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Discrete breathers in a triangular β-Fermi-Pasta-Ulam-Tsingou lattice
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A practical approach to the search for (quasi-) discrete breathers (DBs) in a triangular β-FPUT lattice
(after Fermi, Pasta, Ulam, and Tsingou) is proposed. DBs are obtained by superimposing localizing functions
on delocalized nonlinear vibrational modes (DNVMs) having frequencies above the phonon spectrum of the
lattice. Zero-dimensional and one-dimensional DBs are obtained. The former ones are localized in both spatial
dimensions, and the latter ones are only in one dimension. Among the one-dimensional DBs, two families are
considered: the first is based on the DNVMs of a triangular lattice, and the second is based on the DNVMs of
a chain. We speculate that our systematic approach on the triangular β-FPUT lattice reveals all possible types
of spatially localized oscillations with frequencies bifurcating from the upper edge of the phonon band as all
DNVMs with frequencies above the phonon band are analyzed.

DOI: 10.1103/PhysRevE.103.052202

I. INTRODUCTION

Discrete nonlinear lattices support spatially localized oscil-
lations called discrete breathers (DBs) (or intrinsic localized
modes) [1–6]. The existence of DBs has been proved experi-
mentally in various periodic systems such as cantelever arrays
[7–9], Josephson junction arrays [10,11], electrical lattices
[12,13], mass-spring chains [14], arrays of coupled pendula
[15], chains of magnetic pendulums [16], and granular crys-
tals [17,18]. They also exist in crystals [6], for example, in
ionic NaI [19–23], covalent Si, Ge, and diamond [24,25],
in pure metals with fcc, bcc, and hcp lattices [26–32] and in
α-uranium [33,34], in ordered alloys [35–38], and in hydro-
carbons [39–51] and h-BN [52], as well as in proteins [53–57].

In many classical works, the existence of DBs was proved
as exact solutions in nonlinear chains (see [2,3] and reviews
[4,5]). From the standpoint of mathematical physics, DBs
are single-frequency periodic, spatially localized vibrational
modes having an infinitely long lifetime in the absence of
perturbations. For complex nonlinear lattices, for example,
crystals, numerical methods are used to find spatially local-
ized vibrational modes that can be classified as quasibreathers
[58], as was introduced by Chechin et al. Quasibreathers
generalize the DB concept by considering spatially localized
modes that are not single-frequency modes and have a long
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but limited lifetime. In this paper, only quasibreathers are
considered and are called DBs for brevity.

Some DBs can propagate with very little energy emission
[59–63], but this topic is not considered further in the present
paper. DBs are effective phonon scatterers [64,65] and hence
reduce the thermal conductivity [66,67]. They affect other
macroscopic properties of nonlinear lattices and crystals [68],
for instance, elastic constants [69], thermal expansion [69,70],
and heat capacity [69,71,72]. They can also transport electric
charge [73].

Triangular nonlinear lattices are widely used in various
applications [27,28,74–87]. Two types of DBs, symmetric and
asymmetric ones, have been reported in a triangular Morse
lattice with an on-site harmonic potential in the work [88].
Two types of chaotic DBs have been observed in a two-
dimensional Morse lattice with an on-site harmonic potential
[89]. The existence and stability of three-site DBs in a scalar
triangular lattice have been analyzed in [90,91]. Moving DBs
were found in a scalar triangular FPUT lattice in [92]. An
analytical description of transient thermal processes in the
harmonic triangular lattice has been given in [93]. Moving
DBs in two-dimensional lattice of different symmetry have
been analyzed in [62,63].

Despite the importance of DBs in various branches of
physics, there were no general methods for finding all possible
types of DBs in a given lattice. In the present study, we attempt
to describe all possible DBs in a triangular β-FPUT lattice
(named after Fermi, Pasta, Ulam, and Tsingou). The DBs
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are found by imposing localizing functions on delocalized
nonlinear vibrational modes (DNVMs) of the triangular lattice
[94] and linear chain [95]. Note that DNVMs are spatially
periodic and exact oscillatory solutions to nonlinear equations
of particle motion. They are obtained by taking into account
only the lattice symmetry and therefore exist for any type of
interparticle interactions and for any amplitude [96–99]. In
the theoretical works [96–99] DNVMs are called bushes of
nonlinear normal modes (BNNMs).

The dynamics of an one-component DNVM is described
by the single equation of motion, while the m-component
DNVM is described by a set of m coupled equations of
motion. Consequently, the one-component DNVM is time pe-
riodic, while the m-component DNVM is, generally speaking,
aperiodic with m incommensurate basis frequencies. For par-
ticular relations between amplitudes of DNVM components,
periodic motion can be achieved [94,100].

DNVMs (or BNNMs) have been analyzed in molecules
[101], nonlinear lattices [95,102–104], and crystals
[27–29,105,106]. DNVMs derived in the hexagonal lattice
[107] were studied in graphene [50,100,108,109] and h-BN
[52]. Several one-component DNVMs were used to excite
DBs with spherical symmetry in bcc metals V and Nb [106].
In another work [95], one- and two-component DNVMs
(BNNMs) in the Fermi-Pasta-Ulam chain were derived
and analyzed. The one-component DNVMs were excited
in the chain with the following periodic patterns of initial
atomic displacements: [A,−A], [A, 0,−A], [A, 0,−A, 0],
and [A, A,−A,−A], where A denotes the DNVM amplitude.
Later, in [110], these modes were excited in a close-packed
atomic row of a triangular Lennard-Jones lattice. The obtained
vibrational modes were called one-dimensional DBs.

