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Dissipative switching waves and solitons in the systems with spontaneously broken symmetry
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The paper addresses the bistability caused by spontaneous symmetry breaking bifurcation in a one-
dimensional periodically corrugated nonlinear waveguide pumped by coherent light at normal incidence. The
formation and the stability of the switching waves connecting the states of different symmetries are studied
numerically. It is shown that the switching waves can form stable resting and moving bound states (dissipative
solitons). The protocols of the creation of the discussed nonlinear localized waves are suggested and verified by
numerical simulations.
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I. INTRODUCTION

It has been known that in bistable nonlinear systems,
two different spatially uniform states can be connected by a
switching wave preserving its shape. These structures have
first been reported in [1] and then found in many optical sys-
tems [2–6]. The integrity of the domain wall is supported by
the exact balance of different linear and nonlinear effects such
as diffraction, the dependency of the effective refractive index
on the light intensity, linear and nonlinear losses, the external
pump, etc. In these respects, the domain walls are similar
to nonlinear localized waves called solitons. It is important
to note that the domain walls connecting different spatially
uniform states can be at rest (this is so-called Maxwell point),
but the general case is when domain walls are moving. The
motion of a domain wall results in the expansion of one of the
uniform states and to the shrinking of another, and this is why
these localized structures are called switching waves. Let us
remark that these switching waves are also often referred to
as domain walls because they separate different states. In the
present paper, we use both terms.

If two or more domain walls have formed in a system, then
they can interact with each other provided that the distance
between the domain walls is comparable to their characteristic
size. In some cases, this interaction can result in the formation
of bound states of the switching waves. These bound states
can also be seen as dissipative solitons [7–14]. The dissipative
solitons play an important role in optics; for example, they
are used for the generation of femtosecond pulses in fiber
lasers [15,16]. This explains why dissipative optical solitons
have been actively studied for many years.

In the present paper, we consider dissipative localized
waves in optical systems where there may exist modes of
different symmetries that have very different losses. These
systems are related to the so-called optical bound states in
continuum (BIC) that are actively studied now because this
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phenomenon opens a way to achieve solitary high-Q reso-
nances. BIC systems have already been used for second and
third harmonic generation [17,18] and in laser design [19].

The characteristic feature of BIC states is that they cannot
be directly excited by the external coherent light, and therefore
they are often referred to as dark states (DS). The states
coupled to free propagating waves have higher losses, but can
be directly excited; these states are called bright states (BS).
It is obvious that in the presence of the finite intrinsic losses,
no stationary states can have a structure of pure DS. However,
the BS can be unstable against the linear excitations having a
structure of DS. This instability breaks the symmetry of the
solution, leading to the formation of hybrid states (HS) that
can be seen as a combination of BS and DS. It is important to
note that the dominating component of HS can be of the DS
kind and, thus, HS can experience very low effective losses
and so they can exist at lower levels of pump intensities. This
can facilitate the experimental observation of optical bistabil-
ity and other nonlinear effects.

For our purposes, we do not need a true BIC when, for
some modes, the radiative losses vanish completely, but a
quasi-BIC when the radiative losses of some modes are sig-
nificantly depressed by destructive interference. In the general
case of a quasi-BIC, the quasi-DS can weakly interact with
nonguided waves, but within the model used in this paper,
these losses are accounted for as effective intrinsic losses of
DS. Recently it was shown that bright dissipative solitons can
nestle on the HS in such systems; see [20]. The aim of the
present paper is to study the domain walls connecting different
spatially uniform states. It will be shown that the domain walls
connecting HS and BS exist, can be dynamically stable, and
can form stable bound states.

It is well known that the symmetric systems can have asym-
metric soliton solutions and that the symmetry breaking sets
the dissipative solitons in motion [21–31]. Let us remark that
symmetry breaking bifurcation is also known for connecting
two physically equivalent spatially uniform states. In this case,
the symmetry breaking transforms a resting Ising-type domain
wall into a moving domain wall of the Bloch kind [32–35].
In addition, recently it was demonstrated that the nonlocal
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FIG. 1. Bifurcation diagram of the bright (blue line) and hybrid
(green line) states, where W = |Ub|2 + |Ud |2 = |U+|2 + |U−|2 is the
intensity of states; dynamically unstable solutions are shown by the
dashed line. Parameters are δ = 0.05, α = −1, σ = 1, γ = 0.001,
and � = 0.299. The inset shows a schematic view of the considered
system.

Raman response sets the localized structures in mo-
tion [36–38]. In our paper, we discuss both the resting and
moving dissipative solitons, but in our case, the motion of the
solitons is caused by the broken symmetry of the solitons’
pedestals and the type of the soliton pedestal defines the
direction of the soliton motion.

