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Hubs, diversity, and synchronization in FitzHugh-Nagumo oscillator networks:
Resonance effects and biophysical implications
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Using the FitzHugh-Nagumo equations to represent the oscillatory electrical behavior of β-cells, we develop
a coupled oscillator network model with cubic lattice topology, showing that the emergence of pacemakers or
hubs in the system can be viewed as a natural consequence of oscillator population diversity. The optimal hub
to nonhub ratio is determined by the position of the diversity-induced resonance maximum for a given set of
FitzHugh-Nagumo equation parameters and is predicted by the model to be in a range that is fully consistent
with experimental observations. The model also suggests that hubs in a β-cell network should have the ability to
“switch on” and “off” their pacemaker function. As a consequence, their relative amount in the population can
vary in order to ensure an optimal oscillatory performance of the network in response to environmental changes,
such as variations of an external stimulus.
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I. INTRODUCTION

Pancreatic β-cells in Langerhans islets are characterized by
a remarkable coordination of their periodic electrochemical
activity, which is linked to their ability to secrete insulin in
a pulsatile manner [1–4]. Pulsatile release is thought to be
essential for the efficacy of insulin on its target organs and
is disrupted in type 2 diabetes [5–8]. This justifies the vast
amount of literature aimed at understanding the mechanism
of β-cell electrical oscillations and their synchronization in
Langerhans islets, both from the standpoint of cell biology
and in terms of biophysical models describing β-cell clusters
as networks of coupled oscillators [9–22].

In recent years an increasing number of studies have fo-
cused on elucidating the behavior and function of pacemaker
cells, also named “hubs” or “leaders,” i.e., subpopulations of
β-cells showing higher oscillatory activity [17,23–28]. Due
to their ability to respond earlier to changes in glucose con-
centration in the blood stream, hubs would play a crucial
role in determining the dynamics of electrical activity of
β-cell clusters, by initiating and synchronizing coordinated
electrical oscillations across an islet. While the presence of
pacemaker cells in Langerhans islets has been hypothesized
several times [29–34], the confirmation of their existence via
direct observation has become feasible only in recent years,
by leveraging new imaging techniques based on optogenetics
and recombinant fluorescent probes [23–26].
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In spite of this exciting progress and improved understand-
ing, some key questions remain unanswered, specifically: (a)
Are hubs a permanently distinct subpopulation of β-cells, or
can different β-cell subsets turn into hubs or nonhubs as a
function of time and external factors, such as glucose con-
centration? and (b) What are the mechanisms that drive the
overall frequency of bursting events, i.e., the global oscillatory
behavior of an islet as a whole? While we do not aim to
find a definitive solution to these problems, we will show
that studying the fundamental dynamical properties of a 3D
system of coupled oscillators, mimicking some key features of
the electrical behavior of β-cells, can provide useful insights
to understand the collective cell network behavior and to guide
future research.

Individual β-cells that have been isolated from an islet
exhibit a heterogeneous electrical activity, ranging from a qui-
escent state, where their membrane potential stays constantly
polarized, to continuous spiking (repeated action potential fir-
ings) or bursting events that occur irregularly as a function of
time (discrete groups of repeated firings, followed by a period
of quiescence) [35–37]. In contrast, when the same cells are
part of an islet, they show strikingly coordinated and regular
bursting oscillations, characterized by a period typically rang-
ing from 2 to 5 minutes [38,39]. Such membrane potential
oscillations are coherent with cytosolic Ca2+ ion level fluc-
tuations and correspond to a pulsatile insulin secretion from
β-cells, which is so important for glucose homeostasis and
progressively gets lost in type 2 diabetes [7,40–42].

From a dynamical standpoint, bursting activity can be
conceived as periodic oscillations of an excitable dynamical
system, triggered by an external force that is strong enough
to overcome the excitability threshold. In the case of β-
cell islets, this force originates from a series of metabolic
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processes triggered by glucose in the blood stream, therefore
it is a function of glucose concentration.

Because of the above mentioned heterogeneity, β-cells
have been a source of inspiration for modeling studies about
the effects of diversity on the synchronization of oscillator
networks [43,44], which has then become a key research
topic in complex systems dynamics. Numerous studies have
documented the emergence of resonance effects, i.e., the am-
plification of global network oscillations due to diversity, for
both bistable and excitable oscillator networks [45–54]. This
effect has been named diversity-induced resonance [45] and
constitutes an important phenomenon in the context of the
present work, where it will be studied by choosing network
configurations, topology, and coupling relevant to realistic
β-cell clusters.