In the recent work by Watanabe and Izumi, exact DB
solutions in a two-dimensional hexagonal Fermi-Pasta-Ulam
lattice were obtained, and the relation of the DBs with
DNVMs of the hexagonal lattice was demonstrated [111].

In the present work an attempt is made to describe all pos-
sible types of DBs in the β-FPUT triangular lattice. We have
chosen the β-FPUT model because it is a classical model and
recently all one- and two-component DNVMs for this lattice
were derived [94]. Three of them have frequencies above the
phonon spectrum, and they will be used to construct the DB
solutions.

This paper is organized as follows. The model and sim-
ulation details are described in Sec. II. Analytical results
for DNVMs of the triangular β-FPUT lattice are reported in
Sec. III. The properties of DNVMs of the triangular lattice
are presented in Sec. IV. Examples of DBs based on DNVMs
of the triangular lattice are given in Sec. V. DBs based on
DNVMs of a chain are described in Sec. VI. The results are
discussed and summarized in Sec. VII.

II. MODEL AND SIMULATION SETUP

A two-dimensional triangular lattice of particles having
mass m and interacting with the nearest neighbors is con-
sidered on the x-y plane; see Fig. 1. The distance between
the nearest lattice points is equal to h. The primitive trans-
lational cell of the lattice has vectors of translation (h, 0)
and (h/2, h

√
3/2). The simulation box has Nx × Ny prim-

FIG. 1. Computational cell for the triangular lattice with the
lattice spacing h including Nx × Ny particles numbered by indices
i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny. Particles in their equilibrium
positions are shown by yellow circles, and red lines show the prim-
itive translational cells. The particles moving in the x-y plane have
two degrees of freedom, the components of the displacement vector
(ui, j, vi, j ). Each particle interacts with its six nearest neighbors via
the β-FPUT potential (3). The bonds are shown only for one transla-
tional cell of the lattice; they are designated as l1, l2, and l3.

itive translational cells (or particles), and the values Nx

and Ny are given below for each particular problem. Parti-
cles are numbered by the indices i = 1, 2, . . . , Nx and j =
1, 2, . . . , Ny. Each particle moving in the xy-plane has two
degrees of freedom, the components of the displacement vec-
tor (ui, j (t ), vi, j (t )), which are unknown functions of time t .
The components of the particle velocity vector are (u̇i, j, v̇i, j ),
where the overdot means differentiation with respect to time.

Referring to Fig. 1, one can write expressions for the
lengths of six bonds, l1, l2, . . . , and l6, connecting the i, jth
particle with its nearest neighbors,

l2
1 = (h + ui+1, j − ui, j )

2 + (vi+1, j − vi, j )
2,

l2
2 =

(
h

2
+ ui, j+1 − ui, j

)2

+
(

h
√

3

2
+ vi, j+1 − vi, j

)2

,

l2
3 =

(
− h

2
+ ui−1, j+1 − ui, j

)2

+
(

h
√

3

2
+ vi−1, j+1−vi, j

)2

,

l2
4 = (−h + ui−1, j − ui, j )

2 + (vi−1, j − vi, j )
2,

l2
5 =

(
− h

2
+ ui, j−1 − ui, j

)2

+
(

− h
√

3

2
+ vi, j−1 − vi, j

)2

,

l2
6 =

(
h

2
+ ui+1, j−1 − ui, j

)2

+
(

− h
√

3

2
+ vi+1, j−1 − vi, j

)2

.

(1)

The Hamiltonian of the model is

H = m

2

∑
i, j

(
u̇2

i, j + v̇2
i, j

) +
∑
i, j

[ϕ(l1 − h)

+ϕ(l2 − h) + ϕ(l3 − h)], (2)

where the first (second) sum gives the kinetic (potential) en-
ergy of the simulation box and l1, l2, and l3 are the bond
lengths for the three bonds in the i, jth primitive translational
cell, as given by Eq. (1).
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The energy of the bond connecting the two nearest particles
is described by the β-FPUT potential

ϕ(r) = k

2
(r − h)2 + β

4
(r − h)4, (3)

where r is the distance between the particles, k is the linear
stiffness of the bond, and β is the nonlinearity coefficient. We
set h = 1, k = 1 (for dimensional homogeneity), and β = 10.
With this value of β, all the effects of nonlinearity become

pronounced for particle displacements of the order of 0.1,
as in typical crystal lattices. Indeed, we obtain DBs with the
amplitude of the order of 0.1, when the linear term is of order
of 0.01 and the contribution from the quartic term is about
0.001. Therefore, the contribution from the nonlinear term is
about 10%, which is not negligible. The mass of the particles,
as mentioned above, is set equal to 1, and this can always be
achieved by choosing a unit of time.

