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Universal S-matrix correlations for complex scattering of wave packets in noninteracting
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We present an in-depth study of the universal correlations of scattering-matrix entries required in the frame-
work of nonstationary many-body scattering of noninteracting indistinguishable particles where the incoming
states are localized wave packets. Contrary to the stationary case, the emergence of universal signatures of chaotic
dynamics in dynamical observables manifests itself in the emergence of universal correlations of the scattering
matrix at different energies. We use a semiclassical theory based on interfering paths, numerical wave function
based simulations, and numerical averaging over random-matrix ensembles to calculate such correlations and
compare with experimental measurements in microwave graphs, finding excellent agreement. Our calculations
show that the universality of the correlators survives the extreme limit of few open channels relevant for electron
quantum optics, albeit at the price of dealing with large-cancellation effects requiring the computation of a large
class of semiclassical diagrams.
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I. INTRODUCTION

Two major achievements in the field of quantum trans-
port are the realization that noninteracting stationary transport
can be described in terms of single-particle scattering, the
Landauer-Büttiker approach [1,2], and that scattering through
potentials supporting classical chaotic dynamics imprints
universal signatures to quantum mechanical observables al-
luded to in the Bohigas-Giannoni-Schmidt conjecture [3–6].
The combination of these two ideas allows for an ex-
tremely powerful description of interference phenomena in
the conductance properties of chaotic and weakly disordered
quantum systems that focus on the emergence of universal,
robust, and observable manifestations of quantum coherence
[7,8]. The key object of study is then the single-particle,
energy-dependent scattering (S) matrix giving the amplitudes
of the process where a particle with energy E is injected
through the incoming channels and scattered into the outgoing
ones. It is the dependence of the S matrix on the energy of the
incoming flux S(E ) and the statistical correlations among its
entries, that in turn are directly connected with observables
like conductance, shot noise, etc. [6].

During the last decades, two complementary and rig-
orously equivalent analytical approaches to describe these
universal effects have emerged. On one side, one has the
machinery of random-matrix theory (RMT) in its two possible
formulations, the so-called Heidelberg approach where the in-
ternal dynamics of the chaotic scattering potential is modeled
independently of the random couplings to the leads [9], and
the circular ensembles approach where one directly constructs
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random S matrices constrained to respect the fundamental
properties of unitarity and the microscopic symmetries of the
system [10,11]. On the other side, we have the semiclassi-
cal approximation based on sums over interfering amplitudes
associated to classical trajectories joining the incoming and
outgoing modes [7,12–14].

During the last years, the interest in many-body interfer-
ence exploded, driven by the realization that noninteracting
scattering of (bosonic) states with large number of indistin-
guishable particles involves a complexity large enough to
beat classical simulators and therefore constitutes a promising
candidate to show quantum supremacy, the so-called boson
sampling problem [15–23]. Although boson sampling, being
based on noninteracting particles, requires only the informa-
tion encoded in the corresponding single-particle scattering
matrix, it is also a probabilistic problem. Remarkably, as
its probabilistic nature requires the uniform sampling of the
space of unitary matrices, boson sampling has a natural real-
ization in the framework of chaotic systems where the internal
dynamics mimics the whole ensemble of random scattering
matrices.

Due to this, the RMT and semiclassical approach to single-
particle complex scattering entered the arena of many-body
scattering [24] where the universality of Hong-Ou-Mandel
profiles, the hallmark of many-body coherence in noninter-
acting systems, due to chaotic single-particle scattering was
reported and its generalization to other type of statistical mea-
sures followed recently [25]. The relevant physical observable
in this context is the distribution of scattered particles as
measured in the outgoing channels when the incoming state is
a localized many-body wave packet [15,16]. In such a scenario
we depart from stationary scattering at fixed energy and the
microscopic input of the theory requires connecting the S
matrix at different energies.
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In this article we present an extensive study of the S-
matrix cross correlations at different energies required within
the study of universal features on complex scattering of
many-body wave packets in systems of indistinguishable,
noninteracting particles. Our study covers all aspects of the
problem, by presenting the RMT description using large en-
sembles of random matrices, the semiclassical approach by
summing over a very large number of diagrams made of
interfering classical paths, simulations based on a numerically
exact tight-binding approach, all showing excellent agreement
with experimental measurements in microwave graphs.

