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Heat current flows across an interface in two-dimensional lattices
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Heat current J that flows through a few typical two-dimensional nonlinear lattices is systematically studied.
Each lattice consists of two identical segments that are coupled by an interface with strength kint . It is found
that the two-universality-class scenario that is revealed in one-dimensional systems is still valid in the two-
dimensional systems. Namely, J may follow kint in two entirely different ways, depending on whether or not the
interface potential energy decays to zero. We also study the dependence of J on lattice width NY and transverse
interaction strength kY . Universal power-law decay or divergence is observed. Finally, we check the equipartition
theorem in the systems since it is the basis of all our theoretical analyses. Surprisingly, it holds perfectly even at
the interface where there is a finite temperature jump, which makes the system far from equilibrium. However, the
equipartition of potential energy, which is observed in one-dimensional systems, is no longer satisfied due to the
interaction between different dimensions.
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I. INTRODUCTION

Due to the major importance in fundamental physics as
well as the apparent value in practice, heat conduction in
nanoscale systems has attracted rapidly growing interest [1,2].
The dimension of those microscopic systems is commonly
a key factor for thermal transport. There is consensus that
heat conductivity κ generally displays a power-law divergence
with the system size in one-dimensional (1D) momentum-
conserving systems [3], while in 2D systems the divergence
is logarithmic [4] and in 3D systems κ converges [5,6]. The
dimensional crossover has also been observed both numeri-
cally [7,8] and experimentally [9,10]. Some current progress
in this field can be found in, for example, comprehensive
reviews in [11,12]. Based on the idea that the local heat
current is determined not only by the local temperature gra-
dient but by nonlocal ones in other parts of a system as
well, a new framework for the study of anomalous transport
has emerged very recently, in which the conventional equa-
tion of heat conduction is replaced by a spatially nonlocal
one [13–15].

In regard to application, much attention has been paid
recently to phononics, a new science and engineering of
managing heat flow and processing information with heat.
Thermal counterparts of many electric devices have been
worked out, e.g., thermal diodes that rectify heat current and
thermal transistors that switch and modulate heat current [16].
There are two commonly applied mechanisms that can induce
a thermal rectifying effect [17]. One relies on the match or
mismatch of the phonon spectra at an interface [18,19] and the
other relies on the different temperature dependence of heat
conductivity of bulk materials [20,21]. The former is normally
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much more efficient. The case is quite similar for negative
differential thermal resistance, the basis of thermal transistors
[22]. It is commonly much more easily realized by interface
thermal resistance [23].

Besides the large number of theoretical studies, the rapid
development of nanoscale technology has also enabled us to
measure heat conduction in nanoscale materials experimen-
tally, particularly in various 2D materials such as graphene
[24,25] and 2D MoS2 [26,27]. The key role of the grain
interfaces in polycrystalline hexagonal boron nitride thin films
has also been studied both experimentally and numerically
[28]. Some related progress has been reviewed in a recent
colloquium [29].

We have studied the scaling property of the heat-current
flows across a one-dimensional weak interface [30] and re-
vealed two universal classes of asymptotic behavior of the
heat current j in the small interface interaction strength kint

limit. If the interface potential energy hint decays with kint

linearly, then the system belongs to class 1, in which j ∼ k2
int.

This was previously expected [31]. However, if such a con-
dition is not satisfied and hint approaches a nonzero constant,
then the system belongs to class 2, in which the mean square
relative displacement between interface particles �2

int ∼ k−α
int

and j ∼ kα
int, where α depends on the detail of the interface

interaction and commonly α ∈ (0, 1].
In this paper we study the scaling properties of 2D in-

terface heat conduction, including not only the dependence
on the interface strength, but also that on the lattice width
and transverse interaction strength. Since the dimension of
materials is generally crucial in microscopic heat conduction,
more interesting features are naturally expected. The basis
of our theoretical analysis, the equipartition theorem, will be
carefully checked, in particular at the interface where there
is a finite temperature jump, which makes the state far from
equilibrium.
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FIG. 1. Configuration of the two-dimensional lattice with NX

columns and NY layers. Particles at the left and right ends (col-
ored in red and blue) are coupled to heat baths with high and low
temperatures. Thus heat flows from left to right in the X direction.