Indeed, previous studies about diversity-induced resonance
focused on β-cells have not considered the role of pacemakers
or hubs, also due to the fact that their existence in Langerhans
islets has been confirmed only relatively recently. The goal
of the present work is to investigate whether the existence
and key biophysical properties of hubs can be predicted from
the general dynamical properties of a network of coupled
oscillators mimicking β-cell electrical behavior.

The paper is organized as follows. In Sec. II A we sum-
marize the FitzHugh-Nagumo model. In Sec. II B we build
a coupled oscillator network model that incorporates hetero-
geneity and cubic lattice topology. In Sec. III A we define a
metric for estimating the global network oscillation activity
and show the emergence of diversity-induced resonance from
our model, upon varying oscillator population heterogeneity.
In Sec. III B we demonstrate that the presence of pacemakers
or hubs in the network can be viewed as a natural consequence
of oscillator diversity optimization. We also use the model to
estimate the percentage of hubs in a network with topological
and oscillatory features similar to those of β-cell clusters in
Langerhans islets. In Sec. III C we show that, with respect
to the homogeneous system, diversity allows the network to
exhibit a more efficient oscillatory response to a range of
external stimulus values. Finally, in Sec. IV we discuss the
relevance of our results to the understanding of the collective
behavior of β-cells in Langerhans islets, as well as poten-
tial correlations with physiological mechanisms underlying
pathological conditions, such as type 2 diabetes. We also pro-
vide perspective on future extensions of this work, such as its
comparison to biophysical models and possible applications
to other biological systems.

II. MODEL

A. FitzHugh-Nagumo model

Since our aim is to focus mainly on trends and understand-
ing fundamental mechanisms, we will describe individual
oscillators by the FitzHugh-Nagumo model, defined by the
following dimensionless equations [44,55–57]:

ẋ = a(x − x3/3 + y), (1a)

ẏ = −(x + by − J )/a. (1b)

Here x(t ) is proportional to the membrane potential and
y(t ) is a recovery variable. The quantity J plays the role of

an external stimulus, and in physiological terms it is related to
the glucose level G in the blood stream through some function,
J = f (G). Parameters a and b are proportional, respectively,
to the ratio between inductance and capacitance and to the
electrical resistance of the β-cell membrane [44]. As will be
shown later, they also determine oscillation period and shape.

The above equations are characterized by an equilibrium
point, whose stability is determined by the threshold value ε

of the external stimulus J:

ε = 3a2 − 2a2b − b2

3a3

√
a2 − b . (2)

The equilibrium point is stable when |J| > ε and unstable
when |J| < ε. This means that, when |J| < ε, the system
oscillates, while for |J| > ε, it is either in an excitable state
(J < −ε), corresponding to a constant negative value of x(t ),
or in an “excitation block” state (J > ε), corresponding to a
constant positive value of x(t ) [44,56]. From the standpoint of
the electrical behavior of β-cells, we assume that the interval
|J| < ε corresponds to bursting oscillations, while J < −ε

represents a quiescent polarized state and J > ε a continuous
firing state [44] (see Fig. 1).

It may seem strange that we correlate J , which can assume
both positive and negative values, to glucose level, which
is a positive quantity. However, we are not interested in a
quantitative correlation between J and glucose level, but want
to study trends and mechanisms. Therefore, we just need to
keep in mind that J can vary from negative values below
−ε, corresponding to a low glucose level; to negative, zero,
or positive values in the range −ε < J < ε, corresponding to
intermediate glucose levels; and up to positive values above
ε, which are representative of high glucose levels; see Fig. 1.
Notice that all the values J > −ε correspond to glucose levels
G0 � Gth > 0, where Gth denotes the activation threshold to
induce electrical oscillations in β-cells.

It is also worth pointing out that J is a constant term in
our model equations. This is consistent with most mathe-
matical models on β-cell electrical activity and is justified
by the timescale of bursting, which is much faster than the
time required to promote significant glucose variations due to
peripheral tissue absorption and hepatic feedback.