A major motivation of our work is to push the universal
properties of many-body scattering in systems of noninter-
acting, identical particles, and especially their mesoscopic
effects into the arena of electron quantum optics. The com-
bination of these two physical regimes comes with two new
features. First, the focus on a particular set of S-matrix cor-
relations with an energy dependence and a combination of
entry indices that has not been addressed before, while it
is very characteristic of the many-body context. Second, the
need to push the asymptotic limit of large number N � 1
of open channels, so typical of both RMT and semiclassical
treatments in particular for boson sampling, into the regime
of N = O(1). We observe that, in fact, the 1/N expansion
efficiently captures the dependence of the correlators on the
control parameters in most cases, giving full confidence to
the delicate semiclassical treatment. Remarkably, we also find
that the cases where the semiclassical expansion depends on
large cancellation effects that drastically slow down the speed
of convergence, actually are also the cases where the signal to
noise ratio of the experimental signal is the worst within the
whole set of measurements.

The paper is organized as follows: First, we link the four-
point S-matrix correlations of interest to the nonstationary
many-body wave packet scattering in Sec. II. In Sec. III
the semiclassical approach for the S matrix is introduced
(Sec. III A) and followed by a possible application of that
approach: an expansion of a two-point S-matrix correlator
to first order in 1/N called the diagonal approximation. The
principle proceeding to evaluate the energy-dependent four-
point correlators semiclassically is explained in Sec. III C. In
Sec. IV we link quantum chaos to quantum graphs and the
experimentally realized microwave setup (Sec, IV A), which
is described in Sec. IV B. The two numerical approaches in
use, the tight-binding method and the Heidelberg approach,
are depicted in Sec. V. The resulting energy-dependent four-
point correlator data of the experiment, numerical approaches,
and semiclassical analysis are condensed in Sec. VI. Finally,
the conclusions are drawn in Sec. VII.

II. S-MATRIX CORRELATIONS FOR THE SCATTERING
OF MANY-BODY WAVE PACKETS

Within the standard approach to mesoscopic many-
body scattering, described in Fig. 1, incoming particles
(i=1, . . . , n) with positions (xi, yi ) occupy single-particle
states represented by normalized wave packets

φi(xi, yi ) ∝ e−ikixi Xi(xi − zi )χai (yi ) (1)

FIG. 1. Many-body scattering of indistinguishable particles by
a cavity exhibiting single-particle chaos. The incoming many-body
states are built by occupying localized wave packets.

marking a difference with the stationary picture where one
considers the limit of incoming states that are fully delocalized
in position and approach asymptotically eigenstates of the
momentum.

Along the longitudinal direction, the single-particle wave
packet Xi(xi − zi) occupied by the ith particle is described
by three parameters. First, its variance s2

i , second its mean
initial position zi � si, and third the mean momentum h̄ki =
mvi > 0 with which it approaches the cavity. For the corre-
sponding transverse wave function in the incoming channel
ai ∈{a(1), . . . , a(N/2)} we have the eigenstate of the transversal
confinement, denoted by χai (yi ) with energy Eai .

For simplicity we assume that, except for their relative
positions parametrized by zi j =zi − z j , the wave packets and
initial transversal modes are identical: si =s, h̄ki = h̄k =mv,

and Eai =Ech for all i. It is important to remark that, however,
a more general treatment is possible.

The key observable we are interested in, is the joint prob-
ability to find the n particles, entering the cavity through
channels b= (b1, . . . , bn) with energies E= (E1, . . . , En), in
channels a= (a1, . . . , an). Following the standard theory, this
probability is given in terms of the E-dependent n-particle
amplitude [26,27]

Aa,b(E)=
n∏

i=1

e−i[k−kch (Ei )]zi

√
h̄vch(Ei )

X̃ [k − kch(Ei )]Sbi,ai (Ei ) (2)

as

Pa,b(Ech ) = |Aa,b(E)|2, (3)

where Eq. (2) formally defines the single-particle S
matrix Sb,a(E ) connecting the incoming and outgo-
ing channels a and b at energy E . We also have
h̄kch(E ) = mvch(E ) = √

2m(E − Ech ) and X̃ (k) =
(1/

√
2π )

∫ ∞
−∞ e−ikxX (x)dx.

