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Missing-level statistics in a dissipative microwave resonator with partially
violated time-reversal invariance
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We report on the experimental investigation of the fluctuation properties in the resonance frequency spectra
of a flat resonator simulating a dissipative quantum billiard subject to partial time-reversal-invariance violation
(TIV) which is induced by two magnetized ferrites. The cavity has the shape of a quarter bowtie billiard of which
the corresponding classical dynamics is chaotic. Due to dissipation it is impossible to identify a complete list of
resonance frequencies. Based on a random-matrix theory approach we derive analytical expressions for statistical
measures of short- and long-range correlations in such incomplete spectra interpolating between the cases of
preserved time-reversal invariance and complete TIV and demonstrate their applicability to the experimental
spectra.
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I. INTRODUCTION

The conjecture [1–3] that the fluctuation properties in the
eigenvalue spectra of typical quantum systems with fully
chaotic classical limit coincide with those of random matrices
from the Gaussian ensembles [4] has become the cornerstone
of many theoretical, experimental, and numerical studies in
the field of quantum chaos. The spectral properties of generic
quantum systems with fully chaotic classical dynamics and
preserved time-reversal (T ) invariance coincide with those
of random matrices from the Gaussian orthogonal ensemble
(GOE). Some examples are quantum wells [5], molecular
spectra [6], atoms in a strong microwave field [7,8], flat
microwave resonators (billiards) [9–15], and microwave net-
works [16–19]. In the presence of T -invariance violation
(TIV) the spectral properties are well described by those of
random matrices from the Gaussian unitary ensemble (GUE).
This was observed, for example, for atoms in a constant
external magnetic field [20], graphene quantum dots [21],
Rydberg excitons [22], nuclear reactions [23,24], microwave
billiards [25–27], and networks [28–34]. A random-matrix
theory (RMT) approach was also developed for quantum
systems with partially violated T invariance [35–38]. Such
systems were realized experimentally by inserting ferritic
material into a microwave billiard and magnetizing it with
an external magnetic field [25–27,39]. The degree of time
irreversibility can be adjusted by controlling the magnitude
of the applied magnetic field and quantified by a parameter
which interpolates between the cases of a T -invariant system
and a system with complete TIV [33,35,37,40,41]. We would
like to mention that dissipative microwave billiards subject
to partial TIV were previously used in a different context in
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Refs. [42,43] to investigate the features of dissipative quan-
tum systems with partial TIV in the vicinity of exceptional
points, that is, those of isolated pairs of nearly degenerate
resonance frequencies. Furthermore, the fluctuation properties
in the level sequence of a flat microwave resonator or quantum
billiard are determined by their shape. Therefore, billiards are
often used for the numerical, theoretical, and experimental
investigation of the features of quantum chaos.

Generally, the completeness of a spectrum is indispens-
able for the comparison of the fluctuation properties with
those of random matrices from the Gaussian ensembles.
However, complete sequences of several hundreds of levels
are achievable only very rarely. One example are high-
precision measurements of resonance spectra performed with
flat, superconducting resonators at liquid-helium tempera-
ture [15,40,44,45] yielding sharp and well isolated reso-
nances, and thus making the determination of the resonance
frequencies from the positions of the resonances feasible. Due
to absorption, measurements at room temperature typically
yield overlapping resonances, which render the determination
of complete sequences of resonances impossible. Thus, exper-
imentally determined level sequences are typically incomplete
and lead to deviations of the spectral properties from RMT
predictions for complete spectra. To overcome these difficul-
ties one has to cope with missing levels, which has been made
feasible with the RMT approach for missing levels introduced
in Ref. [46]. It was developed in the context of nuclear physics
in Refs. [46–49] and applied to atomic, molecular, and nuclear
systems [6,50–56] and to microwave billiards and microwave
networks [29,57,58] simulating quantum billiards and graphs
with preserved T invariance and complete TIV.