The values of parameters a and b in Eqs. (1a)–(1b) de-
termine, besides the width of the |J| < ε interval, the shape
of x(t ) oscillations. Specifically, the oscillation period T is
proportional to parameter a (higher values of a correspond
to longer oscillation periods), whereas the main effect of pa-
rameter b is to modulate the ratio between the time spent by
the system at elevated versus lower x(t ). This is illustrated in
Fig. 2, showing a comparison between slower [Fig. 2(a)] and
faster [Fig. 2(b)] oscillations, corresponding to different com-
binations of a and b values. We will use the combination a =
60, b = 1.45 [Fig. 2(a)] in most of the calculations presented
in this work. If time is expressed in seconds, this combi-
nation of values generates a wave with period T ≈ 150 s
and a slightly longer duration of low versus high x(t ) phases,
which matches the typical profile of bursting oscillations in
β-cell clusters [39].

It is worth noting that β-cells have complex dynamical
features that are not captured in our approach, i.e., faster
action potential spikes superimposed on the slower bursting
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FIG. 1. Correspondence between β-cell activity and FitzHugh-Nagumo oscillator states.

oscillations, which we reproduce by a FitzHugh-Nagumo de-
scription. However, our focus is on the collective dynamics
and synchronization of oscillator networks representative of
β-cell clusters, and the role of heterogeneity. In this con-
text, the slower bursting oscillations are more relevant than
the action potential spikes, also due to their correlation with
pulsatile insulin release, which is critically important from a
physiological standpoint.

B. Heterogeneous model

In order to describe a β-cell cluster mimicking a Langer-
hans islet, we need to build a 3D network of FitzHugh-
Nagumo oscillators, which are coupled to their neighbors via
coupling factors Ci j (x j − xi ), where i and j are indexes that
identify an oscillator i and one of its coupled nearest neighbors
j. We make the simplified assumption that the value of the
coupling constant is the same for each oscillator in the net-
work, i.e., it is independent of i and j, Ci j ≡ C, and that each
oscillator is connected to the same number n of neighbors.
Then the corresponding FitzHugh-Nagumo equations for the
ith oscillator in the network become [44]

ẋi = a

[
xi − x3

i /3 + yi + C
∑
j∈{n}i

(x j − xi )

]
, (3a)

ẏi = −(xi + byi − Ji )/a, (3b)
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FIG. 2. Oscillation x(t ) of a single FitzHugh-Nagumo element
for different values of parameters a, b and an external stimulus J <

|ε| [see Eq. (2)], corresponding to the oscillatory regime.

where the sum over j in Eq. (3a) is limited to the set {n}i of
the n neighbors coupled to the ith oscillator.

In order to introduce diversity in our coupled oscillator
network [45], we have assumed in Eq. (3b) that each oscillator
has a different sensitivity to the external stimulus, which is
equivalent to associating a different Ji value to each oscillator
i. In physiological terms, this can be interpreted as attributing
to each β-cell in an islet a different sensitivity to glucose level,
which is a realistic assumption based on available experimen-
tal evidence of β-cell heterogeneity [58–61].

We draw the Ji values from a Gaussian distribution with
mean Jav and standard deviation σ , which measures the diver-
sity of the oscillator population [45]. As discussed previously,
the mean value of the external stimulus, Jav, is related to
glucose level in blood and can therefore be varied in a rel-
atively broad range. For simplicity, we initially study the
case Jav = 0, corresponding to a distribution with a certain
number of oscillators, depending on the value of σ , in the
oscillatory regime (|Ji| < ε), and equal numbers of oscillators
in the excitable state (Ji < −ε) and in the excitation block
state (Ji > +ε).

Using this Ji distribution, we numerically solve the
FitzHugh-Nagumo equations for a network of 103 oscil-
lators with cubic lattice topology, where each element is
coupled to its six nearest neighbors. The Ji values from the
Gaussian distribution are randomly assigned to network os-
cillators throughout the 10 × 10 × 10 cube geometry. While
the cubic geometry is a simplification, both the total number
of oscillators and the number of nearest neighbors per oscil-
lator are consistent with what is known about the structure of
Langerhans islets, where each β-cell is electrically coupled
via gap junctions to six or seven neighbor cells on average
[62,63].

We set the coupling constant C = 0.15 because this value
provides an optimal coupling efficiency (lower values cause
a steep decrease of global network oscillations, while go-
ing higher does not result in a significant increase). This is
illustrated in more detail in the next section and is a reason-
able choice to ensure effective but not unrealistically strong
coupling, considering that our goal is to mimic a biological
system.