Using Hamilton’s equations, the following equations of
motion can be derived from the Hamiltonian (2):

müi, j = (h + ui+1, j − ui, j )[k(l1 − h) + β(l1 − h)3]/l1 +
(

h

2
+ ui, j+1 − ui, j

)
[k(l2 − h) + β(l2 − h)3]/l2

+
(

− h

2
+ ui−1, j+1 − ui, j

)
[k(l3 − h) + β(l3 − h)3]/l3 + (−h + ui−1, j − ui, j )[k(l4 − h) + β(l4 − h)3]/l4

+
(

− h

2
+ ui, j−1 − ui, j

)
[k(l5 − h) + β(l5 − h)3]/l5 +

(
h

2
+ ui+1, j−1 − ui, j

)
[k(l6 − h) + β(l6 − h)3]/l6, (4)

mv̈i, j = (vi+1, j − vi, j )[k(l1 − h) + β(l1 − h)3]/l1 +
(

h
√

3

2
+ vi, j+1 − vi, j

)
[k(l2 − h) + β(l2 − h)3]/l2

+
(

h
√

3

2
+ vi−1, j+1 − vi, j

)
[k(l3 − h) + β(l3 − h)3]/l3 + (vi−1, j − vi, j )[k(l4 − h) + β(l4 − h)3]/l4

+
(

− h
√

3

2
+ vi, j−1 − vi, j

)
[k(l5 − h) + β(l5 − h)3]/l5 +

(
− h

√
3

2
+ vi+1, j−1 − vi, j

)
[k(l6 − h) + β(l6 − h)3]/l6.

(5)

Linearized equations of motion are

müi, j = k(ui−1, j − 2ui, j + ui+1, j ) + k

4
[ui, j+1 − ui, j +

√
3(vi, j+1 − vi, j )] + k

4
[ui−1, j+1 − ui, j −

√
3(vi−1, j+1 − vi, j )]

+ k

4
[ui, j−1 − ui, j +

√
3(vi, j−1 − vi, j )] + k

4
[ui+1, j−1 − ui, j −

√
3(vi+1, j−1 − vi, j )], (6)

mv̈i, j = k
√

3

4
[ui, j+1 − ui, j +

√
3(vi, j+1 − vi, j )] − k

√
3

4
[ui−1, j+1 − ui, j −

√
3(vi−1, j+1 − vi, j )]

+ k
√

3

4
[ui, j−1 − ui, j +

√
3(vi, j−1 − vi, j )] − k

√
3

4
[ui+1, j−1 − ui, j −

√
3(vi+1, j−1 − vi, j )]. (7)

Looking for the solution of Eqs. (6) and (7) in the form
ui, j = F exp[i(qi + p j − ωt )], vi, j = B exp[i(qi + p j − ωt )],
where i is imaginary unit, one finds the dispersion relation

ω2
1,2(q, p) = −ξ ±

√
ξ 2 − 4αγ

2α
, (8)

where

α = 4m2,

ξ = 8mk(S + cos q − 1),

γ = 3k2[4(cos q − 1)S + S2 − Q2],

S = cos p + cos(q − p) − 2,

Q = cos p − cos(q − p). (9)

For further discussion the highest phonon frequency is
important. For the model parameters used in this study

(k = m = 1), the maximum frequency ωmax = √
6 is observed

at eight points of the first Brillouin zone, (q, p) = (±π,±π ),
(q, p) = (±π, 0), and (q, p) = (0,±π ).

Periodic boundary conditions are taken in both directions
in the study of DNVMs. In the study of DBs, absorbing
boundary conditions are used, which remove radiation emitted
at an early stage of DB evolution.

The time step for these simulations is taken to be 0.002
time units with the use of the symplectic Störmer integrator of
order six [112].

Initial conditions are set by applying initial displacements
to the particles as described below. Initial velocities of all
particles are always equal to zero. Since all particles have
zero initial velocity, the total momentum transferred to the
lattice is zero. More details on the excitation of one- and
two-component DNVMs are provided later.
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III. ANALYTICAL RESULTS

Since our approach to finding new types of quasi-DBs is
based on the imposition of localizing functions on DNVMs
with frequencies outside the phonon spectrum, it is important
to show that the DNVMs studied in this work have frequen-
cies above the phonon spectrum. According to our previous
work [94], there are three such DNVMs: the one-component
DNVMs 2 and 4 and the time-periodic two-component
DNVM γ 2; see Figs. 2(a)–2(c), respectively. In our previ-
ous work [94] this was demonstrated numerically, but here

FIG. 2. Three DNVMs of the triangular lattice considered in this
study: (a) one-component DNVM 2, (b) one-component DNVM 4,
and (c) two-component time-periodic DNVM γ 2 [94]. The distance
between nearest particles is h. Particles in the equilibrium positions
are shown by the yellow circles. Red lines show the primitive transla-
tional cells of the lattice. Translational cells of DNVMs include four
particles and are shown by the blue lines. The bonds are shown only
for one translational cell of the DNVM; they are designated as lk .
The black dots show the initial particle displacements used to excite
the DNVMs. In (a) and (b), all displacement vectors have a length A,
while in (c), horizontal and vertical displacements have magnitudes
A and B, respectively. In (a) and (c), all particles are displaced at
t = 0; in (b), one of the four particles in the translational cell is not
displaced initially and remains at rest at any t . Each translational cell
includes 12 bonds shown by the solid black lines. The bonds have
lengths li.

we confirm the numerical results with analytics. The DNVM
notation does not reflect any physical meaning, it simply co-
incides with that used in [94].

For the two-component DNVM γ 2, it is also very impor-
tant to find the relationship between the two components,
resulting in a time-periodic dynamic. This is necessary
because DBs are single-frequency localized modes and single-
frequency DNVMs should be used to excite them, while
two-component DNVMs are, generally speaking, a mixture
of two modes with incommensurate frequencies.