The objective of this article is to analyze the spectral fluc-
tuations in the resonance frequency spectra of a real system, a
microwave resonator with internal absorption which leads to
the incompleteness of the spectra, in the presence of partial
TIV. We present analytical results accounting for partial TIV
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FIG. 1. (a) The experimental setup. The vector network analyzer
Agilent E8364B is connected to the microwave antennas, which
are attached to the resonator through the flexible microwave cables.
In order to induce T -invariance violation two pieces of ferrite are
inserted into the cavity and magnetized by four external magnets
placed at the positions of the ferrites below and above the resonator.
The latter are marked by M1 and M2. An additional magnet MP is
used to move a metallic perturber inside the cavity alongside its walls
to create different realizations of the cavity. (b) Transmission spectra
from antenna 1 to antenna 2 (black dotted line) and vice versa (red
full line) in three frequency regions.

in terms of a parameter ξ [37] which interpolates between
GOE and GUE and for the incompleteness of the level se-
quence which is characterized by the fraction � of identified
levels. In Sec. II we describe the experimental setup and then
introduce in Sec. III the RMT approach for missing levels and
apply it to the experimental level sequences. In Sec. IV we
summarize the results.

II. EXPERIMENTAL SETUP

We used the same microwave cavity [see Fig. 1(a)] as
in our previous work on the enhancement factor as function
of openness and size of TIV [41,59]. It has the shape of
a quarter bowtie billiard of which the classical dynamics is
fully chaotic. The cavity consists of two plates of polished

aluminum type EN 5754. A basin of area A = 1828.5 ± 5.0
cm2, perimeter L = 202.3 ± 2.0 cm, and depth h = 1.2 cm,
which forms the resonator body, was milled out of the bottom
plate. The inner surface of the cavity is covered with a 20-μm
layer of silver to reduce internal absorption. Below the cutoff
frequency of νmax = c/2h � 12.49 GHz, with c denoting the
speed of light in vacuum, only the transverse magnetic modes
are excited inside the cavity so that the Helmholtz equation
describing the electromagnetic field in the microwave cav-
ity and the two-dimensional Schrödinger equation for the
quantum billiard of corresponding shape are mathematically
equivalent. The top plate of the cavity has nine identical,
randomly distributed holes marked from 1 to 9 in Fig. 1. In
our previous experiments these holes were shunted with 50 �

loads to realize up to nine scattering channels. For the analysis
of the fluctuation properties of the resonance frequencies we
consider only M = 2 scattering channels since, as was shown
in Ref. [41], for this case TIV is strongest in a given frequency
interval. Furthermore, for increasing openness and internal
absorption the overlap of the resonances becomes stronger
and renders the identification of the resonance frequencies
impossible.

In order to measure the two-port scattering matrix Ŝ(ν) two
antennas of lengths 5.8 mm and pin diameter 0.9 mm were
attached to the microwave cavity at the positions marked by 1
and 2 in Fig. 1(a) and connected to an Agilent E8364B vector
network analyzer (VNA). The two antennas correspond to the
M = 2 scattering channels. A metallic perturber with perime-
ter ≈26 cm and area ≈9 cm2 was placed inside the cavity and
moved with a small external magnet marked by MP along the
walls of the cavity in order to create different realizations of
it. Cylindrical NiZn ferrites of diameter 33 mm and height
6 mm with saturation magnetization 2600 Oe (manufactured
by SAMWHA, South Korea) were inserted into the cavity
and magnetized by two external NdFeB magnets of diameter
33 mm and height 30 mm and type N42 with coercivity 11850
Oe (943 kA/m) below and above the cavity (marked by M1

and M2). The thereby generated homogenous magnetic field
of strength B � 495 mT induces a macroscopic magnetization
of the ferrites across their cross sections. The precession of the
magnetization around B with the Larmor frequency ωo = γ B
and gyromagnetic ratio γ = 32.2 GHz/T results in the ap-
pearance of a ferromagnetic resonance at ν f r = 15.9 GHz.
Inducing TIV leads to different matrix elements S12(ν) �=
S21(ν) of the measured scattering matrix, while for systems
with preserved T invariance the scattering matrix is sym-
metric, S12(ν) = S21(ν). Examples of measured spectra are
presented in Fig. 1(b). The strength of TIV was controlled
by varying the external magnetic field B and depends on
the frequency range. It is characterized by the parameter ξ .
All measurements were done in the frequency range ν = 6–
12 GHz for M = 2 scattering channels, and yielded values
ξ � 0.19–0.49. The size of ξ was determined in Ref. [41]
by comparing the experimentally obtained cross-correlation
coefficients

Ccross
12 = Re

[〈
S f l

12(ν)S f l∗
21 (ν)

〉]
√〈∣∣(S f l

12(ν)
∣∣2〉〈∣∣(S f l

21(ν)
∣∣2〉 , (1)
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where S f l
12(ν) = S12(ν) − 〈S12(ν)〉 denotes the fluctuating part

of the scattering matrix elements, with exact analytical results.
Complete TIV yields a vanishing of the cross-correlation
coefficient Ccross

12 = 0, because then S f l
12(ν) and S f l∗

21 (ν) are
uncorrelated, and Ccross

12 = 1 for T -invariant systems. The
cross-correlation coefficient is particularly small in the fre-
quency range 7.5–9.5 GHz [41], and strongest TIV ξ = 0.49
is achieved for M = 2 open channels in the range 8–9 GHz.

