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Numerical estimates of square lattice star vertex exponents
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We implement parallel versions of the generalized atmospheric Rosenbluth methods and Wang-Landau
algorithms for stars and for acyclic uniform branched networks in the square lattice. These are models of
monodispersed branched polymers, and we estimate the star vertex exponents σ f for f stars, and the entropic
exponent γG for networks with comb and brush connectivity in two dimensions. Our results verify the predicted
(but not rigorously proven) exact values of the vertex exponents and we test the scaling relation [B. Duplantier,
J. Stat. Phys. 54, 581 (1989)]

γG − 1 =
∑
f �1

mf σ f

for several acyclic branched networks in two dimensions.
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I. INTRODUCTION

The vertex exponents of lattice star models of monodis-
persed branched polymers have been studied since the 1970s.
These exponents have been estimated numerically in numer-
ous studies [1–9]. Theoretical approaches can be found in
Refs. [10–15]. Recent results in Ref. [16] make various pre-
dictions in models of confined branched polymers.

A lattice star is an embedding of a star graph (see Fig. 1
for an example of a 5-star graph) in a lattice (normally the
hypercubic lattice) such that the arms (branches) of the star
map to self-avoiding walks in the lattice which are also mutu-
ally avoiding and are oriented from a central node of degree
f to f nodes of degree 1. The total length of the star is f n, if
each branch has length n. A lattice f -star is almost uniform
if the length of the longest arms exceed the length of the
shortest arms by exactly one. If the arms have the same length,
then it is uniform. A lattice star will be monodispersed if it is
uniform, or almost uniform.

Denote by s( f )
n the number of monodispersed lattice stars

of total length n, and with f arms. In the hypercubic lattice
the growth constant μd is defined by

lim
n→∞

1

n
log s( f )

n = log μd . (1)

This limit is known to exist [2,17–20] for uniform f -stars
(that is, if n = f m as m → ∞), and μd is equal to the growth
constant of self-avoiding walks. The methods in Refs. [2,17]
can also be used to prove this for monodisperse lattice f -stars.
We classify monodisperse lattice f -stars of length n = f m+k
according to the remainder k ∈ {0, 1, 2, . . . , f −1}. Uniform
stars are in the class k = 0 while almost uniform stars are in
the classes with 1 � k < f .
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Denote by cn the number of self-avoiding walks from the
origin in the square lattice. There is substantial numerical
evidence that

cn = C nγ−1 μn
2 (1 + o(1)), (2)

where γ is the entropic exponent. In two dimensions γ =
43/32 is exact [21,22].

In analogy with Eq. (2) the asymptotic behavior of s( f )
n is

s( f )
m f +k = C( f )

k nγ f −1 μn
2 (1 + o(1)), (3)

in the square lattice, where k is fixed in {0, 1, 2, . . . , f −1} and
where n = f m+k. Only the amplitude C( f )

k is dependent on
the class of monodispersed stars, while the entropic exponent
γ f is dependent only on the number of arms. Parity effects
in s( f )

n (due to both the lattice, and the number of arms f )
are present in the o(1) correction term, and so decay with
increasing n.

The entropic exponent γ f of f -stars is related to vertex
exponents σ f by [13,15]

γ f − 1 = σ f + f σ1. (4)

More generally, the vertex exponents are associated with
nodes in stars and more general monodispersed branched
networks: σ1 is associated with end vertices of degree 1 (end
points of branches), while the σ f with f � 3 are associated
with nodes of degree f in the stars or networks. If f = 1,
then γ1 is the entropic exponent γ of self-avoiding walks, with
exact value γ1 = 43/32 in two dimensions [21,22]. By Eq. (4),
σ1 = 11/64. If f = 2, then the star has two arms and so is a
self-avoiding walk. This shows by Eq. (4) that σ2 = 0. Exact
values for the other vertex exponents are similarly calculated
and are given by [13,21,22]

σ f = 1
16 + 1

4 f − 9
64 f 2. (5)
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FIG. 1. From the left, schematic diagrams of the connectivity of
a 5-star, a comb C, a brush B1, and a brush B2.