In Fig. 2 the particles in equilibrium positions are shown
by yellow circles, and the black dots show the initial positions
of particles used for the excitation of these modes with zero
initial velocities. The red lines show the primitive translational
cells of the lattice. In Figs. 2(a) and 2(b) all initial displace-
ment vectors have the same length A. In Fig. 2(c) horizontal
(vertical) initial displacement vectors have a length A (B). If
A and B are properly chosen, the two-component DNVM γ 2
exhibits periodic motion with respect to time [94].

The Hamiltonian and equations of motion for each of the
DNVMs shown in Fig. 2 are presented below.

A. One-component DNVM 2

We begin with the one-component DNVM 2, where all
nodes in lattice are in motion, and all nodes in the same row
move identically, as shown in Fig. 2(a). By taking into account
the symmetry of the mode, it is possible to write down the
Hamiltonian of the one-component DNVM 2,

H = mȧ2

2
+ ϕ(l1 − h) + ϕ(l2 − h) + ϕ(l3 − h), (10)

where

l1 =
√(

h

2

)2

+
(

h
√

3

2
+ 2a

)2

,

l2 =
√(

h

2

)2

+
(

h
√

3

2
− 2a

)2

, and

l3 = h.

Parameter a(t ) is the vertical displacement of any particle
from its lattice position, and li (i = 1, 2, or 3) are the distances
between nearest lattice points; see Fig. 2(a).

The equation of motion corresponding to the Hamiltonian
in Eq. (10) has the form

mä = −h
√

3 + 4a

l1
[k(l1 − h) + β(l1 − h)3]

+ h
√

3 − 4a

l2
[k(l2 − h) + β(l2 − h)3]. (11)

The expansion of the Hamiltonian in Eq. (10) up to quartic
terms gives

H = mȧ2

2
+ 3ka2 +

(
9β

2
− 11k

4h2

)
a4, (12)
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which can be used to derive the following cubic equation of
motion:

mä = −6ka −
(

18β − 11k

h2

)
a3. (13)

The solution is in the form of a(t ) = A1 sin(ωt ) +
A2 sin(3ωt ). By assuming that A1 � h and A2 � A1, the
frequency-amplitude relation can be found as follows:

ω =
√

6k

m
+ 3

8
√

6km

(
18β − 11k

h2

)
A2

1. (14)

When model parameters m = h = k = 1 and β = 10,
Eq. (14) is reduced to

ω =
√

6 + 25.87A2
1. (15)

As mentioned above, the upper edge of the phonon band of
the considered lattice is

ωmax =
√

6 ≈ 2.449, (16)

and thus, the frequency of the DNVM 2 is above the phonon
band.

The obtained solution (14) assumes small displacements,
while the exact solution can be expressed in terms of the
elliptic functions.

B. One-component DNVM 4

The Hamiltonian of the one-component DNVM 4 is

H = 3

4

mȧ2

2
+ 3

2
ϕ(l1 − h) + 3

4
[ϕ(l2 − h)

+ϕ(l3 − h)], (17)

where

l1 =
√

h2 + a2,

l2 = h + a
√

3, and

l3 = h − a
√

3.

Similar to the one-component DNVM 2 case, a(t ) is the
displacement of a moving particle from its lattice position
and li (i = 1, 2, or 3) is the distance between nearest lattice
points; see Fig. 2(b). Since only three of the four particles in
the translational cell are in motion, the effective mass in the
Hamiltonian is equal to 3m/4.

The equation of motion corresponding to the Hamiltonian
(17) is

3

4
mä = − 3a

2l1
[k(l1 − h) + β(l1 − h)3]

− 3
√

3

4
[k(l2 − h) + β(l2 − h)3]

+ 3
√

3

4
[k(l3 − h) + β(l3 − h)3]. (18)

Expansion of the Hamiltonian (17) up to quartic terms has
the form

H = 3

4

mȧ2

2
+ 9

4
ka2 +

(
3k

16h2
+ 27β

8

)
a4. (19)

The cubic equation of motion stemming from Eq. (19) is

mä = −6ka −
(

k

h2
+ 18β

)
a3. (20)

The solution is in the form of a(t ) = A1 sin(ωt ) +
A2 sin(3ωt ). By assuming that A1 � h and A2 � A1, the
frequency-amplitude relation can be found as follows:

ω =
√

6k

m
+ 3

8
√

6km

(
k

h2
+ 18β

)
A2

1. (21)

When m = h = k = 1 and β = 10, Eq. (21) can be reduced
to

ω =
√

6 + 27.71A2
1. (22)

This mode also has frequencies above the upper phonon band
edge ωmax = √

6.
Instead of the approximate solution (21) the exact solution

can be given in terms of the elliptic functions.

C. Time periodic two-component DNVM γ2

The Hamiltonian of the two-component time-periodic
DNVM γ 2 is

H = m

4
(ȧ2 + ḃ2) + 1

4
ϕ(l1 − h) + 1

4
ϕ(l2 − h)

+ϕ(l3 − h) + ϕ(l4 − h) + 1

2
ϕ(l5 − h), (23)

where

l1 = h − 2a,

l2 = h + 2a,

l3 =
√(

h

2
+ a

)2

+
(

h
√

3

2
+ b

)2

,

l4 =
√(

h

2
− a

)2

+
(

h
√

3

2
− b

)2

, and

l5 =
√

h2 + (2b)2.