The transition between GOE and GUE was verified in
Ref. [41] based on an RMT approach for the fluctuation prop-
erties of the scattering matrix elements of chaotic scattering
systems in the presence of absorption and partial T -invariance
violation. Here, we focus on the fluctuation properties in the
resonance spectra. We restrict our analysis to M = 2 scat-
tering channels as the strength ξ of TIV is largest for this
case in a given frequency range. Furthermore, with increasing
number of scattering channels the overlap of the resonances
increases so that the identification of the eigenfrequencies
from their positions becomes more cumbersome. Actually, we
are not able to identify complete sequences of levels because
of the strong overlap of resonances ascribed to large internal
absorption in the cavity which is mainly caused by the lossy
ferrites. The internal absorption γ was determined in Ref. [41]
to 6 < γ < 15 from the distributions of the diagonal elements
of the measured scattering matrix. It is due to absorption of
the electromagnetic field in the walls of the cavity and in the
ferrites. The total absorption is given by γtot = γ + η where
η = MT is the openness resulting from M open channels with
transmission coefficients T . It is commonly known that ferrite
is a lossy material which, near the gyromagnetic resonance,
leads to an increase of the internal absorption and thus a
degradation of the quality factor of the cavity. The absorption
strength γ was evaluated in 1-GHz windows for M = 2 open
channels (antennas) in Ref. [41]. With ferrites the absorption
strength γ is about five times larger than without them. Nev-
ertheless, as we presented in Ref. [29], even a fraction of
� = 0.8 identified levels suffices to classify a system with
either GOE or GUE behavior according to its symmetry prop-
erties based on the analysis of missing level statistics. In the
following section we address this approach and outline the
procedure in detail for the present case of partially violated T
invariance.

III. FLUCTUATION PROPERTIES OF INCOMPLETE
SPECTRA IN THE PRESENCE OF PARTIAL TIV

Before comparing the spectral properties of the ensemble
of microwave billiards with RMT predictions for univer-
sal quantum systems we removed system-specific properties
by unfolding the resonance frequencies νi to mean spac-
ing unity [60,61] with Weyl’s law, εi = NWeyl(νi ) = Aπ

c2
0
ν2

i +
L
2c νi+ const, which applies to the smooth part of the integrated
spectral density N (νi ) = NWeyl(νi ) + Nfluc(νi ).

In order to get insight into short-range correlations in
the eigenfrequency spectra of the microwave billiard we
analyzed the distribution P(s) of the spacings between adja-
cent eigenvalues, si = εi+1 − εi, and its cumulant I (s), which
has the advantage that it does not depend on the binning
size of the histograms yielding P(s). For the analysis of

long-range correlations we considered the variance �2(L) =
〈(N (L) − 〈N (L)〉)2〉, of the number N (L) of eigenvalues εi in
an interval of length L, where 〈N (L)〉 = L, and the rigidity
�3(L) = 〈mina,b

∫ e+L/2
e−L/2 [N (e) − a − be]2de〉 which provides

a measure for the stiffness of a spectrum. Here, 〈·〉 denotes
the average over an ensemble of random matrices or over the
eigenvalue spectra of different realizations of the microwave
billiard. Both measures may be expressed in terms of the
two-point cluster function Y2(r), i.e., the rescaled two-point
correlation function of two eigenvalues at a distance r, as [4]

�2(L) = L − 2
∫ L

0
(L − r)Y2(r)dr, (2)

and

�3(L) = L

15
− 1

15L4

∫ L

0
(L − r)3(2L2 − 9rL − 3r2)Y2(r)dr.