We show the exact values and estimates of σ f in two dimen-
sions for f � 6 in Table I, and compare it to the results in
Ref. [3], and with the values obtained in this paper. Our results
confirm to within numerical accuracy, the exact values.

Equations (1) and (3) can be generalized to square lattice
stars with f > 4 arms by using more than one central node as
shown in Fig. 2. The edge joining the two central nodes does
not count towards the total length of the star.

Branched polymers of more general connectivity can sim-
ilarly be embedded in the hypercubic lattice. These lattice
networks are uniform if all their branches are self-avoiding
walks of the same length m. If a uniform lattice network
of connectivity G has b branches and n = bm edges, then
the total number of such networks (up to equivalency under
translations) is denoted by cn(G). It is generally accepted that

cn(G) = CG nγG−1 μn
2 (1 + o(1)), (6)

where the growth constant is equal to that of square lattice
self-avoiding walks [17–20]. The relation of γG to the vertex
exponents σ f is given by

γG − 1 =
∑
f �1

m f σ f − c(G) dν, (7)

where m f is the number of vertices of degree f , and where
c(G) is the cyclomatic index (the number of independent
cycles) of the network [13,15] (d is the dimension and ν is the
metric exponent of the network and has exact value ν = 3/4
if d = 2 [21,22]). The networks in Fig. 1 are acyclic, and by
the above

γC − 1 = 4 σ1 + 2 σ3,

γB1 − 1 = 5 σ1 + σ3 + σ4,

γB2 − 1 = 6 σ1 + 2 σ4. (8)

The exact values of the γG are obtained from these relations
assuming that the scaling relation in Eq. (7) holds, and are
listed in the second column of Table II. In the third column

TABLE I. Vertex exponents in two dimensions.

f Exact [3] This work

σ1 0.171875 − 0.17188(12)
σ3 −0.453125 −0.45(2) −0.45282(69)
σ4 −1.1875 −1.17(4) −1.1864(27)
σ5 −2.203125 −2.14(4) −2.2016(19)
σ6 −3.5 −3.36(5) −3.4981(27)

FIG. 2. A uniform square lattice 5-star and a 6-star. There are
two central nodes accommodating the arms. Since the edge joining
the two central nodes is not counted as part of the length of the star,
the 5-star on the left has length 20, and the 6-star on the right has
length 24.

we list estimates obtained using Eq. (8) and the numerical
estimates listed in Table I, and in the last column the direct
estimates from our data for lattice networks. These results
show excellent agreement with both the exact values and the
numerical data using Eq. (8) which is strong numerical evi-
dence that Eq. (8) applies to the branched polymer networks
shown in Fig. 1.

In this paper we use a parallel implementation of the flat
generalized atmospheric Rosenbluth methods (flatGARM) al-
gorithm [23] to estimate two-dimensional values of the star
vertex exponents. In addition, we use a parallel implementa-
tion of the Wang-Landau algorithm [24–27] to estimate the
entropic exponents of monodispersed acyclic branched net-
works in the square lattice. In particular, we test the scaling
relation [13]

γG − 1 =
∑
f �1

m f σ f , (9)

where G is the connectivity of the branched networks in Fig. 1.
In our implementation of flatGARM we sampled square

lattice f -stars to lengths 1000 steps (edges) per arm, for f ∈
{3, 4, 5, 6}. Monodispersed branch networks (a comb and two
brushes) with underlying connectivity shown in Fig. 1 were
sampled using the Wang-Landau algorithm to lengths of 200
steps per branch.