Parameters a(t ) and b(t ) are the horizontal and vertical
displacements of the particles from their lattice positions,
respectively and li (i = 1, 2, . . . , or 5) is the distance between
nearest lattice points; see Fig. 2(c). The effective mass is equal
to m/2 because this mode is a superposition of two modes, in
each of which only half of the particles move [94].

The equations of motion corresponding to the Hamiltonian
in Eq. (23) have the form

m

2
ä = 1

2
[k(l1 − h) + β(l1 − h)3]

− 1

2
[k(l2 − h) + β(l2 − h)3]

+ h − 2a

2l3
[k(l3 − h) + β(l3 − h)3]

− (h + 2a)

2l4
[k(l4 − h) + β(l4 − h)3] and (24)

m

2
b̈ =

√
3h − 2b

2l3
[k(l3 − h) + β(l3 − h)3]
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−
√

3h + 2b

2l4
[k(l4 − h) + β(l4 − h)3]

− b

l5
[k(l5 − h) + β(l5 − h)3]. (25)

The expansion of the Hamiltonian (23) up to quartic terms
gives

H = m

4
(ȧ2 + ḃ2) + ka2 + k

4
(a +

√
3b)2 + k

h2
b4 + 2βa4

+ β

32
(a +

√
3b)4 − k

64h2
(3a4 − 26a2b2 + 11b4

− 12
√

3ab3 + 28
√

3a3b). (26)

The cubic equations of motion corresponding to the Hamil-
tonian in Eq. (26) are

mä = −5ka −
√

3kb − 16βa3 − β

4
(a +

√
3b)3

+ k

8h2
(3a3 + 21

√
3a2b − 13ab2 − 3

√
3b3) and (27)

mb̈ = −
√

3ka − 3kb − 8

h2
kb3 − β

√
3

4
(a +

√
3b)3

+ k

8h2
(7

√
3a3 − 13a2b − 9

√
3ab2 + 11b3). (28)

The relation between the DNVM components a and b is
to be found when the linearized equations of motion (27) and
(28) have a time-periodic solution. The following expression
is substituted into these equations:

a = pb, (29)

where p is the unknown constant. The results read

mä = −ω2
aa and mb̈ = −ω2

bb, (30)

where ω2
a = (5 + √

3/p)k and ω2
b = (3 + √

3p)k. The small-
amplitude vibration frequencies ωa and ωb are equal if p =
(1 ± 2)/

√
3. The root with a negative sign produces the

mode with frequency equal to ωa = ωb = √
2k (time-periodic

DNVM γ 1; see [94]), which is within the phonon spectrum.
The root with a positive sign, i.e., p = √

3 is analyzed. It
produces the mode with the frequency ωa = ωb = √

6k (time-
periodic DNVM γ 2; see [94]), which is at the upper edge of
the phonon band.

At small amplitudes A and B, p = √
3. The amplitudes are

hence synchronized, and time-periodic motion is generated.
When the amplitudes are large, p is no longer a constant but a
function of A. Equation (29) therefore becomes

A = p(A)B. (31)

Figure 3 shows the numerical dependence of p on A, where
the DNVM γ 2 becomes time periodic. The inset shows the
coefficients of the polynomial approximation by the method
of least squares.

IV. PROPERTIES OF DNVMs

Some properties of the three studied DNVMs of the trian-
gular lattice are presented in Fig. 4. Black solid dots, red open

FIG. 3. Dependence of p on A in Eq. (31) when the two-
component DNVM γ 2 becomes time periodic. The inset shows the
coefficients of the polynomial approximation by the method of least
squares. The horizontal dashed line shows the synchronized condi-
tions with p = √

3 for small A.

circles, and blue squares denote the DNVM 2, DNVM 4, and
DNVM γ 2, respectively. For the two-component DNVM γ 2,
Eq. (31) and Fig. 3 are used to calculated the amplitude B
at the chosen amplitude A. The computational cell includes
Nx × Ny = 4 × 4 particles. Initial displacements of particles
are set according to Fig. 2. Initial velocities of the particles
are set equal to zero.

Figure 4(a) shows the frequency-amplitude dependencies
for the DNVMs. The upper edge of the phonon band shown by
the horizontal dashed line indicates that all the three DNVMs
have frequencies above the phonon spectrum. As shown in
Fig. 4(b), the energy per particle increases with the DNVM
amplitude as E ∼ A2.

FIG. 4. (a) Frequency ω and (b) energy per particle E as func-
tions of amplitudes of the DNVM 2 (black solid dots), DNVM
4 (red open dots), and DNVM γ 2 (blue squares). The horizontal
dashed line in (a) indicates the upper edge of the phonon band with
ωmax = √

6 ≈ 2.449 [94].
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V. DISCRETE BREATHERS

DBs are obtained by imposing localizing functions on the
three DNVMs of the triangular lattice described in Sec. IV.
The parameters of the localizing functions are selected by
trial and error so as to obtain a localized vibrational mode
with the maximum lifetime. The search for more accurate
approximations for localized modes will be conducted in our
future work.

There are two main parameters of the localizing function,
the first is the degree of spatial localization, which should be
found for a given DNVM amplitude, and the second is the
position of the center of the localizing function with respect
to the lattice. The importance of the second parameter was
demonstrated by Page [3], who has found the DB centered
between sites of a chain in addition to the DB centered on a
lattice site reported by Sievers and Takeno [2].