The article is organized as follows. In Sec. II, we briefly
discuss the physical system and formulate the mathematical
model describing it. In this section, we also summarize im-
portant facts regarding the structure and the stability of the
spatially uniform states. The formation and the stability of the
switching waves connecting spatially uniform states of differ-
ent symmetries are studied in Sec. III. Section IV is devoted
to the bound states of the switching waves, i.e., to dissipative
solitons. In this section, we also suggest protocols that allow
one to observe the dissipative solitons in the experiments.
Finally, in the conclusion, we list the main results of the paper.

II. THE PHYSICAL SYSTEM AND ITS
MATHEMATICAL MODEL

As a system possessing quasi-BIC states, we consider ex-
ternally pumped one-dimensional waveguides with periodical
grating and Kerr nonlinearity, as schematically shown in the
inset of Fig. 1 (taken from Fig. 1(a) of [20]). The resonant
scattering on the periodical grating results in the appearance
of a gap in the dispersion characteristics and to a dramatic
decrease of the eigenwaves group velocity, which becomes
equal to zero at the exact resonance. It is worth noting that the
upper and lower modes can experience very different radiative
losses. A simple explanation of this is that each mode can be
seen as a composition of two counterpropagating waves. Each
of the counterpropagating waves can leak from the waveguide,
but the total radiative losses are defined by the interference of
the contributions from each of the counterpropagating waves.
In the case of destructive interference, the contributions from
the counterpropagating waves cancel each other and, thus, the

radiative losses get suppressed. The constructive interference
enhances the radiative losses.

The dynamics of the system is described as in [39] by a
two counterpropagating waves approach and can be expressed
mathematically by the following system of equations:

(∂t ± ∂x )U± = (iδ − γ )U± + iα(|U±|2 + 2|U∓|2)U±
+ (iσ − �)(U± + U∓) + P, (1)

where U+ and U− are the slow varying complex amplitudes
of the two counterpropagating waves, δ is the detuning of
the frequency of the pump from the center of the gap of the
dispersion characteristics, γ are the losses of different nature
that cannot be compensated for by the U+ and U− waves
interference, α = ±1 is the Kerr-nonlinearity coefficient, σ

is the conservative part of the coupling coefficient defining
the rate of the mutual rescattering of the counterpropagating
waves, and � is the dissipative coupling accounting for the
fact that the radiative losses depend on the interference of the
waves.

It is convenient to reformulate the problem in terms of the
complex amplitude of bright modes, Ub = U++U−√

2
, and dark

modes, Ud = U+−U−√
2

. With these variables, Eq. (1) reads(
∂t − iδ − i

3

2
K + γ + 2� − 2iσ

)
Ub + (∂x + iM )Ud =2P,

(2)
(

∂t − iδ − i
3

2
K + γ

)
Ud + (∂x + iM )Ub = 0, (3)

where K = α(|Ub|2 + |Ud |2) and M = αRe(UbU ∗
d ). From (2)

and (3), it is seen that linear eigenmodes in the form e−iωt+ikx

with k = 0 have the structure (Ub �= 0, Ud = 0) and (Ub = 0,
Ud �= 0). The second mode has only intrinsic losses γd = γ

and, thus, the losses are lower than the losses of the first mode,
γb = γ + 2�. It is also obvious from Eq. (3) that the second
mode cannot be excited by the driving force accounting for
the action of the pumping wave at normal incidence. Thus,
this mode is the dark one. The first mode can be excited
by the pump and so it is a bright mode. In the nonlinear
regime, there may exist the states such that both their com-
ponents are nonzero, Ub �= 0, Ud �= 0 [20,39]. These modes
are the hybrid nonlinear modes.

As it is shown in [39], the spatially uniform hybrid states
are always unstable for α = 1 and, therefore, we consider only
the case α = −1. To facilitate the discussion of the nonlinear
localized waves and, in particular, switching waves, we briefly
reproduce the results on the formation and stability of the
spatially uniform states reported in [20]. Stationary nonlinear
states can be classified as bright states (BS) with Ub �= 0, Ud =
0 and as hybrid states (HS) with Ub,d �= 0. The bifurcation
diagram of the BS is shown in Fig. 1 by the blue curve. The
HS bifurcating from the BS are shown by the green curve. The
spectral linear stability analysis as well as direct numerical
simulations show that the HS belonging to the upper branch
of the bifurcation curve are stable and, thus, are of interest
from a physical point of view.

Here we acknowledge an important fact that the hybrid
states are produced by the spontaneous symmetry breaking
and, therefore, they consist of two counterpropagating waves

052207-2



DISSIPATIVE SWITCHING WAVES AND SOLITONS IN … PHYSICAL REVIEW E 103, 052207 (2021)

of different amplitudes, |U+| �= |U−|, and so these are the
states with energy flow FHS = |U+|2 − |U−|2 directed either
from the left to the right or from the right to the left. The
symmetry of the equations x → −x, U± → U∓ insures that if
U+ = a, U− = b is a spatially uniform solution, then U+ = b,
U− = a is also a spatially uniform solution. Thus, the spatially
uniform HS are double degenerate and have the energy flux of
the same absolute value but of different signs.