(3)
A further measure for long-range correlations is the power

spectrum [54,62–64]

S(τ ) =
〈∣∣∣∣∣ 1√

N

N−1∑
q=0

δq exp

(
−2π iτq

N

)∣∣∣∣∣
2〉

, (4)

with δq = εq+1 − ε1 − q denoting the deviation of the
qth nearest-neighbor spacing from its mean value q. In
Refs. [18,29,58] the power spectrum was investigated for
the incomplete spectra of microwave networks and billiards
exhibiting either GOE or GUE statistics and it was shown
that �2(L) and S(τ ) are particularly sensitive to missing
levels. The power spectrum S(τ ) only depends on the ratio
τ̃ = τ/N and exhibits for τ̃ 	 1 a power law dependence
〈S(τ̃ )〉 ∝ τ̃−α [62,63], where for regular systems α = 2 and
for chaotic ones α = 1 independently of whether T invariance
is preserved or not [65–69]. It can be expressed in terms of the
form factor K (τ ) = 1 − b(τ ) [63] where

b(τ ) =
∫ ∞

−∞
Y2(r)e−irτ dr (5)

is the Fourier transform of the two-point cluster function.
The spectral properties are compared to analytical expres-

sions which were obtained for the two-point cluster functions
and the nearest-neighbor spacing distribution for random ma-
trices interpolating between GOE and GUE. The matrices are
given in terms of a sum

Hi j = H (S)
i j + iλH (A)

i j (6)

of a real-symmetric random matrix Ĥ (S) from the GOE and a
real-antisymmetric one, Ĥ (A). The matrix elements are uncor-
related Gaussian-distributed random numbers with zero mean
and variance chosen equal to unity. The parameter ξ , which
is related to λ through λ = πξ√

N
, determines the magnitude of

T violation in units of the mean spacing. For ξ = 0, Ĥ de-
scribes chaotic systems with preserved T invariance, whereas
for πξ/

√
N = 1, Ĥ is a random matrix from the GUE. How-

ever, the transition from GOE to GUE already takes place for
ξ � 1 [70].

An exact analytical expression was derived for the nearest-
neighbor spacing distribution in terms of a Taylor series in
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FIG. 2. Nearest-neighbor spacing distributions in the frequency
ranges (a) 6.5–8 GHz, (b) 8–9 GHz, and (c) 9.2–11.5 GHz corre-
sponding to a strength of T -invariance violation ξ = 0.19, 0.35, and
0.49, respectively. The turquoise histograms show the experimental
results, and the red (gray) dashed line the RMT curve for the interme-
diate case between GOE and GUE. The solid red (gray) line shows
the result for the intermediate case with a fraction of � = 0.83, 0.81,
and 0.85 identified eigenfrequencies, respectively. The black dashed
and, black solid lines show the corresponding results for GOE and
GUE for these values of �, respectively.

Refs. [4,36]. It was shown there that it is well approximated
by the Wigner-like approximation derived in Ref. [37] based
on two-dimensional random matrices,

P(s; λ) = s

√
2 + λ2

2
c(λ)2erf

(
s

c(λ)

λ

)
e− s2c(λ)2

2 , (7)

with λ = 2ξ ,

c(λ) =
√

π
2 + λ2

4

[
1 − 2

π

(
tan−1

(
λ√
2

)
−

√
2λ

2 + λ2

)]
, (8)

and erf (x) denoting the error function. Furthermore, in
Refs. [35,71] an analytical expression was derived for the
two-point cluster function,

Y2(L; ξ ) = det

(
s(L) −D(L; ξ )

−J (L; ξ ) s(L)

)
, (9)

with [35,71]

s(L) = sin πL

πL
, (10)

D(L; ξ ) = 1

π

∫ π

0
dxe2ξ 2x2

x sin(Lx), (11)

J (L; ξ ) = 1

π

∫ ∞

π

dxe−2ξ 2x2 sin(Lx)

x
. (12)

Expressions for �2(L; ξ ) and �3(L; ξ ) for the case of par-
tial TIV are obtained by inserting Y2(L; ξ ) into Eqs. (2), (3),
and (5).

We analyzed the spectral properties of the microwave
billiards in three frequency ranges, 6.5–8, 8–9, and 9.2–
11.5 GHz, since the ferrite properties depend strongly on
the microwave frequency and, accordingly, the degree of T -
invariance violation varies with frequency. For each of these
three ranges we randomly selected 25 realizations of the
cavity, yielding 110, 90, and 258 eigenfrequencies for each
eigenfrequency sequence, respectively. The results for the
nearest-neighbor spacing distributions, the number variance,
the rigidity, and the power spectrum are shown in Figs. 2–4.
Clear deviations from the corresponding theoretical curves
(red dash-dotted lines) are visible.