For each DB described in Secs. V and VI, we give a single
example, typically for a DNVM amplitude of 0.1 or 0.2. For
the selected DNVM amplitude and the location of the DB
center, the degree of spatial localization is determined by
trial and error in order to obtain a DB with the maximum
lifetime. To find the localization parameters of DBs for an-
other DNVM amplitude, one should bear in mind the general
trend according to which DBs of a smaller amplitude are
less localized and, in the limit of vanishing amplitude, are
transformed into delocalized phonons of a small amplitude,
that is, into DNVMs of a small amplitude. Another important
trend is that the instability of unstable DBs develops faster for
a larger DNVM amplitude. This means that the unstable DBs
with a smaller amplitude have a longer lifetime.

In the following paragraphs, zero-dimensional DBs local-
ized in both spatial dimensions are described, followed by
one-dimensional DBs localized in only one dimension. The
initial conditions used to excite standing DBs imply that all
particles have zero initial velocity, thus the total momentum
transferred to the lattice is zero.

In the study of the zero-dimensional DBs, the compu-
tational cell size is Nx × Ny = 256 × 256, and absorbing
boundary conditions are used in order to remove the radi-
ation emitted at the early stage of the DB evolution. The
one-dimensional DBs localized in the vertical (horizontal) di-
rection are studied in the cell with Nx × Ny = 8 × 512 (Nx ×
Ny = 512 × 8) particles. Absorbing boundary conditions are
imposed at the ends of the elongated cell.

A. Zero-dimensional DB based on DNVM 2

For elastically anisotropic DNVM 2, the localizing func-
tion is taken in one of the possible forms as

Ai j = A

cosh[βx(xi j − x0)] cosh[βy(yi j − y0)]
, (32)

where Ai j is the magnitude of the initial displacement of the
particle having coordinates (xi j, yi j ), A is the amplitude of
DNVM 2, parameters βx and βy define the degree of the spatial
localization of the DB in x- and y-direction, respectively, and
(x0, y0) are the coordinates of the DB center.

An example of the DB based on the DNVM 2 is shown
in Fig. 5. The parameters of the localizing function (32) are
A = 0.1, βx = 0.8, and βy = 0.7. The center of the localiz-

FIG. 5. (a) DB (shown by the red cross) based on the DNVM
2 centered between two particles in a horizontal close-packed row.
Particle trajectories are shown in black. (b) Vertical displacement as a
function of time for the particle indicated in (a) by the arrow. The DB
was excited with the use of the localizing function (32) with A = 0.1,
βx = 0.8, and βy = 0.7. Displacements of the particles are scaled by
a factor of 3.

ing function is placed between two particles in a horizontal
close-packed row (see the red cross). We were unable to
obtain a long-lived DB with a different center location. Fig-
ure 5(a) shows trajectories of the particles. The displacements
of the particles are scaled by a factor of 3. The vertical
displacement indicated by the arrow is plotted as a function
of time in Fig. 5(b). The DB has a frequency ω = 1.019ωmax,
where ωmax = √

6 is the maximal phonon frequency.
The initial conditions used to excite the DB are imprecise,

and some of the energy initially transferred to the localized
mode is emitted. The pattern of DB vibrations is thus es-
tablished. The presented DB has a relatively short lifetime
of about 150 time units, after which it is destroyed due to
instability. DBs excited with a smaller amplitude A have a
longer lifetime and a frequency closer to ωmax.

B. Zero-dimensional DBs based on DNVM 4

The DNVM 4 has a sixfold axis of symmetry, as the
triangular lattice. Triangular lattice is elastically isotropic
[113], meaning that long-wavelength phonons have direction-
independent group velocity. Bearing this in mind, for the
DNVM 4 the localizing function with radial symmetry is used:

Ai j = A

cosh(β|ri j − r0|) , (33)

where Ai j is the magnitude of the initial displacement of the
particle having radius-vector ri j = (xi j, yi j ), A is the ampli-
tude of the DNVM 4, parameter β defines the degree of the
spatial localization of the DB, and r0 is the radius-vector of
the center of the localizing function.
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FIG. 6. DBs obtained by applying the localizing function (33)
upon DNVM 4 with the amplitude A = 0.1. Depending on the lo-
cation of the center of the localizing function r0 shown by the red
crosses, (a) six-, (b) three-, or (c) twofold symmetry DBs are ob-
tained. Stable long-lived oscillations are observed for (a) β = 0.830,
(b) β = 0.730, and (c) β = 0.838 (Fig. 7). Particle trajectories are
shown in black. Displacements of the particles are scaled by a factor
of 3.

Examples of DBs are given in Fig. 6 with different loca-
tions of the center of the localizing function (marked with
the red crosses). The center is located on a resting particle in
Fig. 6(a), in the middle of triangle made by the moving parti-
cles in Fig. 6(b), and on the lattice cite of a moving particle in
Fig. 6(c). The DBs have sixfold, threefold, and twofold sym-
metry axes, respectively, in the three subfigures. Parameters
of the localizing function (33) are β = 0.830, β = 0.730, and
β = 0.838, respectively. The DNVM amplitude is A = 0.1 in
all the cases. For clarity, the displacements of the particles are
scaled by a factor of 3. With the chosen parameters, the DBs
practically do not radiate energy and have very long lifetime.
The displacement of the particle vibrating with the largest
amplitude as the function of time is shown in Figs. 7(a)–7(c)
for the DBs presented in Figs. 6(a)–6(c), respectively. The
DBs have frequencies ω = 1.008ωmax, ω = 1.018ωmax, and
ω = 1.017ωmax, respectively, where ωmax = √

6.
The DB with the sixfold symmetry axis shown in Fig. 6(a)

has been observed earlier in triangular Morse lattices with
an on-site harmonic potential [89] and without on-site
potential [104].