The paper is organized as follows. The 2D lattices and in-
terface interactions are introduced in Sec. II. The results of
detailed numerical simulation and the corresponding theoret-
ical analysis are presented in Sec. III. The validity of the
equipartition theorem will be checked in Sec. IV. A summary
and discussion are provided in Sec. V.

II. LATTICE MODELS AND INTERFACE INTERACTIONS

The system we study is a 2D lattice that consists of two
identical segments that are coupled by an interface with inter-
action Vint. In each segment, particles are coupled with their
nearest neighbors in the X and Y directions with interactions
VX and VY , respectively. The whole system consists of NX

columns and NY layers particles. Its configuration is presented
in Fig. 1. The Hamiltonian of the system is given by

H = HL + Hint + HR

=
NX /2∑
i=1

NY∑
j=1

[
mi, jv

2
i, j

2
+ U (ui, j ) + VX (ui, j − ui−1, j ) + VY (ui, j − ui, j−1)

]
+

NY∑
j=1

Vint (uNX /2+1, j − uNX /2, j )

+
NX∑

i=NX /2+1

NY∑
j=1

[
mi, jv

2
i, j

2
+ U (ui, j ) + VX (ui+1, j − ui, j ) + VY (ui, j − ui, j−1)

]
. (1)

Unless otherwise stated in Sec. IV B, free and periodic bound-
ary conditions (BCs) are applied in the X and Y directions,
respectively, i.e.,

u0, j = u1, j, uNX +1, j = uNX , j,

ui,0 = ui,NY , ui,NY +1 = ui,1.

Two representative lattices will be studied: (i) the φ4 lat-
tice1 [32] with VX (u) = kX

1
4 u4, VY (u) = kY

1
4 u4, and U (u) =

1
4 u4 and (ii) the purely quartic (PQ) lattice with VX (u) =
kX

1
4 u4, VY (u) = kY

1
4 u4, and U (u) = 0. Throughout this paper,

kX is always fixed to 1 and kY is also fixed to 1 unless other-
wise stated in Sec. III B 3.

Similar to the 1D cases, a detailed type of interaction does
play an important role in determining the decay properties of
the heat current J even in the small interface strength kint limit.
We study three representative types of interactions, i.e., (i)
the nonlinear PQ interface interaction where Vint (u) = kint

1
4 u4,

(ii) the linear interface interaction where Vint (u) = kint
1
2 u2,

and (iii) the rotator interface interaction where Vint (u) =
kint[1 − cos(u)].

III. NUMERICAL SIMULATIONS

To keep the system in a nonequilibrium stationary state,
Langevin heat baths with slightly different temperatures TL =

1Normally, the interparticle interaction of the φ4 lattice is linear and
thus our model can be regarded as a φ4-like one. In this paper we still
call it the φ4 lattice for simplicity.

1.1 and TR = 0.9 are attached to the left and right ends (the
particles in the first and the NX th columns). The dynamics of
the system is governed by the Langevin equation

üi, j = − ∂H

∂ui, j
+ δi,1(−γ u̇i, j + ξ j ) + δi,NX (−γ u̇i, j + η j ),

(2)

where 〈ξ j (t )〉=〈η j (t )〉=0, 〈ξ j (t1)ηk (t2)〉=0, 〈ξ j1 (t1)ξ j2 (t2)〉=
2γ TLδ j1, j2δ(t2 − t1), and 〈η j1 (t1)η j2 (t2)〉 = 2γ TRδ j1, j2δ(t2 −
t1). The damping coefficient γ of the heat baths is set equal
to 1. A fifth-order Runge-Kutta algorithm [33] with time step
size 0.01, which provides high cost-effectiveness and suffi-
cient accuracy, is applied for the numerical calculation. For
simplicity, the lengths of the left and the right segments are
fixed to NX /2 and the mass of all the particles is set to unity.
In order to concentrate on the interface effects, NX is fixed to
a short length NX = 16. We also check that a longer choice of
NX , say, 32, does not change the results. This choice confirms
that the bulk resistance is negligible but the effects from the
boundaries or heat baths vanish.