If the particles are identical, quantum indistinguisha-
bility demands their joint state to be (anti)symmetrized
[28]. Denoting with ε = −1 (+1) for fermions (bosons), a
(anti)symmetrized amplitude is obtained by summing over the
n! elements P of the permutation group,

A(ε)
a,b(E) =

∑
P

εPAa,Pb(PE) (4)

052209-2



UNIVERSAL S-MATRIX CORRELATIONS FOR COMPLEX … PHYSICAL REVIEW E 103, 052209 (2021)

to get a many-body transition probability that is naturally
separated into an incoherent contribution

Pinc
a,b(E) =

∑
P

|Aa,Pb(PE)|2, (5)

and a many-body term sensitive to interference between dif-
ferent distinguishable configurations

Pint
a,b(E) = 2n!Re

∑
P �=id.

εPAa,Pb(PE)A∗
a,b(E). (6)

We see that, while the transition probability for distinguish-
able particles Pinc

a,b is insensitive to the relative positions of the
incoming wave packets zi j , for the indistinguishable situation
it depends on the offsets zi j through its coherent contribution.
This allows for an effective tuning of interference through
dephasing, and thereby can be heuristically understood as sen-
sitive to the degree of indistinguishability itself [20,24,29,30].
This type of effect is amplified by a further integration over the
energies to obtain the transition probabilities in channel space.
In bosonic systems, the dependence of this reduced probabil-
ity on the offsets is the celebrated Hong-Ou-Mandel profile
[31] and its generalizations for n > 2, while for fermions it is
responsible for the Pauli dip, both experimentally accessible
signatures of quantum indistinguishability.

The emergence of universal features in the complex scat-
tering of many-body wave packets is made explicit by
introducing small energy windows to smooth the highly os-
cillatory energy dependence of the transition probabilities.
This smoothing affects mainly the energy dependence of the
functions with strongest oscillatory dependence on the ener-
gies, that in chaotic systems is carried by the S matrix. We
conclude, therefore, that averages of many-body transition
probabilities have universal signatures originating from that
of the energy correlations of S matrices with certain com-
binations of energy differences and channels, as required by
Eqs. (2), and (4)–(6).

Let us consider as an example the case n = 2, correspond-
ing to the standard Hong-Ou-Mandel (HOM) type of setup
routinely used to verify the many-body coherence in quantum-
optics scenarios. However, the setting considered here, cavity
scattering, is much more complex than the use of a semi-
transparent mirror in the original HOM proposal. Here, we
have E = (E1, E2) and the group of permutations has only two
elements id,P . Making explicit the products in Eqs. (5) and
(6), we end up with expressions involving the combinations

|Sb,a(E1)|2 |Sd,c(E2)|2 (7)

for the incoherent contribution, and

Sb,a(E1)Sd,c(E2)S∗
d,a(E2)S∗

b,c(E1) (8)

for the interference one. Under energy smoothing, to be de-
fined in Sec. III C, these oscillating products are transformed
into smooth correlation functions, that will carry their uni-
versal behavior for chaotic cavities over to the many-body
transition probabilities. For reasons of completeness we will
also study

Sb,a(E1)Sd,c(E1)S∗
d,a(E2)S∗

b,c(E2), (9)

which has been addressed before in [32,33] in the context of
cross-correlation functions. The study of such correlations is
the subject of this paper.

III. SEMICLASSICAL APPROACH

A. Semiclassical approach of quantum transport

In the Landauer-Büttiker formalism [1,34,35] the S-matrix
elements Sb,a(E ) are the probability amplitudes for a particle
to elastically scatter from the incoming mode a into the out-
going mode b, both at energy E . The size of the N × N matrix
Sb,a is given by the sum over open modes Ni in the m channels:
N = ∑m

i=1 Ni. In the semiclassical limit, at large N or when
the system size is large compared to the Fermi wavelength,
the asymptotic analysis of the Green function starting with
the Feynman path integral [12,36–38] gives an approximation
of the S matrix

Sb,a(E ) ≈
∞∑

β:a→b

Aβ exp
( i

h̄
Sβ

)
(10)

in terms of a sum over all classical trajectories β linking
modes a and b at fixed energy E . The stability amplitude
Aβ together with the phase factor depending on the classical
action Sβ = ∫

β
p · dq build up the contribution to Sb,a of each

classical trajectory β. For time-reversal symmetric systems
with T 2 = 1, such as the systems discussed here, the S matrix
is further symmetric: Sb,a(E ) = Sa,b(E ) [6,39] and therefore
belongs to the circular orthogonal ensemble (COE).

