerical
simulations for size up to N = 30 and found that the system
is ergodic for randomly chosen initial conditions. More pre-
cisely, the long time limit of the two-point correlator agrees
well with the predictions of statistical mechanics. Unlike an-
other famous nonlinear chain, that of Fermi et al., we did not
see any evidence of recurrences suggestive of an integrable
continuum limit. This is a little surprising, as the continuum
limit of our system is itself a particular limit of the integrable
sinh Gordon system. However, it is likely that the integrability
of the latter system is lost in the passage to the limit.

It was proven that a generic trajectory, i.e., with random
initial conditions, is ergodic in the large-N limit; hence sta-
tistical mechanics is applicable in that sense. However, it
is worth stressing that we also provided explicit families of
initial conditions, which lead to nonergodic behavior and the
absence of thermalization. Two were inferred from the N = 2
case. One corresponds to the field being identical at every
sites. This looks like a particular set for the initial data in the
field theory obtained in the continuum limit. The other initial
condition looks at the opposite limit with short-wavelength
(of the size of the mesh) fluctuations; this local quench type
of initial conditions leads to a localized dynamics where the
energy only leaks for a short period of time from the excited
site to its neighbors. Remarkably, we also identified a last
continuous family of initial conditions where the chain starts
to feel the nonlinearities due to the wall and then follows the
behavior of a linear harmonic chain. In future work it would
be interesting to see if one can quantify the scaling with N of
the phase space volume for such solutions and whether there
is a KAM approach for small N about the decoupled well
limit.

The natural next task is to study the model with n =2
that was introduced in this paper. We gave evidence that
the chaos already present at the level of a single site de-
stroys the localized solutions that we found; so the model
is now considerably more chaotic. A more careful study of

102AE/E

0+ . . . .
0 20 40 60 80

103T

100

FIG. 12. Relative error ATE for a typical trajectory. The starting
energy density was & = 0.1. With our algorithm we obtained a rela-
tive energy error 5 ~ 107!,

relatively small values of N could be rewarding in that we
hope to find that this model exhibits much stronger chaos
and shows convincing evidence of effective ergodicity as it
heads towards the infinite volume limit. Separately, it would
be interesting to introduce disorder in our models to see if
we can generate many-body localization on reasonably long
timescales.
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APPENDIX A: NUMERICAL INTEGRATION

The time integrations are performed by an adaptive Runge-
Kutta algorithm of fourth order. The default step size is 3 x
10~*. After each step, the particle are tested, whether each of
them is still located inside its own box. If it is not the case, the
original coordinate is maintained and the step size is reduced
by a factor 10. This procedure is repeated, until a final step size
less than 102 is reached. Finally, the sign of the momentum
of the particle at the boundary is reversed and the step size set
to its default value again (i.e., 3 x 10~*). With that algorithm,
we obtain a relative energy error of £ < 107! for a total
time of 10° (see Fig. 12).
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APPENDIX B: CALCULATION OF LYAPUNOV
EXPONENTS

The calculation scheme for Lyapunov exponents is based
on the methods described in [53,54]. For given equations of
motions

L(t) = F(T(@)), (B1)
an infinitesimal deviation evolves according to

sT(1) = T
(1) = T

In the case of coupled harmonic oscillators F(I') = FT is
linear; therefore, §I'(t) can be calculated by a simple matrix
exponential between two collisions

ST(t). (B2)

ST (1) = €8T (0). (B3)

At times ¢;(I'), one of the particle is reflected on the wall. This
can be described by the mapping

I’ = MT, (B4)

where M switches the sign of the momentum of the reflected
particle. According to [53], the mapping for the deviation
problem is, for the linear problem, given by

ST = MST + [M, F]I'$,, BS)

with 87, = ¢;(I' 4 6T) — ¢;(I) the collision delay time for the
deviated trajectory.

Repeating the steps in [54], after a reflection of the ith
particle the new deviations 6x; and §p; can be expressed by
the deviations §x; and § p; before the collision with the wall:

/
Sxi = —Sx,‘,

5p, = —ap; — 4TI T Bt Xim1 g (B6)
Pi
Here x; and p; denote the coordinate and momentum of the
ith particle before the reflection, respectively, and dx; and 8 p;
the corresponding deviations. The other entries remain un-
changed. In order to calculate the entire Lyapunov spectrum,
we use the algorithm proposed by [55].

As a numerical check, the largest Lyapunov exponent is
independently calculated by the algorithm presented in [37]
for a few random initial conditions. Both techniques give the
same result.