In the nonequilibrium stationary state, a heat current J
flows from left to right,

J ≡
NY∑
j=1

〈
∂VX (ui+1, j − ui, j )

∂ui, j
u̇i, j

〉
. (3)

The heat current J is a constant in the X direction, i.e., label
i independent. Its per-layer average j ≡ J

NY
. In our previ-

ous study [30], we revealed that the mean square relative
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FIG. 2. (a) and (c) Per-layer average heat current j and (b) and (d) per-layer average interface potential energy hint for the φ4 lattice with
(a) and (b) the PQ interface and (c) and (d) the PQ lattice with the rotator interface. Here NX = 16 and NY = 2, 8, and 32. Dashed and dotted
lines for k2

int and k1
int ,respectively, are plotted for reference.

displacement (MSRD) between interface particles

�2
int ≡ 1

NY

NY∑
j=1

〈(uNX /2+1, j − uNX /2, j )
2〉, (4)

the interface potential energy

Hint ≡
NY∑
j=1

〈Vint (uNX /2+1, j − uNX /2, j )〉, (5)

and the per-layer average hint ≡ Hint/NY play key roles in
determining the scaling properties, which we will study
in depth.

A. Class-1 models

The class-1 models include (a) lattices with a hard on-site
potential and (b) lattices with soft interface interactions [30].
Here the words soft and hard mean that limu→±∞ Vint (u) is
finite and divergent, respectively. Correspondingly, we study
two typical cases: the φ4 lattice with nonlinear quartic in-
terface interactions and the PQ lattice with rotator interface
interactions.

In the former case the probability distribution function of
the relative displacement between any pair of interface
particles approaches a kint-independent asymptotic
distribution P(�u) in the small-kint limit, where �u ≡
uN/2+1, j − uN/2, j . If we suppose that Vint (�u) = kint f (�u),
the potential energy between this pair of particles equals∫ −∞
−∞ Vint (�u)P(�u)d�u = kint

∫ −∞
−∞ f (�u)P(�u)d�u. It

decays with kint linearly since the last integral is finite,

nonzero, and kint independent. In the latter case, f (�u) is
finite and with period 2π . In the small-kint limit, P({�x})
approaches a kint-independent asymptotic distribution,
where {u} ≡ u − [ u

2π
]2π , with [u] denoting the largest

integer that is no greater than u. Therefore, the average
potential energy equals

∫ 2π

0 Vint ({�u})P({�u})d{�u} =
kint

∫ 2π

0 f ({�u})P({�u})d{�u}. For the same reason it again
decays linearly with kint.

Since hint is proportional to kint, it is easy to understand
that the proof in Ref. [31] remains valid for the 2D models.
Therefore, in both cases the conclusion that the heat current
decays as k2

int holds. In Fig. 2 the per-layer average heat
current j and the per-layer average interface potential energy
hint are plotted for the two cases. All the above expectations
are confirmed.

B. Class-2 models

In this class the lattices are momentum conserving and
the interface interactions are hard. The case is much more
realistic since most of the 2D nanoscale materials for heat
conduction measurement in real experiments are suspended
[10,34]. To concentrate the study, we consider PQ lattices,
and the interface interactions are linear or PQ only. The main
results are plotted in Fig. 3.