B. Diagonal approximation

In a chaotic system, a quantity like

〈Sb,a(E )S∗
b,a(E )〉 =

〈 ∑
α : a → b,
β : a → b

AαA∗
βe

i
h̄ (Sα−Sβ )

〉
(11)

with an energy average 〈. . . 〉, will appear in a universal,
system-independent, form in accordance with the Bohigas-
Gianonni-Schmit conjecture [5]. For Sα − Sβ � h̄, the highly
oscillating phase results in a vanishing contribution when
averaging. In case of an action difference Sα − Sβ = 0 and
therefore α = β (excluding systems with exact discrete sym-
metries [40]), the so-called diagonal approximation gives the
leading contribution in orders of 1/N [14,41–43]:

〈Sb,a(E )S∗
b,a(E )〉 = 1

N
+ O

(
1

N2

)
. (12)

Higher orders of this correlator, like the contribution by the
Richter-Sieber pairs depicted in Fig. 2(a), will be discussed
later.

C. Semiclassical calculation of energy-dependent correlators

The correlators of interest,

C=(�) := 〈|Sb,a(E+)|2 |Sd,c(E−)|2〉, (13)

D×(�) := 〈Sb,a(E+)Sd,c(E−)S∗
d,a(E−)S∗

b,c(E+)〉, (14)

B=(�) := 〈Sb,a(E+)Sd,c(E+)S∗
b,a(E−)S∗

d,c(E−)〉, (15)
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(a) (c)(b)

FIG. 2. Constructing semiclassical contributions to S-matrix cor-
relators. Each contribution to C2 is constructed by cutting once
through a periodic orbit pair, e.g., the pair sketched in (a). The
quadruplets for the four-point correlators are generated by cutting
out one 2-encounter. For the D× correlator this 2-encounter has to be
parallel in A and B as depicted in (b). (c) Instead using an antiparallel
2-encounter yields the trajectory pairs for C= and B= [44].

with distinct modes a, b, c, and d are depending, due to
the average, only on the energy difference � defined by
E± = Ē ± � = Ē ± ηh̄

2τD
, where we introduced the dwell time

τD. For example, coherent contributions to D× can be made
explicit when inserting Eq. (10) in Eq. (14):

D×(�) =
〈 ∑

α : a → b,
β : a → d

∑
γ : c → d,

δ : c → b

AαA∗
βAγ A∗

δe
i
h̄ �S

〉
(16)

with �S := Sα (E+) − Sβ (E−) + Sγ (E−) − Sδ (E+). For �S
of order h̄, the contribution to D× for this quadruplet
(α, β, γ , δ) can be identified by a diagrammatic rule [44].
Each quadruplet can be generated by following the recipe: The
periodic orbit pairs A and B as depicted in Figs. 2(b) and 2(c)
are building the basis. Removing one 2-encounter (thick lines
in Fig. 2) of all periodic orbit pairs, all relevant quadruplets
contributing to the correlators are generated. Depending on
the correlator, the removed 2-encounter has to be either par-
allel in A and B (in case of D×) or antiparallel in A and B
(in case of C= and B=) as shown in Figs. 2(b) and 2(c). For
� = 0, the correlators are known [42]:

D×(� = 0) = − 1

N (N + 1)(N + 3)
,

B=(� = 0) =C=(� = 0) = N + 2

N (N + 1)(N + 3)
. (17)

Aside from cutting the periodic orbit pairs just once as
illustrated in Fig. 2(a), the same steps are needed to evaluate
the two-point correlator semiclassically [41,43]:

C2(�) := 〈
Sb,a(E+)S∗

b,a(E−)
〉

= 1

N (1 − iη)
− 1 − 2iη

N2(1 − iη)3
+ i + 4η − 8iη2

N3(i+η)5

+ i+6η − 12iη2 − 48η3

N4(i+η)7
+ O

(
1

N5

)
. (18)

Using this powerful method for energy-independent trans-
port moments the Bohigas-Gianonni-Schmit conjecture was
proven in Refs. [45,46].