III. DOMAIN WALLS CONNECTING THE HYBRID
AND BRIGHT STATES

In this section, we consider the stationary domain walls
connecting different spatially uniform HS to spatially uni-
form BS. To find stationary solutions, we set to zero the
temporal derivatives and thus reduce the system (1) to a sys-
tem of ordinary differential equations. Then, substituting the
derivatives by their discrete analogues, we approximate the
ordinary differential equations by a system of nonlinear alge-
braic equations. The algebraic system is solved numerically
by the iteration method. The linear stability of the stationary
solutions is examined by finding the eigenmodes of the weak
perturbations of the stationary solution. The dynamics of these
excitations is described by linear equations with coefficients
being functions of the spatial coordinate. To find the eigen-
values and eigenmodes of the perturbation, we substitute the
spatial derivatives by their discrete analogues and then solve
the corresponding spectral problem numerically. The exis-
tence of the modes growing in time means that the background
state is dynamically unstable. The growth rate is defined by
the real part of the eigenvalue of the mode and thus if the
spectrum of the perturbation contains one or more eigenvalues
with positive real part, then the examined solution is unstable.
To check the results of the spectral stability analysis and to
study the nonlinear stage of the instability, we performed
direct numerical simulations of (1) using the split-step Fourier
method; see [40]. This method is proven to be highly efficient
and is widely used for modeling of different nonlinear optical
systems.

Let us start with introducing the notation of the domain
walls. In the present paper, we focus on the domain walls con-
necting the stable hybrid states to the bright states belonging
to the lower branch of the bifurcation characteristics. Then it
is possible to mark the domain walls by the kinds of spatially
uniform states connected by the domain walls. For example,
a domain wall BH is a connection of the bright state on the
left to the hybrid state on the right. Then, HB is a domain
wall where the bright and the hybrid states are swept (HS is
on the left side of the domain wall and BS is on the right). It
is important to note that the characteristic size of the domain
walls should be much larger than the grating period; otherwise
the slowly varying amplitude approximation is not applicable
and new effects appear [41].

As mentioned above, the hybrid states have nonzero energy
flux and so we need to distinguish the hybrid states where
energy flows from the left to the right from the hybrid states
with opposite direction of the energy flow. We denote the
former ones as H+ and the latter as H−. The bright states have
zero energy flux and will be marked as B without indices. Let
us emphasize that from a physical point of view, it is obvious

that the domain walls H+B and H−B are different; in the first
case, the energy flow in the HS is directed towards the domain
wall, and in the second case, it is directed away from the
domain wall.

The linear analysis of the stationary perturbations on the
H±S and BS background has revealed that the small exci-
tations can exponentially decay with or without oscillations
to the backgrounds. Therefore, one can expect that the states
can be connected by domain walls with exponential tails. As
mentioned before, the domain walls move with some velocity
which depends on the parameters of the system. The assump-
tion that the domain wall is moving without changing its shape
allows one to look for this solution in a moving reference
frame where the domain wall field distribution depends only
on the coordinate ξ = x − vt and so is described by ordinary
differential equations. The equations have to be solved with
the boundary conditions corresponding to the prescribed spa-
tially uniform states on the left and on the right. From the
mathematical point of view, a domain wall is a heteroclinic
phase trajectory connecting two different equilibrium points
in the phase space of the differential equation written in the
moving reference frame. These trajectories do not exist for
an arbitrary velocity, but for some values of v the heteroclinic
trajectories can be found. We solved the corresponding bound-
ary value problem numerically and found the domain walls
connecting the upper hybrid state to the lower bright state;
a typical bifurcation diagram v vs P of the domain walls is
shown in Fig. 2(b).

Let us first discuss the domain walls H+B connecting the
state H+ on the left and B on the right. The dependency of
the velocity of the domain walls on the pump is shown for
typical parameters in Fig. 2(b) by the black line. One can see
that there is a special value of the pump called a Maxwell
point (due to analogy with thermodynamics) at which the
velocity of the domain wall is zero. The existence of resting
domain walls is known in many physical systems, including
optical ones [1,3,4,42]. The existence of the Maxwell point in
our system is important for the formation of the dissipative
solitons (bound states of domain walls) that are considered in
the next section in detail.

The range of the existence of H+B almost coincides with
the range of the existence of the stable HS [the upper branch of
the HS bifurcation curve shown in Fig. 2(a)]. The domain wall
is wide for the low pump intensities; numerical simulations
indicate that the domain wall width goes to infinity at the left
border of the existence domain. Typical distributions of the
domain wall fields are shown in Figs. 3(a)–3(c) for different
intensities of the pump.