FIG. 3. Same as Fig. 2 for [(a)–(c)] the number variance and
[(d)-(f)] the rigidity. The experimental results are shown as turquoise
circles.

The discrepancies are attributed to missing levels. In order
to derive RMT predictions for the fluctuation properties in
incomplete spectra of quantum systems experiencing a partial
TIV, we proceeded as in Ref. [46] on the basis of the analytical
results in Eqs. (7)–(12). The derivation relies on the assump-
tion that a fraction 1 − � of levels are missed randomly. The
nearest-neighbor spacing distribution is expressed in terms
of the (n + 1)th-nearest-neighbor spacing distribution P(n, s)
with P(0, s) = P(s) of the corresponding complete spectrum,

p(s) =
M∑

n=0

(1 − �)nP
(

n;
s

�

)

�
K−1∑
n=0

(1 − �)nP
(

n;
s

�

)

+
M∑

n=K

(1 − �)n√
2πV 2(n)

exp

(
− 1

2V 2(n)

[ s

�
− n − 1

]2
)

,

(13)

where

V 2(n) � �2(L = n) − 1

6
. (14)

We chose K = 3 and obtained P(n; s) with n = 1, 2 by com-
puting the ensemble averages of the normalized next- and

FIG. 4. Same as Fig. 2 for the power spectrum. The experimental
results are shown as turquoise circles.
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FIG. 5. Nearest-neighbor (black histogram), next-nearest-
neighbor (red [gray] histogram), and second-nearest-neighbor (blue
[dark gray] histogram) spacing distributions for partial T -invariance
violation where the size ξ is indicated in the panels. The dashed
curves were obtained from a fit of P̃(s) = γ sμe−χs2

to the histogram
of corresponding color [26,49].

second-next-nearest-neighbor spacing distributions of 500
500 × 500 random matrices of the form of Eq. (6) and fitting
P̃(s) = γ sμe−χs2

to the resulting distributions, as illustrated in
Fig. 5. We checked that, for larger values of n, P(n; s) is well
approximated by a Gaussian with variance V 2(n) centered at
s = n + 1 [72].

Since we assume that levels are missing randomly, the n-
point correlation functions keep their form when a fraction
(1 − �) of the levels is extracted and the remaining ones are

rescaled with � [46],

y2(r) = Y2

( r

�

)
. (15)

Using this feature of the two-point cluster function and
Eqs. (2), (3), and (5) yields [46]

σ 2(L) = (1 − �)L + �2�2
( L

�

)
, (16)

δ3(L) = (1 − �)
L

15
+ �2�3

( L

�

)
, (17)

and

s(τ̃ ) = �

4π2

[
K (�τ̃ ) − 1

τ̃ 2
+ K (�(1 − τ̃ )) − 1

(1 − τ̃ )2

]

+ 1

4 sin2(πτ̃ )
− �2

12
, (18)

where |τ̃ | � 1. In that range of τ̃ , b(τ̃ ) = 1 − |τ̃ | for the GUE
and b(τ̃ ) = 1 − 2|τ̃ | + |τ̃ | ln (1 + 2|τ̃ |) for the GOE.

Before comparing these results to experimental ones we
validated them with RMT simulations obtained for ensembles
of 300 (700 × 700)-dimensional random matrices Ĥ as given
in Eq. (6), where for illustration, we chose in Fig. 6 and in
Fig. 7 for ξ and � the values obtained from the analysis
of the experimental results. The analytical results for � = 1
and the values of � given in the figures are shown as red
(gray) and blue (dark gray) solid lines, respectively, and those
obtained from RMT simulations as histograms and circles of
corresponding color. The black solid and dashed lines show
the GUE and GOE curves, respectively. The good agreement
between the analytical curves and those obtained from the
RMT simulations corroborates the applicability of our RMT
approach to the incomplete spectra of systems with partial
TIV.