III. RESULTS

A. Diversity-induced resonance

After solving the FitzHugh-Nagumo equations (3a)–(3b),
corresponding to the above described topology, we compute
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FIG. 3. Global oscillatory activity ρ as a function of coupling
strength C, for different values of population diversity σ . The vertical
dashed line at C = 0.15 corresponds to the coupling strength used in
the simulations.

the global oscillatory activity of the network [44],

ρ = 1

N

√
1

t f

∫ t f

0
dt [X (t ) − X̄ ]2

. (4)

Here N = 103 is the total number of oscillators, X (t ) is the
sum over all i of the individual xi(t ) functions, and X̄ is the
mean of X (t ) in the time interval [0, t f ]. By its very definition,
ρ is the root mean square amplitude over time of the global
network oscillation X (t ), which has a periodic character. As
a consequence, ρ is substantially independent of t f , if t f is
sufficiently large. We verified that by setting t f = 300 time
units, this condition is satisfied in our calculations.

We simulate numerically the oscillator network for a range
of population diversity values σ , while keeping other pa-
rameters constant, i.e., a = 60, b = 1.45, and C = 0.15. As
mentioned in Sec. II B, this choice of C corresponds to an
optimal coupling efficiency, i.e., to the beginning of a plateau
when plotting ρ against C, as shown in Fig. 3 for σ = 0 and
σ = 0.5.

Using the above parameters, the results for the global os-
cillatory activity ρ are plotted versus σ in Fig. 4(a) and show a
clear diversity-induced resonance maximum at σ = 0.5. This
value of σ represents the degree of population diversity result-
ing in the most efficient global network oscillations, due to the
interaction between network elements that are individually in
an oscillatory regime, i.e., elements for which |J| < ε, and el-
ements that would be, individually, in a nonoscillatory regime,
due to either quiescence or excitation block state (|J| > ε), but
are in fact oscillating due to network coupling and resonance
effects. Notably, the ρ value corresponding to the diversity-
induced resonance maximum is significantly higher than the
one achieved with a homogeneous population (σ = 0) where
every element of the network is in the same oscillatory state.

B. Emergence of hubs from diversity optimization

After introducing oscillator diversity via a Gaussian distri-
bution of Ji values and observing the results in terms of global
network oscillations, it becomes quite natural to identify
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FIG. 4. Global oscillatory activity ρ (dots, solid curve, left axis)
defined in Eq. (4) and fraction of hubs Fh (crosses, dotted curve, right
axis) defined in Eq. (5) as a function of population diversity σ , for
different values of a and b; Jav = 0.

network elements corresponding to the interval |J| < ε, which
are intrinsically in an oscillatory regime, as pacemakers or
“hubs” of the system. Instead, elements outside the |J| < ε

range are nonhubs, which can become active as a consequence
of their network interactions and depending on how far their
individual values Ji are from the |J| < ε range.

The hub to nonhub ratio corresponding to the diversity-
induced resonance maximum represents the most efficient
network configuration, because it maximizes global network
oscillations. We can estimate this ratio by computing the fol-
lowing normalized Gaussian integral,

Fh = 1√
2πσ

∫ ε

−ε

dJ exp

[
− (J − Jav)2

2σ 2

]
, (5)

which by definition expresses the fraction of oscillators with
Ji values inside the |J| < ε range, i.e., the fraction of hubs in
the population.

The dependence of Fh on σ for a = 60 and b = 1.45 is
shown in Fig. 4(a). The optimal fraction of hubs correspond-
ing to the diversity-induced resonance maximum (σ = 0.5)
is Fh = 0.053. This means a percentage of hubs in the total
network population of about 5%, in good agreement with ex-
perimental observations of pacemaker β-cells in Langerhans
islets based on optogenetic methods [23–26], which report
this fraction to be 1%–10%. This prediction of our model is
dependent on a specific choice of a, b values in Eqs. (3a)–(3b),

052211-4



HUBS, DIVERSITY, AND SYNCHRONIZATION IN … PHYSICAL REVIEW E 103, 052211 (2021)

by which we have empirically matched the oscillation period
of individual FitzHugh-Nagumo elements with that experi-
mentally observed for β-cells, as explained in Sec. II A.