Let us remark here that it is also possible to find other
family of H+B domain walls; see Fig. 2(b) where the cor-
responding branch of the bifurcation diagram is shown by a
blue dashed line. These domain walls have a more complex
structure, but we did not manage to find stable domain walls
of such a kind.

Another important remark is that because of the symmetry
x → −x, U± → U∓ of Eq. (1), the domain walls BH− can
be obtained from the domain walls H+B by the inversion of
the direction of the x axis and the swap of the fields U±;
compare Figs. 3(a)–3(c) and Figs. 3(d)–3(f), showing the field
distributions in H+B and BH− domain walls for the same
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FIG. 2. (a) The part of the bifurcation diagram showing the de-
pendencies of the intensities of the hybrid and bright (belonging to
the lower branch) spatially uniform states on the pump amplitudes.
Two vertical dashed lines mark the range of the existence of the
stable hybrid states. The green lines and arrows show the range of
the existence of resting H+BH− and H−BH+ solitons. The range of
existence of moving H+BH+ and H−BH− solitons is shown by the red
lines and arrows. The point where the bright states become unstable
is marked as SSB. (b) Velocity dependencies of the domain walls on
the pump. The bifurcation curves of the different domain walls are
shown by different colors. The solid lines correspond to the stable
domain walls and the dashed lines to the unstable domain walls. The
inset shows the enlarged region near the Maxwell points of H+B and
BH+ domain walls. The points where the domain walls H+B and BH+
(or H−B and BH−) have equal velocities are marked as Peq.

pump intensities. For a fixed pump, the velocities of H+B
and BH− domain walls are of the same absolute value but
of different sign; see the bifurcation diagrams of the domain
walls presented in Fig. 2(b).

Now let us discuss an important issue of the dynamical
stability of the domain walls. It is obvious that if one of the
backgrounds of the domain wall is unstable, then the whole
state is unstable and, thus, the domain walls existing to the
right from the point of the SSB (spontaneous symmetry break-
ing bifurcation destabilizing the lower bright state) are always
unstable. However, the linear stability analysis shows that the

FIG. 3. Field distributions of the domain walls. (a) H+B at P =
0.14, (b) H+B at Maxwell point, (c) H+B at P = 0.27, (d) BH− at
P = 0.14, (e) BH− at Maxwell point, (f) BH− at P = 0.27, (g) BH+
at P = 0.14, (h) BH+ at Maxwell point, and (i) BH+ at P = 0.24 of
the unstable branch.

domain wall loses its stability at the pump values lower then
that of SSB. The simulations of Eq. (1) confirmed that for
relatively low pump intensity, the backgrounds remain stable
but the domain wall gets destroyed; see Fig. 4 showing the
development of the instability.

The instability results in the development of an oscillat-
ing pattern separating the HS and BS. At longer times, the
hybrid state expands, but stable dark solitons stay incorpo-
rated in the HS. The interaction between the dark solitons
leads to their collision and annihilation; this process is seen
well in Fig. 4. However, the interaction between the solitons
decreases exponentially with the distance. Therefore, the HS
with incorporated solitons can be seen as a metastable state.
We remark here that the oscillation pattern can be an indi-
cation of the existence of a periodic nonlinear state, but this
problem requires a separate consideration and is beyond the
scope of the present paper.

Another kind of domain walls considered in this paper is
H−B or BH+ which are related to each other by the inversion
of the x axis and the swap of the fields. Their bifurcation
diagrams are shown in Fig. 2(b) by the red and yellow curves.
The typical field distributions in the BH+ for different pump
intensities are shown in Figs. 3(g)–3(i). At low pumps, the
domain walls are wide, with the width going to infinity at the
left end of the bifurcation diagram.

At some pump, the domain wall experiences a fold bifur-
cation and becomes unstable. The domain wall belonging to
the lower unstable branch of the bifurcation diagram can be
seen as an equilibrium combination of a BH+ domain wall
and a dark soliton. This becomes obvious at the left end of
the bifurcation curve, where the distance between the domain
wall and the soliton goes to infinity.

The structure of these domain walls suggests the possible
mechanism of their instability. If the distance between the
soliton and the domain wall becomes smaller, then the soliton
gets attracted and collides with the domain wall. Alternatively,
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FIG. 4. (a) The evolution of the unstable H+B wall at P = 0.31
obtained by numerical simulations of Eq. (1). The colors shows the
total intensity of the state |U+|2 + |U−|2: the blue color corresponds
to the lowest intensity and the yellow color corresponds to the highest
intensity. (b)–(e) The distribution of the fields at different times.

if the distance between the soliton and the domain wall
increases, then they depart from each other. Numerical sim-
ulations fully confirmed this guess. The development of the
H−B domain wall instability is illustrated in Fig. 5. It is
clearly seen that the development of the instability results in
the formation of a resting dark soliton and the domain wall
moving away from the soliton.