FIG. 7. (a–c) Displacements along the y-axis of particles marked
by the arrows in Figs. 6(a)–6(c), respectively.

FIG. 8. DBs based on the DNVM γ 2. DBs were obtained by
applying the localizing function (32) upon DNVM γ 2 with the am-
plitude A = 0.2. The center of the localizing function is shown by the
red crosses. In (a) it is between particles vibrating horizontally and in
(b) on a particle vibrating horizontally. Stable long-lived oscillations
in both cases are observed for βx = 1.35 and βy = 1.10. Particle
trajectories are shown in black. Particle displacements are multiplied
by a factor of 1.5.

C. Zero-dimensional DBs based on DNVM γ2

Since the DNVM γ 2 is anisotropic, the localizing func-
tion (32) is used. Two examples of DBs obtained from the
time-periodic DNVM γ 2 are presented in Fig. 8. They were
obtained by placing the center of the localizing function be-
tween horizontally vibrating particles and on a horizontally
vibrating particle, respectively. In both cases, A = 0.2, βx =
1.35, and βy = 1.10.

Displacements of particles marked by the arrows in
Figs. 8(a) and 8(b) along the x-axis are shown as functions
of time in Figs. 9(a) and 9(b), respectively. The DBs have
very long lifetime and show no signs of instability. They have
frequencies ω = 1.069ωmax and ω = 1.072ωmax, respectively.

The previous works [89,114] showed that the DBs based on
the DNVM γ 2 were robust and could propagate along close-
packed rows of particles and survive collisions with each other
[114]. Here we do not analyze motion of this particular DB.

D. One-dimensional DBs based on DNVMs
of the triangular lattice

One-dimensional horizontal DBs (localized in vertical di-
rection and delocalized in horizontal direction) are excited by
imposing the following localizing function on a DNVM:

Ai j = A

cosh[βy(yi j − y0)]
, (34)

FIG. 9. (a, b) Displacements along the x-axis of particles marked
by the arrows in Figs. 8(a) and 8(b), respectively.
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FIG. 10. One-dimensional horizontal DBs based on (a) DNVM 2
and (b) DNVM γ 2, obtained by applying the localizing function (34)
upon DNVMs with the amplitude A = 0.1. Long-lived oscillations
are observed for (a) βx = 0.65 and (b) βx = 0.79. Particle trajectories
are shown in black. Displacements of the particles are magnified by
a factor of 3.

where Ai j is the magnitude of the initial displacement of the
particle having a y-coordinate yi j , A is the amplitude of the
DNVM, parameter βy defines the degree of the spatial local-
ization of the DB, and y0 is the y-coordinate of the maximum
of the localizing function.

Similarly, one-dimensional vertical DBs (localized only
in horizontal direction) are excited by imposing a localizing
function of the form

Ai j = A

cosh[βx(xi j − x0)]
, (35)

on a DNVM, where Ai j is the magnitude of the ini-
tial displacement of the particle having x-coordinate xi j , A
is the amplitude of DNVM, parameter βx defines the degree
of the spatial localization of the DB, and x0 is the x-coordinate
of the maximum of the localizing function.

Examples of one-dimensional horizontal DBs are shown
in Fig. 10. They are obtained by imposing localizing function
(34) on (a) DNVM 2 and (b) DNVM γ 2. In both cases, the
delocalized modes have amplitude A = 0.1. The localizing
function is placed such that its maximum is between two hori-
zontal close-packed rows for Fig. 10(a) and in a horizontal row
with vertically vibrating particles for Fig. 10(b). βx = 0.65
and βx = 0.79 respectively in the two cases. These two DBs
lose their energy due to the very slow radiation, and thus have
a very long lifetime. On the other hand, DNVM 4 creates
an unstable DB with a lifetime of a few tens of oscillation
periods. We do not present this short-lived DB here.

Displacements of particles indicated by the arrows in
Figs. 10(a) and 10(b) are shown as functions of time in
Figs. 11(a) and 11(b), respectively. The DB frequencies are
ω = 1.046ωmax and ω = 1.049ωmax, respectively.

Figures 12(a)–12(c) shows examples of one-dimensional
vertical DBs based on DNVM 2, DNVM 4, and DNVM γ 2,
respectively. In all cases, the DNVM amplitude is A = 0.1.
DBs with long lifetime are observed for (a) βx = 1.15, (b)
βx = 1.07, and (c) βx = 0.687. Displacements of particles in-

FIG. 11. (a, b) Displacements of particles indicated by the ar-
rows in Figs. 10(a) and 10(b), respectively. (a) Along the y-axis and
(b) along the x-axis as functions of time

dicated by the arrows are shown as functions of time (Fig. 13).
Figures 13(a) and 13(b) present displacements along the y-
axis, and Fig. 13(c) shows the displacement along the x-axis.
The DBs have frequencies ω = 1.048ωmax, ω = 1.041ωmax,
and ω = 1.039ωmax, respectively.

The DBs presented in Fig. 12(a) and 12(c) show no sign
of instability, while the one shown in Fig. 12(b) has relatively
short lifetime.