IV. EXPERIMENT

A. Quantum graphs as model systems for quantum chaos

Quantum graphs [47–50] have been used for two decades
to study the features of quantum chaos [51,52] in closed and
open quantum systems. They consist of networks of one-
dimensional bonds, on which the associated wave functions
are governed by the one-dimensional Schrödinger equation
subject to boundary conditions at the vertices joining them
and exhibit several properties which make them most suitable
for studies within the field of quantum chaos. (i) The spectral
properties of closed quantum graphs with incommensurable
bond lengths were proven in Ref. [53] to coincide with those
of random matrices from the Gaussian ensemble [54] of the
same universality class [53], in accordance with the Bohigas-
Gianonni-Schmit conjecture for chaotic systems [3–5]. This
was verified numerically and experimentally for numerous
realizations of quantum graphs belonging to the orthogo-
nal, unitary, and symplectic universality class [47,48,55–59].
(ii) The semiclassical trace formula, which expresses the fluc-
tuating part of the spectral density in terms of a sum over
the classical periodic orbits, is exact [48]. (iii) It was demon-
strated in Refs. [60–62] that the correlation functions of the
S-matrix elements of open quantum graphs with a classically
chaotic scattering dynamics coincide with the corresponding
RMT results. Quantum graphs belonging to the orthogonal,
the unitary, and the symplectic universality class have been
realized experimentally with microwave networks consisting
of coaxial cables connected by joints [55–59,63,64].

B. Setup for energy-dependent correlations

We constructed a microwave network preserving time-
reversal invariance and, thus, belonging to the orthogonal
universality class, which consists of 19 high-quality coax-
ial cables (HASCO SMA-RG402) and 14 T joints (Pomona
Electronics 72968) corresponding to the bonds and vertices
of valency 3 in the associated quantum graph, respectively.
Five additional networks were generated by interchanging
two bonds which are connected to distinct vertices. Here, the
lengths of the bonds were chosen incommensurable to attain a
“chaotic” quantum graph. Antennas, i.e., leads, were attached
to four of them and the 4 × 4 S matrix was measured [59].
Thus, the number of open channels equals N = 4 in an ideal
microwave network. The experimental correlation functions
were obtained by averaging over 30 correlation functions
obtained for the 6 realizations in five frequency ranges of
about 0.5 GHz in the interval f ∈ [10, 11.6] GHz. A part of
a measured transmission spectrum is shown in Fig. 3. For
chaotic scattering with perfect coupling to the continuum
[33], as assumed in the semiclassical calculations presented
in the previous section (Sec. III), the absolute values and
phases of the S-matrix elements Sb,a are bivariate Gaussian
and uniformly distributed, respectively, whereas for imper-
fect coupling the distributions differ from the Gaussian form
[65–68]. To check whether the experimental data comply with
these requirements, we first analyzed these distributions. The
agreement is very good, as illustrated in Fig. 4. In the ex-
periments absorption is unavoidable, that is, realization of an
ideal microwave network is unfeasible. It results from Ohmic
losses in the coaxial cables and T joints. The coaxial cables
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FIG. 3. Modulus of the S-matrix element S12 in the frequency
interval f ∈ [10, 11.6] GHz where the correlation functions were
analyzed.

were manufactured by cutting one long coaxial cable into
pieces of certain lengths, to ensure that they have the same
absorption properties. This was verified experimentally for
each coaxial cable and also for the T joints. Accordingly,
we may assume that absorption losses are homogeneous over
the whole microwave network. Furthermore, we evaluated the
correlation functions in frequency intervals of 0.5 GHz to
ensure frequency-independent average resonance parameters,
i.e., constant absorption. Absorption leads to a further opening
of the system which may be accounted for, e.g., by introducing
additional open channels. In order to obtain an estimate for the
effective number of open channels we adjusted Eq. (18) to the
experimental two-point correlator, where we varied N and also
the scale of ε, i.e., of τD, by introducing a fit parameter τQG,
ε → ε τD

τQG
, of which the value is restricted to 0.9 � τQG � 1.1,

to account for a possible error in the determination of the
total optical length L of the network and thus of the average
resonance spacing D = c/(2L), where c denotes the velocity
of light. Best agreement between the experimental results
and Eq. (18) was obtained for N  9–10 open channels and
τQG ≈ 0.91τD, shown in Fig. 5.

V. NUMERICAL APPROACHES

A. Tight-binding model

The tight-binding model is implemented with the KWANT

code [69] and the Hamiltonian Ĥ = h̄2

2me
k2 with the free

FIG. 4. Distribution of the experimental S-matrix element S12

(red curves). The distributions of the modulus (left) and phase (right)
are bivariate Gaussian (black curve) and uniform, as predicted by
RMT (black line) for perfect coupling of the scattering region to the
continuum in the Ericson region of strongly overlapping resonances.