Considering the nature of the instability, it can be con-
cluded that the instability growth rate becomes small at low
pumps where the domain wall and the dark soliton are well
separated and, thus, interact very weakly. At the fold bifur-
cation, the instability growth rate also goes to zero, and thus
the maximum instability growth rate is inside the region of the
domain wall existence. The numerical analysis shows that the
point of the maximal instability growth rate is shifted towards
the fold bifurcation point.

In this section, it is shown that in the considered system,
there are several kinds of domain walls and that some of the
domain walls are stable. It was also shown that the instability
can result in the formation of dark solitons that can be seen

FIG. 5. (a) The evolution of the unstable H−B domain wall at
P = 0.22 obtained by numerical simulations of Eq. (1). The colors
show the total intensity of the state, |U+|2 + |U−|2: the blue color
corresponds to the lowest intensity and the yellow color corresponds
to the higher intensity. (b) Numerically found unstable domain wall
taken as the initial conditions for the numerical simulations shown in
(a). The domain wall can be seen as an unstable bound state of the
H+B wall and a dark soliton (H−BH+ soliton) used as an initial con-
dition in the numerical simulation. (c) Field intensity distributions at
t = 10 000.

as stable bound states of two domain walls. This calls for
systematic studies of the dissipative solitons that occur in the
system. This is the subject of the next section.

IV. DARK SOLITONS

In this section, we discuss different dissipative solitons
that can be interpreted as bound states of the domain
walls connecting the lower bright and the hybrid spatially
uniform states.

We start with the solitons that are formed by the domain
wall H+B on the left and domain wall BH− on the right.
As discussed above, the hybrid states forming these domain
walls are related by the operation of simultaneous inversion
of the spatial coordinate and the swap of the fields U±. Each
of the hybrid states H+ on the left and H− on the right
have the energy flow directed towards the bound state formed
by the domain walls. The intensity of the field in the center of
the bound state is lower than the intensity of the backgrounds,
and so the bound state can be referred to as a dark dissipative
soliton. We can denote the soliton as the H+BH− soliton,
meaning that the soliton is the state consisting of the H+B
on the left and BH− on the right. Let us note here that from
the mathematical point of view, these soliton solutions are the
heteroclinic trajectories connecting different stationary points
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FIG. 6. Bifurcation diagrams of H+BH− (blue line) and H−BH+
(black line) solitons. The dashed lines correspond to the unstable
states. It is seen that in the vicinity of the Maxwell points, the bifurca-
tion curves form snaking patterns. Insets (i) and (ii) illustrate the field
distributions of the solitons belonging to the snaking patterns of the
bifurcation diagrams. These states correspond to the points (i) and
(ii) of the bifurcation curves. The field distributions in the H+BH−
and H−BH+ solitons at pump P = 0.2 are presented in insets (iii)
and (iv) for H+BH− and H−BH+ solitons, respectively. The relevant
points on the bifurcation curves are marked as (iii) and (iv) in the
main panel.

in the phase space of the corresponding ordinary differential
equation.

We calculated the bifurcation diagram of the soliton; the
curve showing the dependence of the soliton width defined as
Z = ∫ ∞

−∞ ||U+|2 + |U−|2 − (|U 0
+|2 + |U 0

−|2)|dx on the pump
amplitude P is shown in main panel of Fig. 6 by the blue
line. Strictly speaking, the Z value is not really the width,
but assuming the soliton depth near the Maxwell point to be
constant, Z depends only on the soliton width. The solitons
exist in the whole domain of the existence of the H states. As
expected, because of the symmetry of the domain walls, the
discussed solitons have zero velocity.

The linear analysis of the stationary linear perturbations
shows that they decay to the bright state B with oscilla-
tions and this gives a reason to expect that there may exist
more than one equilibrium distance between the domain walls
forming the H+BH− solitons. It is also important that the
H+B and BH− domain walls have Maxwell points and that
these Maxwell points are at the same pump value for both
of the domain walls. To form a bound state of the rest-
ing domain walls, the interaction strength can be arbitrarily
weak. Therefore, one can expect the formation of the snaking
pattern of the bifurcation characteristic around the Maxwell
point [10,13,43,44]. The corresponding snaking pattern is
clearly seen in Fig. 6. The discussed solitons separate two
different states and so the snaking is heteroclinic. Below we
will show that homoclinic snaking is also possible in the
considered system.

After each of the turns of the snaking pattern, the width
of the dissipative soliton increases by the period of the oscil-

lations of the domain wall tail decaying to the bright state.
The distribution of the field in a soliton in the vicinity of the
Maxwell point is shown in inset (i) of Fig. 6. It is seen that
the soliton can indeed be considered as two remote and, thus,
very weakly interacting domain walls.