1. Role of the interface interaction

First, we study the role of the interface interactions. We
see in Figs. 3(b) and 3(e) that Hint approaches kint independent
constants T

2 and T
4 in the small-kint limit for the linear and
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FIG. 3. (a)–(c) PQ lattice with linear interactions and (d)–(f) PQ interface interactions: (a) and (d) average heat current j versus kint , (b) and
(e) total interface potential energy Hint versus kint , and (c) and (f) j versus lattice width NY .

quartic interfaces, respectively. It was proved in Ref. [30] that
if the interface interaction takes the general form Vint (u) =
kint

1
n un, where n refers to an even integer hereafter, then j ∼

kα
int and �2

int ∼ k−β

int , where the power exponents α = β = 2/n.
The proof remains valid for the 2D cases since it is dimension
independent. Therefore, for the two kinds of interface inter-
actions α should equal 1 and 0.5, respectively. The numerical
results shown in Figs. 3(a) and 3(d) strongly confirm this.

2. Role of the lattice width NY

Second, we study the role of the lattice width NY . Com-
monly, we expect that the total heat current J is proportional
to NY ; thus j should approach a constant. It is however quite
surprisingly that j follows a power-law dependence on NY

in the small-kint limit, i.e., j ∼ N−ν
Y , where ν = 1 and 1.5

for the linear and PQ interface interactions, respectively [see
Figs. 3(c) and 3(f)]. This finding implies that in the linear
interface case the total heat current J is width NY independent
and furthermore for the PQ interface J decays with NY by
N−0.5

Y , i.e., the wider the lattice, the smaller the total heat
current J .

To explain such a counterintuitive NY dependence, we
study the NY dependence of Hint. In class-2 models, the total
momentum is conserved and the interface interaction is hard.
In the small-kint limit, the interface MSRD �2

int approaches
infinity by k−β

int , where β = 2/n, but the MSRD between the
same-side particles approaches a temperature-dependent but
kint-independent finite constant since kY is fixed and nonzero.
The latter MSRD is thus negligible. All the particles at the left
or right side of the interface can be regarded as a single big
particle with mass NY and the two big particles are connected

by an interface interaction with strength NY kint. In the case
that the interface interaction takes the form Vint (u) = kint

1
n un,

the total interface potential energy

Hint = T

n
, (6)

which has been confirmed numerically in Figs. 3(b) and 3(e)
for n = 2 and 4, respectively. Thus the per-layer average
potential energy hint = T

nNY
. Straightforwardly,

�2
int ∼ N−2/n

Y , (7)

and thus

J ∼ N−(n−2)/n
Y , j ∼ N−(2n−2)/n

Y . (8)

These are confirmed in Figs. 3(c) and 3(f) exactly. The coun-
terintuitive NY dependence is then explained.

For class-1 models, either �2
int approaches a nonzero NY -

independent constant or the interface interactions are soft. As
a consequence, it is not Hint but its per-layer average hint that
becomes NY independent [see Figs. 2(b) and 2(d)]. In such
cases j will not follow the power-law decay but approach a
nonzero NY -independent constant.

3. Role of the interlayer interaction strength kY

The interactions in the transverse Y direction also play
an important role, although the heat conduction is in the X
direction. It can be qualitatively understood that the interlayer
interactions bind the particles together and thus they cannot
easily vibrate and carry heat. A well known fact is that the
heat conductivity κ diverges only logarithmically with length
L for 2D momentum-conserving systems [4], while it displays

052141-4



HEAT CURRENT FLOWS ACROSS AN INTERFACE IN … PHYSICAL REVIEW E 103, 052141 (2021)

FIG. 4. PQ lattice with the PQ interface. (a) Power spectra S(ω)
of the particles on the left (black solid line) and right (red dashed
line) sides of the interface. The three groups from the top down are
for kY = 0, 0.01, and 1, respectively. Those for the left and right
particles are slightly different, mainly due to their slightly different
temperatures. Also shown are � j0 (closed symbols) and � j∞ (open
symbols) versus kY for (b) kint = 0.1 and (c) kint = 10−3. Dotted
lines and dashed lines for k0.41

Y and k−0.5
Y , respectively, are plotted

for reference. The insets show j versus kY .

a power-law divergence with L in 1D systems, which can be
regarded as the kY → 0 limit of the 2D systems. To present
the picture more clearly, we plot the power spectra S(ω) of
the interface particles in Fig. 4(a). Here S(ω) ≡ ∫

R(τ )eiωτ dτ ,
where R(τ ) refers to the autocorrelation function of the ve-

locity of the particle. We see that even very weak interlayer
interactions (say, kY = 0.01) can largely reduce the power in
low-frequency modes, which carry heat much more efficiently
than high-frequency modes do.