APPENDIX C: TRANSFER MATRIX METHOD

This Appendix is based on [56]. It is adapted here to our
present model. The Hamiltonian of our model is

N
H({prxi) =Y pl+ i —xp)? +V),  (Cl)

i=1

where the potential V (x;) stands for the confinement in a box
for each particle: 0 < x; < 1. It is also assumed that there
are periodic boundary conditions xy4; = x;. The canonical
partition function for a given inverse temperature g is (we

choose units such that Planck’s constant 4 is unity)

[ee) 1 00 1
Z(ﬂ)=/ dp1/ dx1~-~/ de/ dxyePHPxD),

(C2)
As usual, the integration over the momenta is straightfor-
ward, so there remains the multidimensional integral over the
positions

7\V? i 1
Z(ﬂ)=<;> /(;dxl"'/o deeXP(—ﬂZ(xi—xiH)z)-

(C3)
At this stage it is customary to introduce the differential
operator

Ty : L2([0, 11) — L*([0, 1),
fr—s

with the defining formula

1
o) = (T)(x) = /O PO FONdy. (CA)

As the kernel is smooth and summable on the domain (x, y) €
[0, 1] x [0, 1], T is a compact self-adjoint operator. Follow-
ing the Hilbert Schmidt theorem (see, e.g., [50], p. 110),
its spectrum 1is real and discrete and Tg admits a spectral
decomposition using its eigenvalues and corresponding eigen-
functions. Those are defined through the equation

1
[ sy =ireo. e =€
0
Note that, due to the trivial bound (for positive §)
| Tp(x, y)I < 1,

the eigenvalues are also bounded from above. Finally, one
can show that 7y is positive definite. Introduce %(z) such that

Tg(x,y) = h(x — y). Here one has h(z) = e P Use that its
Fourier transform is positive on the real axis

[FRI(k) = / " Rz = \/ge—kw o

Then for any function f(x) in L2, one has

1 1
(f.Tyf) = fo dx /0 dy e PO ()£ ()

 dk :
[ 5

[Fh](k)
and this quantity is zero if and only if f(x) is identically
0. This means that every eigenvalue is not degenerate and
positive.
Eventually, the eigenvalues of the transfer operator 73 can
be sorted in decreasing order:

12 x(B) > 1(B)>---

The reason for introducing such an operator is because the
partition function (C3) can be rewritten as

pu N/2
Z(ﬁ):(E) Tr (7).

1
/ Fo)e*dx
0

> An_1(B) > --- > 0.
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All thermodynamic quantities can be therefore expressed by
the eigenvalues and eigenvectors of the transfer operator 7Tj.
The transfer matrix approach can be also used to calculate

J

expectation values or two-point correlation functions in space.
Consider, for example, the expectation value (x;). It can be
written in the form

1 1 1
(x;) = z/ dx / dxnyTg(x1, x2) - - Tp(xj1, x))x;Tg(xjxj11) - - Tg(xn—1, Xxn )T (xv, x1)
0 0

i !
== M) /0 x| fio)Pdx,
=0

(Co)

where f; stands for the normalized eigenfunction of Ty associated with A;(8) following (CS5). Similarly, the space correlation

function can be expressed as

! 1
e 2/0 " /0 dxnTg(xr, x2) ... Tp(xjo1, x))x;Tp(xjxj41) - - Tp (i1, Xj4i)Xj4i Tp(Xjgixjpin1) - - - Tp (X, X1)
1 . o i
= z[;o)"l(ﬂ) )\m(ﬂ) (/0 xfl(x)fm(X)dX) )

When going to the continuum limit N — oo, all the above
formulas become significantly simpler. The partition function
is well approximated by

B

This approximation is very useful to compute the temperature-
energy relation. The mean energy per particle is given by

1 0 1 A
WB) = 3 5 el Z()] = 5 xziﬁ;

2\N2
Z(B) ~ (-) rB)YN, N — oo.

— OQ.

(C7)
In the last equation, the contributions of )»ﬁ-v fori > 1 has been
neglected as they are exponentially smaller in the large-N
regime. Similarly, the two-point correlation function simpli-
fies in this regime to

1 2 ¢
A
@mw_@mm:(ﬂxﬁmﬁmw><ﬁ%g'

In particular, it varies with k like exp[—k/£(B)], where the
correlation length £(8) is given by

)\l(ﬁ) ‘
10 8 6
_8 28 _8
3 5 2
B 3 B B By 38
—st&7  —it3 T3t F
B_ 8 28 _ 28 g_8
3 4 5 7 2 3
I _ BB L_BL B 1_B P
577T% 176t % 375t H

1. High-temperature (8 — 0) regime

At high temperature, or small 8, the integral equation
defining the transfer operator becomes very simple. Starting
from the Taylor expansion valid for 8 going to 0,

2
PO 1 Bl =y =)

the integral equation (C5) becomes

1 2

B

/ [1 = Bl =) + S0 = ) {o()dy = 2(x). (C10)
0

Looking at the left-hand side, one can see that ¢(x) is a fourth-

degree polynomial. Therefore, one can put the trial formula

$x) = 514)54 + a3x3 + a2x2 +aix+ ag

into (C10) to solve the eigenvalue problem. In this regime,
this becomes a linear system. More precisely, putting a fourth-
degree polynomial into the integral equation leads to the
following matrix eigenvalue equation:

82 £2
4 2 » u
282 2 4 4
3 _ﬁ as as
2
_g_i_% _’3+ﬁ2 a |l =Ala (Cll)
28 282 B2 ap ag
E -7 ao ao
B 8 B 8
ithm 1-5+17%

Although we cannot write an explicit expression for the largest eigenvalue in general, we can determine its Taylor series for
small B,

rMB)=2l—=4+—, B—0,

2
BT (C12)
6 180
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so that the partition function for the chain in the continuum
limit N — oo and in the regime of high temperature (8 — 0)

1S
T N/2 N T N/2 B 7,32 N
Z(m_(E) 7o) _(E) (1_g+@) .
(C13)

Following (C7), the equipartition theorem is
1 1 B

h(B) =~ =+ - —

Ly 0.
B Te 0 P

(C14)
Note that the constant term can also be recovered using first-
order perturbation theory in the coupling constant g.

2. Low-temperature (8 — 00) regime

The regime of low temperature, or large f, is the most in-
teresting one. It is investigated using the trace of the resolvent
of Ty (see, e.g., [50]). The eigenvalues of the transfer operator
Ty are the zeros of a characteristic function F'(A), which is
analytic in the domain X 5 0. This function F(A) also has
an exact converging expansion in the domain A > 1 using the
properties of the kernel. Using approximating formulas for the
kernel in the regime 8 — oo, we will derive an approximation
for this expansion. Assuming analytic continuation, one may
obtain some information about the leading eigenvalues.

Start with the exact identity [see Eq. (18) in [50]]

F'h) 11
= - —TrK,,
FG) A=A

(C15)
where K,, are the iterated kernels,
Ki(x,y) = Tg(x,y),
1
I(n+1(x’ y) = / Kn(-x3 Z)Tﬂ(z3 y)d% n 2 1
0

The main remark is that those kernels can be easily estimated
for large B. More precisely, we will show by recursion that

T\ =B/
Ky (x,y) =~ B "

This assumption is trivially true for n = 1. If it is assumed for
n, then

n>1. (C16)

1
Koor(r,y) = f Ko(r. 20T (2, y)dz
0

T n=l 1 ! 2 2
~ —B(x—2)"/n—B(z—y)
=~ — e e - dZ.

Next one uses that in the regime of B — oo the integral can
be approximated using a saddle point approach: The main
contribution comes from the neighborhood of the minimum
of

(x —2)

gn+1(2) = + -y

This minimum is reached for z = (x + ny)/(n + 1), which is
always in the prescribed range [0,1] for every n > 1. There-
fore, one can extend the integration range to the whole real

axis, and using that

X+ny> _ (—y)?

gn+1<n+1 - n+1

3

one gets

1
/ B2 =By g~ g PGP/ )
0

o n+1 X+ ny\2
A R )

o0

= [T Bay )
Bn+1

Inserting this result in the definition of K,,;, one gets

T\ e=Be=yP /+1)
Kn+1()€,)’)2 ( E) —’_n—|—1 B

which ends the recursion proof.
Those approximations for each iterated kernels enables one
to estimate the traces:

1 7\ 1
TrK, = K, (x, x)dx ~ — —.
o= [ ko= ((5) 7

Then the right-hand side of (C15) can be rewritten

00 (l z)"
F'(x)y 1 /8 Ay B /B . 1 [m
- =T —Z—=— —Liip| =./% )
F) AV~ Jn AV AV B
(C18)
where the polylogarithmic function Li(z) was introduced:

(C17)

X _n

) z
Lis(z) = Z prl lz] < 1.

n=1

As mentioned at the beginning, this derivation was assuming
A > 1. When decreasing A, one can see that the largest zero of
F leading to a singularity in (C18) should obey

I e

— = =1,
AV B

which yields, for the leading eigenvalue,

() = [ = (C19)

i
B
Using this approximation gives the mean energy per particle

in the low-temperature regime, i.e., the equipartition theorem,
following (C7):
h(B) ~ :
=g

This coincides with the numerical estimate in Fig. 8.

B — oo. (C20)

APPENDIX D: MAPPING TO THE SINH GORDON
FIELD THEORY

In this Appendix we show how to map the equation ob-
tained in the continuum limit for n = 1 with smoothed walls
to the sinh Gordon field theory. We start with the Lagrangian

052213-14



ERGODIC AND NONERGODIC MANY-BODY DYNAMICS IN ...

PHYSICAL REVIEW E 103, 052213 (2021)

in 1 + 1 dimension,

+oo M 1
L= / [§<a,¢)2—5(8x¢>2—v2<¢>]dx, (D1

where the potential V,(x) is given by (27). The Euler-Lagrange
equation is then

3¢ — 329 = e — 7D, (D2)

First change the unknown function
¢, 1) > o) = (¢, 1) — 3)
so that the field equation (D2) becomes now
3¢ — 8% + 2ae™**sinh g = 0.
Then, by rescaling the space-time coordinates
x> &= \/Wx,
one gets the standard sinh Gordon field equation

3929 — 079 + sinhp = 0. (D4)

t— 1 =+20e %2, (D3)
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