FIG. 5. Experimental results (black dots) for the real (left) and
imaginary (right) parts of the two-point correlation function. Adjust-
ing Eq. (18) to the curve (black lines) yields N  9–10 open channels
and τQG ≈ 0.91τD. The dimensionless quantity ε = �/D represents
energy rescaled by the resonance spacing D of the microwave graph.

electron mass me. The two-dimensional system is connected
to two metallic contacts. The scattering problem between
these two channels is solved based on the wave function
approach [69]. To introduce chaotic scattering into the sys-
tem, a billiard-shaped setup seems to be reasonable. Reaching
true ergodic scattering in this setup is strikingly difficult. The
system’s shape, which nearly exhibits ergodicity, is illustrated
in Fig. 6, with the two leads marked red. The elliptical system
requires an additional disklike obstacle and uncorrelated weak
disorder. The mean free path lel resulting from scattering
at the disorder is fulfilling the conditions of weak disorder
(kF lel � 1), ballistic scattering (λF < L < lel ), and of the
nonlocalized regime (L < Nlel ≈ ξloc) with L the typical sys-
tem length. In the following, this setup is investigated for total
number of open modes N = 10 and 4. With the area A, total
width of all leads C and group velocity vg, the classical dwell
time is given by τcl = πA

Cvg
and the mean level distance by

d = h̄2

meA . For the two adjustments we expect a dwell time
of around τcl/τpass = 21 (for N = 10) and τcl/τpass = 64 (for
N = 4) in units of τpass = L/vg. The statistics of |Sb,a(E )|,
arg (Sb,a(E )) are bivariate Gaussian, respectively, uniformly
distributed. Adapting the two-point correlator C2(�) of
Eq. (18) to the simulation with N = 10 by fitting the dwell
time τD and a prefactor, indicates the desired chaotic scatter-
ing as shown in Fig. 7. To this end, averages over disorder
configurations, sets of channel combinations (a, b, c, d ), and
mean energies Ē are necessary.

FIG. 6. Desymmetrized cavity for chaotic scattering. The bound-
ary of the tight-binding setup is undulatory. Inside, the circular
obstacle improves ergodic behavior. The two metallic contacts, with
a total number of open modes N = 10 or 4, are shown in red.
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FIG. 7. The system with N = 10 (black dots) exhibits the form
of the real (left panel) and imaginary (right) part of the two-point
correlator C2(�) given in Eq. (18) (black lines). The agreement of
the fitted dwell time τD with the classical one τcl/τpass = 21 is clearly
observable.

B. Quantum graph with absorption

In order to quantify the effect of absorption on the S-matrix
correlations, we analyzed the properties of the corresponding
quantum graph with and without absorption, where we chose
Neumann boundary conditions at the vertices [48]. The (N ×
N)-dimensional S matrix of a quantum graph with N attached
leads can be written in the form [48]

Sb,a( f ) = δb,a − 2π i[Ŵ †(Ĥ (k) + iπŴŴ †)−1Ŵ ]b,a,

a, b = 1, . . . , N
(19)

with the wave number k being related to frequency via
k = 2π f /c. Furthermore, Ĥ (k) is the Hamiltonian of the
closed quantum graph with matrix elements [48]

Hi, j (k) =
{−∑N

l �=i=1 Ci,l cot(kLi,l ), i = j
Ci, j[sin(kLi, j )]

−1, i �= j
(20)

where the connectivity matrix element Ci, j is only nonzero,
Ci, j = 1, if vertices i and j are connected, and Li, j denotes
the lengths of the corresponding bonds. The matrix Ŵ is of
dimension V × N and accounts for the coupling of the leads to
the V vertices, i.e., Wi, j, i = 1, . . . ,V, j = 1, . . . , N equals
unity if lead j is coupled to vertex i and zero otherwise. We
accounted for absorption by adding a constant imaginary part
εk to the wave number k with εkLi, j ≈ 0.1, which essentially
corresponds to multiplying Hi, j by a factor e−εkLi, j . Here we
use the fact that absorption may be assumed to be frequency
independent and homogeneous along the bonds, as outlined
in Sec. IV B. These numerical computations essentially con-
firmed our experimental results. We furthermore performed
RMT simulations for quantum chaotic scattering systems us-
ing the Heidelberg approach [9,67].