As far as we know, one-dimensional DBs based on the
DNVMs of a triangular lattice as presented above have not
been described in the literature and are hence innovative dis-
coveries.

FIG. 12. One-dimensional vertical DBs based on (a) DNVM 2,
(b) DNVM 4, and (c) DNVM γ 2, obtained by applying the localizing
function (35) upon DNVMs with the amplitude A = 0.1. Long-
lived oscillations are observed for (a) βx = 1.15, (b) βx = 1.07, and
(c) βx = 0.687. Particle trajectories are shown in black. Displace-
ments of the particles are magnified by a factor of 3.
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FIG. 13. (a)-(c) Displacements as functions of time for particles
indicated by the arrows in Figs. 12(a)–12(c), respectively. The dis-
placements in (a) and (b) are along the y-axis and the displacements
in (c) are along the x-axis.

VI. DISCRETE BREATHERS BASED
ON DNVMs OF A CHAIN

In Sec. I, it was mentioned that nonlinear chains sup-
port one-component DNVMs with periodic patterns [A,−A],
[A, 0,−A], [A, 0,−A, 0], and [A, A,−A,−A], where A is the
DNVM amplitude [95]. In this section, it is demonstrated
that the modes [A,−A] and [A, 0,−A, 0] can be excited in
a close-packed row of the β-FPUT lattice.

Figure 14 presents the initial displacement patterns (a)
[A,−A] and (b) [A, 0,−A, 0]. Only particles in one atomic
row are initially displaced according to these patterns, and

FIG. 14. One-dimensional DBs based on DNVMs of a chain,
which have periodic patterns (a) [A,−A] and (b) [A, 0, −A, 0]. The
DBs are excited by introducing initial displacements to the particles
in a close-packed row according to these patterns. Spatially localized
oscillations are observed with (a) A = 0.2 and (b) A = 0.8. Particle
trajectories are shown in black. The particle displacements in (b) are
scaled by a factor of 0.5 to prevent trajectory overlapping of particles
vibrating with large amplitudes.

FIG. 15. (a), (b) Displacements 	x as functions of time for par-
ticles indicated by the arrows in Figs. 14(a) and 14(b), respectively.

initial velocities of all the particles are set equal to zero.
Spatially localized oscillations are observed with A = 0.2 for
Fig. 14(a) and A = 0.8 for Fig. 14(b). In the former case,
the DB has a very long lifetime with practically no energy
emission. In the latter case, the lifetime of the DB is limited to
a few tens of oscillation periods. This observation is because
the oscillations have frequencies above the phonon spectrum
with only very large amplitudes, where the instability of the
mode develops very rapidly.

It should be pointed out that the one-dimensional DB
shown in Fig. 14(b) can be excited by imposing the localizing
function (34) upon the DNVM γ 2 with the center localized
in a row with horizontally vibrating particles, as contrasted to
the one located in a row with vertically vibrating particles in
Fig. 10(b).

Importantly, this DB cannot have an amplitude smaller
than a certain value because the DNVM [A, 0,−A, 0] would
have frequencies within the phonon band at small amplitudes.
All the other DBs presented in this work have frequencies
bifurcating from the upper edge of the phonon spectrum.

Horizontal displacements of the particles indicated with the
arrows are plotted as functions of time in Fig. 15. The DNVM
frequencies are (a) ω = 1.27ωmax and (b) ω = 1.50ωmax,
which are above the upper edge of the phonon band.

VII. CONCLUSIONS AND FUTURE CHALLENGES

A list of (quasi-) DBs of the triangular β-FPUT lattice was
described with frequencies bifurcating from the upper edge of
the phonon band. The zero- and one-dimensional DBs were
obtained by localizing DNVMs of the triangular lattice with
frequencies above the phonon band.

One example of a DB with the frequency emerging from
the phonon band at a relatively large amplitude was given; see
Fig. 14(b). This breather is obtained by exciting the DNVM
of a chain in a close-packed row of particles. The breather
exists only at a relatively large amplitude and has a very
short lifetime due to the rapidly developing instability. Other
short-lived breathers can possibly exist based on DNVMs
of the triangular lattice with frequencies emerging from the
phonon spectrum at large amplitudes [94]. Examples of such
DBs were reported for bcc metals in [106].

We did not try to find exact DB solutions in this work, but
they can probably be found using iterative or other methods,
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for example, the generalized minimal residual method [111]
or asymptotic analysis used in [115].

Some DBs in two-dimensional lattices can move
[62,63,114] and in one of our future works we will address
the problem of mobility for the DBs presented in this work.

For a triangular lattice with different potentials, for ex-
ample, an α-β-FPUT lattice or a Morse lattice, one should
start by analyzing the frequency-amplitude dependences of
DNVMs listed in [94]. All DNVMs described in this paper
exist in triangular lattices with any type of potential, but prop-
erties such as DNVM frequencies depend on the potential.
DNVMs with frequencies higher than the phonon band are
candidates for obtaining DBs by imposing localizing func-
tions by analogy with this work.

In a triangular lattice with an on-site potential, gap DBs
are possible [115], which were not considered in our work.
But they can be described using the same approach, and this
is planned to be done in a forthcoming study.

Using the approach presented in this work, one can search
for a complete list of DBs in metals with fcc, bcc, and
hcp structures and in other crystals with a more complex
structure. All DNVMs with frequencies above the phonon
spectrum should be derived to reveal the complete list
of DBs.
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