II. NUMERICAL SIMULATIONS

A. Determining σ1

The numbers cn in Eq. (2) were estimated by sampling
self-avoiding walks to length 10,000 with the parallel flat-
PERM algorithm [6,9,23,28] (12 parallel sequences for a total
of 2.65 × 109 iterations). In two dimensions γ = 1.34375
and the o(1) term in Eq. (2) is believed to be a power-law
correction of the form A n−1 + B n−�1 (where �1 = 3/2 in

TABLE II. γG−1 for lattice networks.

G Exact Eq. (8) This work

C −0.21875 −0.2181(14) −0.2187(22)
B1 −0.78125 −0.7799(34) −0.7817(40)
B2 −1.34375 −1.3412(54) −1.3426(82)
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TABLE III. Least-squares fits of cn in the square lattice.

nmin n log(cn/cn−2 ) � 2 (γ − 1) + 2n log μ2 + A/n

10 0.6870990 + 1.94016321 n − 0.16886256 /n
20 0.6870978 + 1.94016321 n − 0.16749947 /n
30 0.6870860 + 1.94016321 n − 0.15795150 /n
40 0.6870813 + 1.94016321 n − 0.15382565 /n
50 0.6870635 + 1.94016322 n − 0.13736803 /n

two dimensions [29] and is the leading confluent correction
exponent).

We use the ratio cn/cn−2 and the model

n log

(
cn

cn−2

)
� 2 (γ − 1) + 2n log μ2 + A n−�1 (10)

to estimate γ . Linear least-squares fits (with �1 ∈
{0.5, 1.0, 1.5}) were done for n greater than or equal to
nmin where nmin ∈ {10, 20, . . . , 100}. The results for �1 = 1
and nmin � 50 are shown in Table III. For each value of �1

the results were extrapolated against nmin using the model
c0 + c1 /nmin + c2 /n2

min and comparing the results for the
choices of �1, the estimate

γ = 1.34359(23) (11)

was obtained (the error bar is the largest difference between
the average and the estimates). Since σ1 = (γ−1)/2, this
gives

σ1 = 0.17188(12), (12)

consistent within its error bar with the exact value σ1 =
0.171875.

B. Calculating σ f for 3 � f � 6

An f -star is grown by the GARM algorithm [30] by adding
steps to the endpoints of the arms in a cyclic order. The
algorithm is an approximate enumeration algorithm, and it
estimates numbers u( f )

n of f -stars of length n. To relate u( f )
n

to s( f )
n , Eq. (3), first note that the algorithm imposes ordering

of the arms: it adds a step to the first arm, then the second
arm, and so on. This shows that u( f )

n is the number of f -stars
with labelled arms (while s( f )

n is the number of f -stars with
unlabelled arms). To determine the symmetry factor relating
s( f )

n and u( f )
n , note that a monodisperse f -star of length n has

k arms of length �n/ f � and f −k arms of length�n/ f �. Since
the k longest arms can be ordered in k! ways, and the f −k
shortest arms in ( f −k)! ways, a symmetry factor of k! ( f −k)!
is introduced. This is particularly true for 3-stars and 4-stars
in the cubic lattice, so if n = m f +k, then by Eq. (3) the
algorithm estimates the numbers

u( f )
n = k! ( f −k)! C( f )

k nγ f −1 μn
2 (1 + o(1)). (13)

for f = 3 or f = 4 in the square lattice. The o(1) correc-
tion contains, in addition to analytic and confluent correction
terms, parity effects due to the lattice and the number of arms.
Our results show that the parity effects decay quickly with
increasing n.

FIG. 3. Qn(x) for square lattice 3-stars as a function log10 n for
n � nmin and for x = 0.061565 + 0.0025 m where −4 � m � 4. By
calculating the average slope or incline of these curves using linear
fits, and then interpolating to find that value x which gives a zero
average slope or incline, the optimal value of x at this given value of
nmin (denoted by ξnmin ) is determined. In this plot, nmin = 30 and the
optimal value of x is ξ30 ≈ 0.06249.