C. The Heidelberg approach within RMT

In the Heidelberg approach the graph Hamiltonian
Ĥ (k) is replaced by Ĥ (k) = k1 − H, where H is a
(M × M)-dimensional random matrix from the Gaussian
orthogonal ensemble in our case, and Ŵ is replaced by a
matrix with real, Gaussian distributed entries with zero mean.
Hence, this approach provides a good description of the
experimental data only, if the average resonance parameters
are approximately constant [59,67]. Therefore, we restricted
the analysis of the experimental S matrix to frequency
windows of 0.5 GHz. The average of the S matrix over
frequency is diagonal, 〈Sb,a〉 = 〈Sa,a〉δa,b, implying [9] that

∑M
μ=1 We,μWe′,μ = Mv2

e δe,e′ . The parameter v2
e mea-

sures the average strength of the coupling of the
modes excited in the coaxial cables to the lead e.
Generally, it is related to the transmission coef-

ficients Te = 1 − |〈Se,e〉|2 via Te = 4π2v2
e /D̃

(1+π2v2
e /D̃)2 with

D̃ =
√

2
M 〈H2

μμ〉 π
M denoting the mean resonance spacing.

We verified that coupling to the antennas is perfect in
the experiments, that is, Te  1 for e = 1, . . . , N by
comparing the distributions of the S-matrix elements to
the RMT predictions (Fig. 4). The RMT simulations were
performed for (200 × 200)-dimensional random matrices
and an ensemble of 300 S matrices was generated. In order
to model absorption, we added scattering channels to the
four open channels [70], where the transmission coefficients
were set equal to unity. We also chose N = 4 and simulated
absorption by � = 50 fictitious channels [67,71–73] with
equal transmission coefficients Tf � 1.

VI. RESULTS AND DISCUSSION

The semiclassical analysis described in Sec. III C for the
energy-dependent four-point correlators can be written in or-
ders of 1/N . The simplest quadruplet accounting for the real
correlator D× is illustrated in Fig. 2(b). Taking more complex
quadruplets into account results in

D×(�)

= − 1

N3(1 + η2)
+ 2η4 + 10η2 + 4

N4(1 + η2)3

− 8η8 + 30η6 + 145η4 + 56η2 + 13

N5(1 + η2)5
+ 28η12 + 190η10

N6(1 + η2)7

+ 196η8 + 2832η6 + 392η4 + 258η2 + 40

N6(1 + η2)7
− O

(
1

N7

)
.

(21)

Equivalent thereto, cutting the trajectory pairs of Fig. 2(c) at
the thick markers, the trajectory pairs yield the first order of
the real correlator C= and the complex correlator B= correla-
tor. Following this procedure we obtain the contributions

C= (�) = 1

(N + 1)2
+ 2

N4(1 + η2)
− 6η4 + 24η2 + 10

N5(1 + η2)3

+ 22η8 + 96η6 + 354η4 + 156η2 + 36

N6(1 + η2)5
+ O

(
1

N7

)
(22)

and

B=(�) = − 1

N2(i + η)2
− 4iη − 2

N3(i + η)4
+ 32η2 + 20iη − 5

N4(i + η)6

− 2(152iη3 − 99η2 − 42iη + 7)

N5(i + η)8
+ O

(
1

N8

)
.

(23)

This semiclassical approach of the correlators is valid for
N � 1. The alternating sign of the η-dependent fractions for
D× and C= leads to a slow convergence of the polynomials
with increasing order N−1 for low number of open modes N .
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(a)

(c) (d)

(b)

FIG. 8. Four-point correlators: semiclassics versus numerics. For
N = 10 the numerical simulation of the four-point correlators D×,
C=, and B= (black dots) coincide with fits of Eqs. (21)–(23) (red
lines). Almost no changes appear when taking higher orders in 1/N
into account.

Instead, B= shows a faster convergence for low number of
open modes. In principle, the low-N limit brings the semiclas-
sical approximation to its limitation. The universality of the
correlators relative to the chosen channels (a, b, c, d ) enables
in the tight-binding model to average, aside from disorder
configurations and Ē , also over distinct channel combinations.
This guarantees the agreement of the four-point correlators
with the expectation from Eqs. (21)–(23) for N = 10. In
Fig. 8, the theoretically expected forms are adapted to the
numerical results by fitting the dwell time τD and a global
multiplicative factor. For all four-point correlators, the re-
sulting dwell time τD agrees with the classical one τcl by
more than 84%. When reducing the number of open modes
to N = 4, as mentioned above the semiclassical polynomi-
als in Eqs. (21)–(23) oscillate about the limiting curve for
large N . The formulas adapted to the simulation are shown in
Fig. 9 for different truncations of the 1/N sums. Here, D× and
C=, both having alternating signs, show drastic oscillations
[Fig. 9(a)] in comparison with B= in Figs. 9(c) and 9(d). For
the simulations enormous Ē averages ensure reliable universal
correlators.