In contrast to some existing studies on the details of the
transverse interactions [35], we are interested more in the
general asymptotic (kY → 0 and kY → ∞) properties. Thus
we focus on the PQ lattice with a PQ interface only. The
average heat current j versus kY for various kint and lattice
widths NY = 2, 8, and 32 is plotted in the insets of Figs. 4(b)
and 4(c). For a given value of kint and fixed NY , j decreases
gradually with kY .

In the small- and large-kY limits, j approaches j0 ≡
limkY →0 j and j∞ ≡ limkY →∞ j, respectively. In the former
case the 2D lattice reduces to NY separated 1D lattices. There-
fore, the average current j0 is NY independent. In contrast,
in the latter case the lattice approaches a single 1D lattice in
which many quantities, including the mass of particles, the
interaction strength in the X direction kX , the interface inter-
action strength kint, and the heat bath damping coefficients γ ,
are enlarged NY times. Therefore, j∞ is NY dependent. Both
values j0 and j∞ can be obtained simply by simulating the
corresponding 1D lattices.

In order to study the way that the heat currents approach
the two limits, we calculate the residuals � j0 ≡ j0 − j and
� j∞ ≡ j − j∞. Plots of � j0 and � j∞ versus kY for various
NY and kint are shown in Figs. 4(b) and 4(c). Both quantities
follow power-law decays very well, i.e.,

� j0 ∼ kα0
Y , � j∞ ∼ k−α∞

Y .

The two power exponents α0 and α∞ are approximately 0.41
and 0.5, respectively. They are basically NY and kint indepen-
dent. We naturally expect that the power exponents remain
valid also in the homogeneous case, i.e., kint = 1. However,
to obtain the value of α∞ with satisfactory accuracy we need
to extend the simulation to even larger values of kY , which
induces much difficulty in the numerical work. Further studies
need to be done to understand the universality of the two
power exponents analytically.

IV. THEORETICAL ANALYSES

A. Equipartition theorem at the interface

Since most of the analysis in this paper relies on the
equipartition theorem, here we check its validity in our sys-
tems, in particular at the interface.

For a classical Hamiltonian system in an equilib-
rium state with temperature T , equipartition is commonly
expected [36], i.e.,

T =
〈
ξ
∂H

∂ξ

〉
, (9)

where ξ is any canonical coordinate of the system. For a sys-
tem in a nonequilibrium state, if the local thermal equilibrium
(LTE) holds, i.e., each small portion of the system can still be
described by the laws of thermal equilibrium, then

Ti, j =
〈

pi, j
∂H

∂ pi, j

〉
=

〈
qi, j

∂H

∂qi, j

〉
(10)
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FIG. 5. PQ segments with the PQ interface. Kinetic and potential
temperatures at the interface are plotted versus kY for various kint ,
with NX = 16 and NY = 8. The three red upper curves (from the top
down) are the kinetic temperatures TK,L of the left interface particles
for kint = 10−4, 10−2, and 1, respectively. The three blue lower curves
(from the bottom up) are those TK,R of the right interface particles for
kint = 10−4, 10−2, and 1. The symbols are their corresponding po-
tential temperatures TP,L and TP,R. Kinetic and potential temperatures
always coincide with each other very well.

is expected instead, where Ti, j can be regarded as the local
location-dependent temperature.

Commonly, LTE is expected only in close-to-equilibrium
states. In our systems, however, there exists an interface where
the temperature jump is not a small value, and thus the state is
in fact far from equilibrium. We will check whether LTE still
holds in such a case.