The spectral analysis has revealed that in the snaking pat-
tern, the stability of the dark solitons H+BH− changes at
each fold bifurcation and so the stable parts of the bifurca-
tion curve interchange with the unstable ones. The instability
can be understood in terms of the effective potential cre-
ated by a domain wall for its neighbor. The maxima of the
potential correspond to the unstable solitons. Then one can
anticipate that the development of the instability leads to the
change of the distance between the domain walls. The result
of the instability is the formation of a stable bound state with
the width smaller or larger than the width of the initial bound
state. The results of the numerical simulations illustrating the
development of the instability of the H+BH− solitons are
shown in Fig. 7(a). One can see that, indeed, the instability
simply changes the width of the soliton to the width of a stable
soliton. Otherwise, the instability of the bound state can result
in separation of the H+B and BH− domain walls, as shown in
Fig. 7(b).

Outside the snaking pattern, the solitons exist in the whole
region of existence of the domain walls. The width of the
soliton can be of the size or more narrow than the size of the
domains wall; see inset (iii) of Fig. 6. The stability analysis
tells us that outside the snaking pattern, solitons H+BH− are
stable provided that the H+ and H− states are stable.

Another possible combination of the domain walls that can
be in equilibrium and, thus, can be considered as a dissipative
soliton is H−B and BH+ domain walls. These domain walls
form the bound states where the energy on the left and on the
right flows away from the bound state. The intensity distribu-
tion in these solitons is symmetric and the solitons are at rest;
see insets (ii) and (iv) in Fig. 6.

In H−BH+ solitons, the energy flows away from the soli-
tons and, of course, these solitons cannot be identical to
H+BH− solitons; however, their properties are similar. In par-
ticular, the bifurcation diagram of the H−BH+ solitons shown
in Fig. 6 by the black curve has a snaking pattern around the
Maxwell point. As in the case of H+BH− solitons, each turn
of the bifurcation curve corresponds to the increase of the
soliton width by an oscillation period of the domain wall tails
decaying to the BS. In the snaking pattern, the stability of the
soliton changes at each turn of the bifurcation characteristics.
The mechanism of the instability is also the same as in the case
of H+BH− solitons: the solitons change their size to the size
of the neighboring stable soliton. The H−BH+ solitons exist
in the range of the existence of H−B and BH+ domain walls.
Outside the snaking area, the solitons are stable provided that
the HS on the left and on the right of the soliton are stable.

A different example of dissipative solitons is the bound
states H+BH+ and H−BH−. The latter ones can be obtained
from the former ones by the inversion of the x axis and the
swap of the fields, U± → U∓. Therefore, they possess the
same properties and so we discuss here only H+BH+ soli-
tons. The peculiarity of these solitons is that because of the
symmetry breaking bifurcation, the energy flows to the soliton
from the left and flows out of the soliton on the right. Thus,
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FIG. 7. (a) Development of the instability of the H+BH− soliton at P = 0.14. (i) Dynamically unstable soliton is taken as an initial condition
in the numerical simulation. (ii) Resulting stable soliton with the width smaller than the initial one. (b) Development of the instability of the
H+BH− soliton at P = 0.17. (i) Initial conditions in the form of an unstable soliton. (ii) The final distributions of the fields where the separation
of two domain walls is clearly seen. (c) Development of the instability of the H+BH+ soliton at P = 0.2. (i) The initial condition in the form of
the unstable soliton. (ii) Resulting stable soliton with the width smaller than the initial one. (d) Development of the instability of the H+BH+
soliton at P = 0.28. (i) The initial condition in the form of the unstable soliton. (ii) The final spatially uniform field distribution corresponding
to the hybrid state which appears after the collapse of the soliton.

one can expect that these solitons are the moving ones. We
found numerically the solitons H+BH+ and found out that,
indeed, the solitons move with some velocity depending on
the intensity of the pump; see the bifurcation diagram shown
in Fig. 8(a) by the blue curve. The distribution of the field in
the solitons is illustrated in Figs. 8(b) and 8(c) for different
points of the bifurcation curve.

As seen in Fig. 2(b), there is a pump Peq at which the
domain walls H+B and BH+ move with the same velocity
veq. One can expect that at this point, the bound state can
be infinitely wide, consisting of two noninteracting domain
walls. Since the stationary fields decay to the BS with os-
cillations, there may be more than one equilibrium distance
between the domain walls forming the soliton. At the pump
Peq, the number of the solitons goes to infinity and, thus, the
bifurcation curve swirls toward the point P = Peq, v = veq

on the bifurcation diagram plotted in the v − P axes. In the
bifurcation diagram in the Z − P axes, this results in the for-
mation of the snaking pattern discussed above; see Fig. 8(e).
Unlike the previous type of solitons, these solitons connect
the same stationary states, and therefore the snaking is of the
homoclinic type [45].