The statistical measures depend on two parameters, the
strength of TIV, ξ , and the fraction of identified levels, �.
The values of ξ were determined in 1-GHz windows in
Ref. [41] by fitting exact analytical expressions for the cross-
correlation coefficients to the experimental results and refined
by comparing the distributions of the off-diagonal elements of
the measured scattering matrix and the experimentally deter-
mined enhancement factors to RMT predictions. To obtain the
fraction of missing levels we used the power spectrum 〈s(τ̃ )〉
[Eq. (18)]. This measure is particularly sensitive to changes in
the value of � [18,29,58], and above all its asymptotic behav-
ior does not depend on the universality class. This is illustrated
in the inset of Fig. 4(b). The curves for the GOE (black dashed
line), the GUE (black solid line), and the intermediate case be-
tween GOE and GUE (red [gray] solid line) lie on top of each
other. We inserted the resulting values of ξ into the expression
in Eq. (18) and fitted then 〈s(τ̃ )〉 in the asymptotic region
to the experimental curves, yielding that in the frequency
ranges 6.5–8, 8–9, and 9.2–11.5 GHz, respectively, 83 ± 3%,
81 ± 3%, and 85 ± 3% of the resonances were identified.
The errors comprise those resulting from the fitting procedure
and the ensemble averaging. Note that billiard systems have
the great advantage over, e.g., nuclear systems, such that an
analytical expression, namely, the Weyl formula, exists for the
average integrated spectral density thus providing an estimate
for the value of � and the accuracy of the obtained value,
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FIG. 6. Comparison of the analytical results (solid lines) for � =
1 (red [gray]) and for the values of � given in the panels (blue [dark
gray]) with RMT simulations (histograms and circles) which were
performed based on the random matrix given in Eq. (6).

so that a procedure like the one described in Ref. [73] is not
needed. The values for � indeed agree with those deduced
from Weyl’s law within the error. The number variance �2(L)
depends on the universality class and thus is used to confirm
the value of ξ obtained from the cross-correlation coefficient.
Yet, as illustrated in Fig. 8, �2(L) barely changes when

-1

0

1

2

3

lo
g
1
0
<
~ S(
~ τ)
>

-1

0

1

2

-1.6 -1.2 -0.8 -0.4 0

log
10
(
~τ)

-1

0

1

2

ξ=0.19, Φ = 0.83

ξ=0.35, Φ = 0.85

ξ=0.49, Φ = 0.81

FIG. 7. Comparison of the power spectra obtained from RMT
simulations based on Eq. (6) for complete spectra (red [gray] dots)
and incomplete ones (blue [dark gray] dots) for partial TIV in com-
parison to the corresponding analytical results (turquoise solid lines)
obtained from Eq. (18). The values of the fraction � and the strength
of TIV, ξ , are given in the panels.

varying ξ by less than ≈20% of its value, so that either an
ensemble of high statistical relevance or an additional measure
like the cross-correlation coefficient to obtain a statistically
relevant estimate is needed. Shown are the results deduced
from Eq. (16) for �2(L) for complete (black dashed line)
and incomplete (black solid line) spectra at the values of ξ

determined from the cross-correlation coefficient. They are
compared to the curves after subtracting (turquoise [light

FIG. 8. Comparison of �2(L) obtained from Eq. (16) for � = 0
(black dashed line) and incomplete (black solid line) spectra for the
values of ξ and � given in the panels. They are compared to the
corresponding analytical results with 20% added to (red [gray] lines)
and subtracted (turquoise [light gray] lines) from the corresponding
value of ξ .
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gray] lines) and adding (red [gray] lines) 20% of the values
of ξ indicated in the panels. The rigidity �3(L) is given as an
integral over �2(L) and thus corresponds to a smoothing of it.
It, in fact, leads to an enhancement of the differences between
the curves corresponding to different values of ξ . The result-
ing curves are shown as red (gray) solid lines in Figs. 2–4. The
agreement between the experimental and theoretical curves is
good for the long-range correlation measures, whereas slight
deviations are observed for the nearest-neighbor spacing dis-
tribution, as illustrated in the insets of Fig. 2. These may be
attributed to the fact that eigenfrequencies may not be detected
if two resonances are overlapping, that is, when they are too
close to each other. This is reflected in the deviations of the
experimental nearest-neighbor spacing distributions from the
RMT predictions observed at small spacings. Note that the
probability of a close encounter of two eigenfrequencies is
small in chaotic systems, as reflected in the nearest-neighbor
spacing distribution, which vanishes for zero spacing. Thus,
randomness of missing levels is ensured by choosing ran-
domly 25 different realizations of the cavity, except for small
spacings. However, in experiments with microwave billiards
and networks the realization of ensembles of level sequences
might not be possible, so that one has to cope with randomly
missing levels and also a large fraction of systematically
missing ones. Such a situation indeed was encountered in an
experiment with a microwave cavity [58] due to the large
spectral density which led to level clustering. Yet, this can
be incorporated into the appropriate random matrix model by
extracting from the list of eigenvalues those with spacings to
surrounding ones below a certain threshold.