On the left side of the interface, we define

TK,L ≡ 1

NY

NY∑
j=1

〈
vNX /2, j

∂H

∂vNX /2, j

〉
= 1

NY

NY∑
j=1

〈
mi, jv

2
i, j

〉
, (11)

TP,L ≡ 1

NY

NY∑
j=1

〈
uNX /2, j

∂H

∂uNX /2, j

〉
. (12)

Those for the right side, TK,R and TP,R, are defined similarly.
Here TK is simply known as the kinetic temperature and TP is
called the potential temperature.

Figure 5 shows TK,L/R and TP,L/R for the 2D PQ lattice
with a PQ interface. In all the cases, TK and TP always co-
incide with each other exactly. Although equipartition alone
cannot guarantee LTE, we are inclined to believe that even
at the interface where the state is far from equilibrium, LTE
still holds very well. This is a little unexpected since LTE
breaks down in nonstationary anomalous heat diffusion pro-
cesses in similar systems even though the perturbation is
small [37].

B. Equipartition of potential energy

If all the interactions in a lattice take the form V (u) =
kX (Y )

1
n un, then Eq. (10) yields

Ti, j = 〈ui, j
∂H

∂ui, j
〉

= kX 〈ui, j (ui, j − ui−1, j )
n−1〉 + kX 〈ui, j (ui, j − ui+1, j )

n−1〉
+ kY 〈ui, j (ui, j − ui, j−1)n−1〉 + kY 〈ui, j (ui, j − ui, j+1)n−1〉.

(13)

In a homogeneous and rotationally invariant case, it can be
written as

Ti, j =n

2
(〈VL〉 + 〈VR〉 + 〈VU 〉 + 〈VD〉), (14)

where 〈VL〉, 〈VR〉, 〈VU 〉, and 〈VD〉 refer to the average potential
energies of the interactions that are left, right, up, and down in
relation to the particle (i, j). Due to the symmetry, they should
all take the identical value Ti, j

2n .
Now we are interested in whether such an equipartition

of potential energy still holds in our system with a weak
interface, which is by no means homogeneous and commonly
not rotationally invariant. We choose an interface particle, say,
the one colored in green in Fig. 1. This time our focus is not
the heat current; thus the temperatures of the left and right heat
baths are both set to unity. The lattice is thus in an equilibrium
state. Furthermore, to increase the symmetry between the X
and Y directions, free BCs are applied in both directions.

In Fig. 6 the average potential energies of the interactions
to the left of the particle (VX ), at the interface (Vint), and
in the Y direction (VY ) are plotted. In Fig. 6(a), in which
kint = kX = 1, we see the following. (i) When kY = 1, the
lattice reduces to a homogeneous and rotationally invariant
one; thus all the potential energies equal T

8 and consequently
the specific heat cv equals exactly 0.75, the value of the 1D
purely quartic lattice. (ii) In the kY → 0 limit, the 2D lattice
reduces to several separated 1D homogeneous lattices. All
the potentials in the X direction approach T

4 . As for VY , this
potential energy approaches a nonzero constant T

4NX
, which is

proportional to the temperature T but inversely proportional
to the lattice length NX . (iii) In the kY → ∞ limit, as we have
mentioned, the 2D lattice reduces to a single 1D lattice, in
which the particles’ mass and all the interaction strength in
the X direction are enlarged NY times. Therefore, VX and Vint

approach T
4NY

while VY approaches T
4 . Apparently, in both the

small- and large-kY limits, the right-hand side of Eq. (14) is
greater than the temperature T , which implies a local specific
heat cv > 0.75 [see the inset of Fig. 6(a)].