The problem of the stability of the solitons is of importance
from the physical point of view. We studied the stability of
the H+BH+ solitons by finding the eigenvalues governing the
dynamics of the small perturbation imposed on the soliton.
The analysis shows that H+BH+ can be dynamically stable;
see Fig. 8(a) where the solid parts of the bifurcation curve
correspond to stable dissipative solitons. The stability of the
solitons has also been checked by direct numerical simu-

lations of the partial differential equation, with the initial
conditions taken in the form of the soliton perturbed by a weak
noise. The simulations confirmed the prediction of the spectral
stability analysis and shed light on possible outcomes of the
instability of H+BH+ solitons. It turned out that the soliton
can change its width to that corresponding to a stable soliton;
see Fig. 7(c). Alternatively, the bound state of the domain
walls forming an unstable bound state can be broken and then
domain walls annihilate and the system switches to a spatially
uniform H+ state, as shown in Fig. 7(d).

Let us remark here that the bound states of the domain
walls can also be bright solitons BH±B with the intensity
having a maximum within the soliton. The bifurcation curve
of these solitons is shown by the red dashed line in Fig. 8(a);
a typical distribution of the fields of the soliton is illustrated
in Fig. 8(d). However, we did not find stable solitons of such
a kind. This makes them less interesting from the physical
point of view and we do not discuss them in detail. We
note that stable bright solitons exist in the system [20], but
these solitons can hardly be considered as bound states of
dissipative domain walls but rather as a generalization of
bright nonlinear Schrödinger equation solitons for the case
of driven-dissipative systems.

The discussed solitons are stable and, thus, can be observed
in real experiments. We did some estimations of real pump
powers required for soliton formation. For a semiconductor
waveguide with the grating period 3 μm, the order of the
pump power can be estimated as less than 1 kW/cm2 [46],
which is an experimentally achievable value. For recently de-
veloped highly nonlinear materials where strong light-matter
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FIG. 8. (a) The velocities of H+BH+ (blue line) and BH+B (red
line) moving solitons as a function of the pump P. Peq is the point
where the domain walls H+B and BH+ have the same velocities;
see the inset in Fig. 2(b). The fields distributions of the (b) single-
hump H+BH+ soliton at P = 0.22, (c) multihump H+BH+ soliton
at P = 0.22, and (d) BH+B soliton at P = 0.24. The snaking of the
bifurcation curve of the moving H+BH+ soliton around the Maxwell
point is shown in (b) in the Z-P axis.

interaction takes place [47], the required pump power is antic-
ipated to be much lower.

Another question of great importance is how these states
can be created in experiments. Here we suggest the proto-
cols that allow one to form the dissipative solitons starting
from the initial condition in the form of weak noise. First
we do it for the solitons H−BH+. To observe the solitons in
the numerical simulations, we consider a straight corrugated
waveguide of finite length driven by an external pump whose
intensity and distribution in space can be controlled. To avoid
the strong influence of the boundaries, we take the interaction
strength between the counterpropagating waves to be higher
in the vicinity of the edges; in the middle of the system the
interaction strength is a constant. The profile of the coupling
strength used in our simulations is shown by the red line in
Fig. 9(a). Experimentally, this can be achieved by the increase
of the modulation depth of the waveguide at its edges.

When the pump is switched on, the intensities of the field
start growing and, if the pump is strong enough, then at some

FIG. 9. The formation of the H−BH+ dark soliton from the weak
noise taken as the initial conditions. (a) The distributions of the am-
plitude of the spatially nonuniform pump P shown by the blue curve.
The distribution of the coupling strength coefficient σ is shown in
this panel by the red curve. (b) The numerically obtained evolution
of the field. (c) The final distribution of the field, where the dark
soliton is clearly seen.

moment the hybrid states form. However, the boundaries in-
troduce additional losses and, thus, the hybrid state forming at
an edge has energy flow directed towards the edge. As a result
of the evolution, the final state consists of two hybrid states
with energy flows directed towards the edge nearest to the
state. In the center of the system, the states are connected by a
dark soliton; see Fig. 9(b). The profile of the field intensity
of the stationary solution is shown in Fig. 9(c) and it was
checked that this field distribution coincides with the field of
the H−BH+ soliton found for the given intensity of the pump.

Let us mention that to reduce the time of the formation
of the state, the pump is taken to be slightly inhomogeneous
[shown in Fig. 9(a) by the blue line]. Otherwise, the soliton
forms at a random point in the central part of the system and
then slowly drifts towards the center. This motion happens
because of the interaction of the soliton with the boundaries,
which is very weak for long systems. This makes the soliton
motion very slow and drastically increases the simulation time
needed to observe the formation of a stationary state.