The above results show that in vivo β-cell behavior in
Langerhans islets, from the standpoint of collective dynamics
and network configuration, is consistent with the intrinsic
properties of a FitzHugh-Nagumo oscillator network with op-
timal diversity. From Fig. 4(a) one can also see that moving
towards higher σ values beyond the diversity resonance max-
imum at σ = 0.5, the slope of ρ becomes progressively more
negative, and, for σ = 2, where ρ is almost one third of its
maximum value, the fraction of hubs, Fh, drops to about 1%.
This illustrates the correlation between percentage of hubs
and global oscillatory efficiency of the network and helps
understanding what may happen in Langerhans islets, when
the optimal hub to nonhub ratio is altered by a pathological
condition.

For comparison, we repeat the calculations using the val-
ues a = 3 and b = 1 that correspond to the faster wave in
Fig. 2(b). As shown in Fig. 4(b), for these values of a and
b the global oscillatory activity ρ(σ ) exhibits a more complex
resonance pattern with two maxima, one at σ ≈ 0.4 and the
other at σ ≈ 0.6. The corresponding Fh values are Fh = 0.52
and Fh = 0.36, respectively.

The above comparison indicates that faster global oscil-
lations require a higher relative number of hubs to maintain
a good coordination of the oscillator network, which makes
sense from both a physical and a physiological standpoint.
In the case of a slower wave, network elements that are not
initially or individually in an oscillatory state have more time
to become active and synchronize with hubs via coupling
effects, and therefore a lower number of hubs is required to
obtain efficient global oscillations. With a faster wave, syn-
chronization is more challenging and can be achieved only
with a sufficiently high percentage of hubs in the network.
This difference is deliberately exaggerated in our faster wave
example, by choosing very different values of a and b versus
the slower wave example used in our calculations. However,
it would be interesting to look for a confirmation of this trend
in future experimental work, by comparing the number of
detectable hubs in slow versus fast bursting oscillations of
β-cell clusters.

It is also worth noting that in both combinations of a, b pa-
rameters we studied, the σ value where the diversity-induced
resonance maximum occurs is larger than the correspond-
ing ε (ε ≈ 0.033 for a = 60, b = 1.45 and ε ≈ 0.279 for
a = 3, b = 1). This may be due to a positive contribution
to network resonance from elements that are outside the in-
trinsic oscillatory range |J| < ε, but not too far away from
it. These excitable elements can easily start oscillating and
contribute to resonance thanks to coupling. Instead, ele-
ments that are far away from the oscillatory range, i.e., at
the tails of the distribution, remain quiescent regardless of
coupling, therefore are detrimental to global oscillatory effi-
ciency. The best network oscillatory performance is achieved
at the diversity-induced resonance maximum, due to an opti-
mal balance of these opposite effects. When σ is increased
beyond the resonance maximum, the network loses effi-
ciency, because not only the amount of pacemakers and more
easily excitable elements decreases but also, at the same
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FIG. 5. Global oscillatory activity ρ, defined in Eq. (4), as a
function of the average value Jav of the stimulus, for different values
of population diversity σ (a = 60, b = 1.45).

time, the amount of the most distant, quiescent elements
increases.

C. The optimal hub to nonhub ratio maximizes the dynamic
range of response to glucose level

We now study what happens when we shift the position
of the mean value Jav of the Ji distribution with respect to
the midpoint of the |J| < ε interval, keeping σ constant. This
will give us information about the ability of the oscillator
population to cope with a stimulus corresponding to J values
that are increasingly distant from the range corresponding to
the intrinsic oscillatory regime.

We perform the calculations with a = 60 and b = 1.45,
corresponding to the reference wave, for three different de-
grees of diversity: σ = 0 (homogeneous system), σ = 0.5
(the diversity-induced resonance maximum), and σ = 2.0 (as
an example of large diversity).

The results reported in Fig. 5 show that oscillator diversity
is able to considerably increase the range of the external
stimulus J , where the network exhibits efficient global os-
cillations. If all network elements were identical (σ = 0),
their global oscillatory activity would be limited to the nar-
row interval |J| < ε ≈ 0.033. Instead, oscillator diversity and
coupling allow the network to respond effectively to a much
broader range of J . This range gets broader and broader as σ

is increased; however, at the same time, increasing σ causes
a progressively weaker response in terms of global oscillatory
efficiency, as shown by the comparison between ρ curves for
σ = 0.5 and σ = 2.0.