The cases are quite similar for kint = 0.01, which is shown
in Fig. 6(b). However, an apparent difference that can be
observed is that since kint < kX , the lattice is no longer ho-
mogeneous in the X direction and thus Vint is commonly
much lower than VX . The reason is that the interactions in
the Y direction confine the motion of the interface parti-
cles and thus the MSRD between interface particles �2

int no
longer increases with decreasing kint by k−2/n

int as it does in
the 1D cases. In the small- and large-kY limits, the 2D lat-
tice reduces again to several separated 1D lattices and one
single 1D lattice, respectively. The above-mentioned effect
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FIG. 6. PQ segments with the PQ interface. Free BCs are ap-
plied in both the X and Y directions. Average potential energies
VX (red circles), VY (blue triangles), and Vint (black squares) of the
interactions around an interface particle, say, the green one shown in
Fig. 1, are plotted for NX = 16 and NY = 8, with (a) kint = 1, where
the lattice is homogeneous in the X direction, and (b) kint = 0.01.
The horizontal lines indicate the different asymptotic values of the
potential energies. The insets show the local specific heat cv of the
interface particles.

vanishes; thus, although kint 	= kX , Vint and VX approach the
same values, i.e., T

4 for the small-kY limit and T
4NY

for the
large-kY limit. This confirms our finding in the 1D lattice [30].
Namely, although the 1D lattice is inhomogeneous, the po-
tential energy is still equally shared by different interactions.
Very interestingly, although in both the small- and large-kY

limits the right-hand side of Eq. (14) is again greater than
the temperature T , this is not always true. In a quite wide
regime of kY , the right-hand side is in fact lower than the
temperature T , which implies a local specific heat cv that is
even lower than 0.75 [see the inset of Fig. 6(b)]. Basically but
not exactly, the more homogeneous the lattice, the lower the
specific heat cv .

Without the equipartition of potential energy, the detailed
value of the interface potential energy Hint cannot be ob-
tained analytically for a general value of kint. However, in the
low-kint limit Hint still approaches a kint-independent constant
[see Figs. 3(b) and 3(e)]. That is why the kint dependence of

TABLE I. Power exponents of the dependence on various param-
eters. Here 0 refers to independent. The interface interaction takes the
form Vint (u) = kint

1
n un.

Parameter �2
int hint j � j0 � j∞

Class 1
kint 0 1 2
NY 0 0 0
kY

Class 2
kint − 2

n
2
n

2
n

NY − 2
n −1 − 2n−2

n
kY 0.41 −0.5

the heat current for 1D models remains unchanged for the
2D models.

V. CONCLUSION

In summary, we have studied systematically heat con-
duction across an interface that couples two identical 2D
nonlinear segments. Similar to the 1D case [30], the interface
strength kint dependence of the heat current J in the small-
kint limit still belongs to two classes, namely, J ∼ k2

int if the
interface potential energy hint decays to zero with kint linearly,
while J ∼ kα

int if hint approaches a nonzero constant and the
interface MSRD �int ∼ k−α

int . Next we studied the role of the
width NY and the strength of the interlayer interaction kY ,
which is different for 2D systems. It is observed that the total
current J is not necessarily an increasing function of NY . In the
small-kint case, J becomes independent of NY for the linear
interface and more counterintuitively it decays with NY by
N−0.5

Y for the PQ interface. As for the kY dependence, the
average current j approaches different values j0 and j∞ in the
small- and large-kY limits, respectively. The residuals � j0 ≡
j0 − j and � j∞ ≡ j − j∞ both follow power-law decays, i.e.,
� j0 ∼ kα0

Y and � j∞ ∼ k−α∞
Y , where the power exponents α0

and α∞ are approximately 0.41 and 0.5, respectively. The
above results are summarized in Table I.

Since the theoretical analysis is mainly based on the
equipartition theorem, we checked its validity. It was found
that although the theorem is commonly expected only in an
equilibrium or a close-to-equilibrium state, it does hold per-
fectly even at the weak interface where there exists a finite
temperature jump and thus the state is far from equilibrium.
Finally, we checked the partition of the potential energy in the
2D systems. It was observed that, unlike in the corresponding
1D cases where the potential energy is always shared equally
in different interactions, due to the interaction between dif-
ferent dimensions, it is no longer shared equally even among
interactions in the same direction. Commonly, stronger inter-
actions share more. The local specific heat cv is no longer
a constant either, and normally the more homogeneous the
lattice, the lower the cv .

These studies may have potential applications in nanoscale
heat control and management.
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