IV. CONCLUSIONS

We investigated the fluctuations in the resonance frequency
spectra of microwave billiards with the shape of a fully chaotic
quarter bowtie microwave billiard subject to partial TIV of
varying strength. The microwave billiards simulate the prop-
erties of a two-dimensional quantum billiard with M = 2
equivalent open channels subject to TIV. The strength of TIV
is characterized by a parameter ξ and the number of missing

levels is expressed by the fraction � of the complete sequence
of levels which could be identified. We analyze such a situ-
ation based on an RMT approach introduced in Ref. [49] to
derive expressions for statistical measures of short- and long-
range correlations in the spectra allowing to unambiguously
assign the strength of TIV, ξ , and the fraction of missing lev-
els, 1 − �. Since the power spectrum 〈s(τ̃ )〉 depends for small
values of τ̃ 	 1 only weakly on the universality class and thus
on the value of ξ and, on the other hand, is sensitive to the
fraction � of identified levels, it provides a suitable measure
for the determination of �. Then, the number variance σ 2(L)
allows to refine or confirm the value of ξ determined from the
cross-correlation coefficient. The RMT approach presented in
this article reproduces very well the results obtained from
RMT simulations and the experimental results for all avail-
able sets of parameters �, ξ , thus corroborating that it may
serve as a tool to determine the extent of incompleteness of a
spectrum and the value of ξ for dissipative quantum systems
with classically chaotic counterpart subject to partial TIV.

The case of randomly and systematically missing levels
has been addressed, e.g., in Ref. [74]. There quantum graphs
and microwave networks were investigated which exhibit lo-
calized states that can be identified and extracted from the
level dynamics generated by varying a parameter. This yields
incomplete level sequences with systematically missing levels
in addition to being due to experimental reasons randomly
missing ones. In these systems the effect of the nonuniversal
states on the spectral dynamics is only visible for distances
below two to three mean level spacings and does not impede
the determination of the fraction of missing levels and of the
universality class.
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Sirko, Phys. Rev. Lett. 109, 040402 (2012).

052204-7

https://doi.org/10.1007/BF02798790
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1070/PU1998v041n02ABEH000351
https://doi.org/10.1103/PhysRevLett.61.3
https://doi.org/10.1103/PhysRevLett.71.2895
https://doi.org/10.1103/PhysRevLett.89.274101
https://doi.org/10.1103/PhysRevLett.64.2215
https://doi.org/10.1103/PhysRevLett.69.1296
https://doi.org/10.1103/PhysRevLett.72.2175
https://doi.org/10.1103/PhysRevE.61.366
https://doi.org/10.1103/PhysRevLett.94.014102
https://doi.org/10.1103/PhysRevE.72.066212
https://doi.org/10.1063/1.4915527
https://doi.org/10.1103/PhysRevE.69.056205
https://doi.org/10.1103/PhysRevLett.109.040402


BIAŁOUS, DIETZ, AND SIRKO PHYSICAL REVIEW E 103, 052204 (2021)

[18] B. Dietz, V. Yunko, M. Białous, S. Bauch, M. Ławniczak, and
L. Sirko, Phys. Rev. E 95, 052202 (2017).

[19] M. Ławniczak, J. Lipovský, and L. Sirko, Phys. Rev. Lett. 122,
140503 (2019).

[20] K. Sacha, J. Zakrzewski, and D. Delande, Phys. Rev. Lett. 83,
2922 (1999).

[21] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang,
E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 5874
(2008).

[22] M. Aßmann, J. Thewes, and D. Fröhlich, Nat. Mat. 15, 741
(2016).

[23] J. B. French, V. K. B. Kota, A. Pandey, and S. Tomsovic, Phys.
Rev. Lett. 54, 2313 (1985).

[24] G. E. Mitchell, A. Richter, and H. A. Weidenmüller, Rev. Mod.
Phys. 82, 2845 (2010).

[25] P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett.
74, 2662 (1995).

[26] U. Stoffregen, J. Stein, H.-J. Stöckmann, M. Kuś, and F. Haake,
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