It is also helpful to look at the behavior of X (t ) [the sum
of the individual xi(t )] for different values of σ . For instance,
for Jav = 0.5, the network is in a resonant state and presents
global oscillations for both σ = 0.5 and σ = 2.0. However, a
comparison between the corresponding X (t ) curves shows a
large difference in terms of oscillation amplitude and regular-
ity (Fig. 6), which then reflects into very different ρ values for
the two parameter sets. This large difference is a consequence
both of a broader Ji distribution, which causes more network
elements to have Ji values that are increasingly far away from
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FIG. 6. Global network oscillation X (t ) for different values of
population diversity σ , at the average value Jav = 0.5 of the stimulus
(a = 60, b = 1.45).

the oscillatory range |J| < ε, and of a significantly lower
number of hubs.

In physiological terms, moving from lower to higher values
of J in Fig. 5 can be considered equivalent to increasing
glucose concentration from basal up to elevated levels, as
explained in Sec. II A. This illustrates that β-cell diversity can
be a mechanism to achieve a much more robust oscillatory
behavior of islets in response to varying glucose levels.

It is also interesting to observe that the increase of oscil-
latory activity from left to right of the σ = 0.5 and σ = 2.0
curves in Fig. 5 is less steep than the drop on the right side;
however, at the same time, the right half of the curve is more
extended. Again, reading this in physiological terms, we could
say that as glucose concentration is gradually increased, the
network responds by progressively increasing its oscillatory
activity, which is then kept as high as possible for as long
as the system is able to cope with the increasing external
signal strength. A similar response profile has been predicted
also by more complex biophysical models [64]; however our
approach and analysis helps to clarify and understand the
underlying network dynamics.

IV. CONCLUSIONS

Using the FitzHugh-Nagumo equations to represent the
electrical behavior of β-cells, we developed a coupled oscil-
lator network model with cubic lattice topology and showed
that the optimization of diversity results in the emergence of
pacemakers or hubs, which play a key role in determining the
global oscillatory behavior of the network. The optimal hub to
nonhub ratio predicted by the model is defined by the position
of the diversity-induced resonance maximum and depends on
oscillation period and shape, which are determined by the
FitzHugh-Nagumo equation parameters. If we select these
parameters in order to match the experimentally measured
period of bursting oscillations in β-cell clusters, we find that
the corresponding hub percentage predicted by the model
(about 5%) is in very good agreement with observations of

pacemaker β-cells in Langerhans islets based on optogenetic
methods, i.e., in vivo β-cell behavior in islets is in this re-
spect consistent with the intrinsic oscillatory properties of a
heterogeneous, coupled FitzHugh-Nagumo oscillator network
embedded in a cubic lattice.

The model also gives an approximate indication of the hub
percentage threshold below which the oscillatory performance
of a network gets significantly worse, i.e., around 3%, which
may be indicative of the level of β-cell population alteration
corresponding to a pathological condition, such as type 2
diabetes. Furthermore, the results obtained suggest the trend
that higher bursting oscillation frequencies should correspond
to larger hub to nonhub ratios, which would be interesting to
verify in future experimental work.

We also showed that diversity is a key mechanism to
significantly broaden the dynamic range and robustness of
the network response to an external stimulus, i.e., glucose
concentration in the case of β-cells. This is relevant from
a physiological viewpoint, and, again, an altered network
configuration with suboptimal diversity and hub to nonhub
ratio will reflect into a compromised oscillatory performance,
which in the case of β-cells translates into an insulin secretion
profile that may be insufficient or does not have the required
pulsatile characteristics.

Looking back at a key question we asked in the in-
troduction, i.e., whether hubs are a permanently distinct
subpopulation of β-cells, our model suggests that the relative
number of hubs in a network can change as a consequence of
the external stimulus strength. Therefore, network elements
that are nonhubs can turn into hubs and vice versa, as the
network reconfigures itself in response to an environmental
change. Whether hubs are a permanently distinct subpop-
ulation is irrelevant from the standpoint of the dynamical
behavior of the oscillator network; however, the model sug-
gests that hubs should have the ability to “turn on” and “off”
their pacemaker function in order to ensure optimal network
performance in different conditions.

Topics for future extensions of this work include a com-
parison of the insights from our approach to biophysical
modeling predictions, as well as an in-depth investigation
of the combined effects on resonance phenomena of hetero-
geneity, stochasticity, and connectivity, which have been so
far partially studied [65]. In addition, we will consider the
opportunity to apply our approach or its adaptations to other
biological systems beyond β-cells, e.g., cardiomyocytes and
neurons.
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