To observe the formation of moving solitons of H±BH±,
it is more convenient to use an annular system with periodic
boundary conditions. First, we need to grow a uniform hybrid
state from initial weak noise. To do so, the uniform pump
with intensity sufficient to set in the instability of the bright
state is used. The development of the instability creates a
stationary spatially uniform hybrid state with nonzero energy
flow. The hybrid state forming at the pump P = 0.2 is the
initial conditions for the protocol of the creation of the moving
dissipative solitons. To obtain a nonuniform field distribution,
we change the pump to the spatially nonuniform one shown
in Fig. 10(b). In the area of low intensity, the pump cannot
support the hybrid state and a stationary low-intensity bright
state forms in this region. Thus, in the system appear the areas
of the contact of the bright and the hybrid states.

It is possible to choose the difference of the minimum
and the maximum pump intensities so that the hybrid states
forming in the vicinity of the contact areas have the energy
flow directed toward the bright state (to the area of the lower
pump). This means that the interval filled with the bright state
is between different hybrid states (one H+ and another H−).
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FIG. 10. Numerical simulation supporting the protocol of the
formation of moving H+BH+ solitons suggested in the paper. (a) The
temporal evolution of the intensity of the field. The intervals of
different pumping regimes are marked by 1–4. The field distributions
at the times marked by the vertical lines S1−3 are presented in panels
(e)–(g) correspondingly. (b) The profile of the pump acting on the
system within the interval 1 (t < 5000). (e) The quasistationary field
formed by t = 5000. (c) The distribution of the pump amplitude
within the time interval 2 (5000 < t < 20 000). The area of the low
intensity of the pump is slowly shrinking and, finally, the pump
becomes spatially uniform. Schematically, the shrinking of the low
pump area is indicated by the red arrows. (f) The field distributions
at t = 20 000. The pump distributions shown in (d) are for time
intervals 3 (20 000 < t < 30 000) and 4 (t > 30 000), and they are
marked by the numbers 3 and 4 correspondingly. (g) The final dis-
tribution of the field (t = 50 000). This field distribution perfectly
coincides with the field distribution in the H+BH+ soliton existing at
the pump P = 0.21.

But the system is annular and, thus, there must be an area
where the H+ and H− states contact each other. This results
in the formation of a dark dissipative soliton; see Fig. 10(a)
where, in the region marked as 1 (0 < t < 5000), this dark
soliton is clearly seen as well as two areas of contact of
the bright and hybrid states. The distribution of the quasis-
tationary fields as functions of the x coordinate is also shown
in Fig. 10(e).

Then, at t = 5000, we start changing the pump, gradually
reducing the width of the low-intensity pump; see Fig. 10(c).
At t = 20 000, the pump becomes spatially uniform and a
new dark dissipative soliton H+BH− appears in the system.

The region marked as 2 in Fig. 10(a) shows this process. So
now there are two dark solitons in the system: one of them is
the H+BH− soliton and the other is the H−BH+ soliton; see
Fig. 10(f) showing the distribution of the fields.

A moving H+BH+ or H−BH− soliton can now be created
by a gentle collision of the two dark solitons. To do so, we
slightly change the shape of the pump, making it slightly
nonuniform. The dark solitons H+BH− and H−BH+ move
in opposite directions in the nonuniform pump: one soliton
moves down and the other moves against the gradient of
the pump intensity. This process is seen in the time interval
20 000 < t < 30 000 marked as 3 in Fig. 10(a) for the pump
shown in Fig. 10(d). After collisions of the solitons, a moving
soliton H+BH+ appears; the fields distribution in this soliton
is illustrated in Fig. 10(g). It is worth noting here that by
changing the shape of the pump, it is possible to swap the
sides of the colliding solitons and, thus, produce a H−BH−
soliton.

At t = 30 000, the pump is made uniform again and one
can see that there is a stable dissipative soliton moving in the
system [region 4 in Fig. 10(a)]. Thus, we can conclude that
the suggested protocol allows one to create the dissipative
solitons moving either clockwise or counterclockwise in the
pumped annular system. Let us remark here that the suggested
technique can also be used for the creation of more complex
soliton structures.

So we can say that the protocols of possible experimental
observation of the solitons are suggested and verified. This
brings us to the end of this section and we proceed to the next
one, where the main results of the work are summarized.

V. CONCLUSION

In this paper, we have considered the switching waves con-
necting the states with broken (hybrid states) and unbroken
(bright states) symmetries. As discussed above, the states with
broken symmetry have nonzero energy flow and, thus, the
domain walls depend on the relative positions of the con-
nected states (the domain wall connecting the BS on the left
and the HS on the right is not equivalent to the domain wall
connecting the HS on the left to the BS on the right). The
domain walls are classified and their bifurcation diagrams are
found and discussed.

It is shown that the domain walls can form a bound state
that can be called dissipative solitons. An interesting finding
is that the dissipative solitons can be moving and the direction
of the motion is defined by the symmetries of the soliton
background. The stability of the dissipative solitons is studied
and it is shown that the solitons can be stable and so can be
observed experimentally. In the paper, we also suggested and
verified numerically the protocols allowing one to create the
discussed solitons.
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