Compared to that, for the experimental results in Fig. 10
less averaging is necessary: They were obtained by averaging
over 30 correlation functions obtained from 6 measurements
for each antenna combination in a frequency range of about
0.5 GHz in the frequency interval f ∈ [10, 11.6] GHz to en-
sure a sufficient number of resonances with approximately
constant resonance parameters. Since there is absorption
which is unavoidable in the experiments, the curves only
agree qualitatively with the predictions. In order to quantify its
effect on the S-matrix correlations, we analyzed the properties
of the corresponding quantum graph without and with absorp-
tion, which was introduced by adding a small imaginary part
to the wave number k [48]; see Sec. V B. These numerical
simulations confirmed our assumption that deviations from
the analytical results (21)–(23) indeed may be attributed to
its presence. We furthermore performed RMT simulations
using the Heidelberg approach described in Sec. V C [9,67].

(a)

(c) (d)

(b)

FIG. 9. Slow convergence of semiclassics for D× for N = 4
(a) (lines), due to large cancellations in Eq. (21). Accordingly, C=

of Eq. (22) (red line) oscillates, however in (b) just order N−6 is
shown. The agreement to numerics (black dots) is partly still present.
In comparison, Eq. (23) of the B= correlator (lines) converges faster
and coincides with simulations (black dots) for all orders (c) and (d).

Here, we added up to six scattering channels to model ab-
sorption [70], i.e., we considered N = 4–10 open channels,
where the transmission coefficients were set equal to unity.
We found best agreement between the experimental and RMT
correlation functions for N = 9–10. We also simulated ab-
sorption by � = 50 fictitious channels [67,71–73] with equal
transmission coefficients Tf and obtained best results for
2π

D̃
�abs = �Tf  5, according to the Weisskopf formula [74].

Furthermore, �abs denotes the contribution of absorption to
the resonance widths.

We found that, except for a possible vertical shift of the cor-
relation function, which generally is eliminated by dividing a
correlation function by its value at ε = 0, the experimental

FIG. 10. The experimental four-point correlators Dx , C=, and B=

(black dots) and the best fitting curves deduced from semiclassics,
Eqs. (21)–(23) (black lines). Comparison with RMT simulations
for N = 9 open channels (red dots) and the corresponding fits to
semiclassics (red lines).
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results agree well with the numerical ones for the corre-
sponding quantum graph with absorption. Similar results are
obtained for the RMT simulations with N = 4 open chan-
nels plus absorption and with N = 9 open channels. These
studies corroborate that deviations from the predictions may
be attributed to absorption. A fit of the analytical results
[Eqs. (21)–(23)] with N and τQG as fit parameter yielded best
agreement for N = 9–10 open channels and τQG ≈ 0.9τD; see
Fig. 10. For the Dx and the C= correlators we had to introduce
a prefactor as an additional fit parameter in order to obtain a
good description of the amplitudes.

VII. CONCLUSIONS

We have presented a comprehensive study of the S-
matrix correlations required in the theoretical description of
many-body scattering of noninteracting wave packets through
cavities supporting classically chaotic dynamics. Our study
exhausts and compares all known venues for the descrip-
tion of chaotic scattering by addressing the cross energy and
channel correlations of S-matrix entries using analytical, nu-
merical, and experimental approaches. The particular form
of the correlators we study is motivated by the microscopic
description of the many-body scattering process, and allows
us to identify the combinations of single-particle S matrices
that, after suitable averages, are responsible for the emergence
of universal features in the many-body transition probabilities.
In a first stage, we used two-point correlators as a probe for the
identification of fully chaotic dynamics. This was achieved by

comparing the expected universal results of the semiclassical
analysis based on interfering paths, random matrix theory
simulations, and numerically exact tight-binding results, that
are confirmed to exquisite detail by experimental measure-
ments on microwave graphs.

Once the set of parameters leading to chaotic dynamics
is identified, we addressed the universality of the four-point
cross-energy correlations required in the study of universal
many-body scattering, confirming again the exactness of the
semiclassical diagrammatic approach by its excellent compar-
ison with numerical simulations and delicate measurements.
Of particular importance is our combined study, again using
all approaches available, of the convergence properties of the
diagrammatic semiclassical expansion in the regime of low
number of open channels, showing that the asymptotic meth-
ods can be indeed pushed into such a regime, a conclusion
of importance when addressing the universality aspects of
many-body scattering in the framework of electron quantum
optics of much present interest.
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