Similar arguments for 5- and 6-stars give

u( f )
n = V ( f )

k s( f )
n , (14)

where n = m f +k (excluding the extra edge between the two
central nodes), and where the symmetry factor is given by

V ( f )
k =

{� f /2
! (3 − k)! k!, if 0 � k < 3;
3! ( f − k)! (k − 3)!, if 3 � k � f −1.

(15)

1. Estimating σ f numerically for 3 � f � 6

Square lattice f -stars for 3 � f � 6 were sampled a total
of 4 × 109 started flatGARM [30] sequences along 4 parallel
threads for lengths up to 1,000 steps per branch (arm). These
simulations produced estimates of u( f )

n in Eqs. (13) and (14).
To estimate γ f −1 from our data, notice that if x = γ f −1,

then

Qn(x) = log

(
u( f )

n

μn
d nx

)
� C0 + C1n−1, (16)

where x = σ f + f σ1. By using the best estimate of μ2 in the lit-
erature (μ2 = 2.63815853032790(3) [31]), we determine that
value of x so that Qn(x) approaches a constant as n increases.

In Fig. 3 Qn(x) is plotted against log10 n for a range of
values of x. Note that if Qn(x) is a constant, then it will
present as a horizontal line in this graph, and this will give
the optimal value of x. Introduce a minimum cut-off nmin on
the length of f -stars, and determine the optimal value ξnmin for
x as described in the caption of Fig. 3. This estimate ξnmin is a
function of nmin. Plotting it gives the graph in Fig. 4 (where
parity effects quickly die down with increasing n). It only
remains to extrapolate as nmin → ∞. This is done by using
the model

ξnmin = (γ f −1) + A√
nmin

+ B

nmin
. (17)

where 250 � nmin � 400. In the case of 3-stars this gives the
estimate γ3−1 ≈ 0.06282.
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FIG. 4. The estimates of ξnmin for square lattice 3-stars as a
function of nmin. Notice that parity effects die down quickly. By
extrapolating to nmin = ∞, our best estimate of γ f −1 is obtained
(denoted by the bullet on the y-axis).

An error bar is determined by resampling the ξnmin . Each
point in Fig. 4 is dropped with probability 0.5 giving a smaller
set of estimates. Extrapolating this to determine γ f −1 using
the more general model

ξnmin = (γ f −1) + A

n1/2
min

+ B

n1
min

+ C

n3/2
min

+ D

n2
min

(18)

gives a degraded estimate of γ f −1 which is dependent on the
resampling of the ξnmin . Repeating this a large number of times
gives a distribution of estimates of γ f −1 which is dependent
on noise and systematic errors in our data sets. The variance
of this distribution is larger than the (unknown) variance in
our best estimate (since each estimate in the distribution is
obtained by discarding data). By taking the square root to
obtain a standard deviation, and then doubling the standard
deviation, an estimated error bar is obtained. The data in
Fig. 4 gives the estimate γ3−1 = 0.06282(33). Repeating this
analysis for the other f -stars gives the estimated exponents in
Table IV.

Equations (4) and (12) can now be used to determine the
vertex exponents σ f in Table I. We can also improve on these
estimates by using the exact value of σ1 instead of the estimate
in Eq. (12). This gives the estimates in Table V.

C. Estimating γG−1 for uniform trees

In this section the entropic exponents γG for uniform lattice
trees with connectivities shown in Fig. 1 are estimated. Self-
avoidance in these models induces a repulsive force between
nodes of degree larger or equal to 3 in uniform trees, and
this stretches the branches (self-avoiding walks) joining them.
This effect may be more difficult to simulate with GARM,
and motivated the use of the Wang-Landau algorithm [24]

TABLE IV. Estimates of γ f −1 in the square lattice.

γ f −1 Exact value This work

γ3−1 −0.0625 −0.06282(33)
γ4−1 −0.5 −0.4989(23)
γ5−1 −1.34375 −1.3422(13)
γ6−1 −2.46875 −2.4668(19)

TABLE V. Vertex exponents in two dimensions.

f Exact [3] This work

σ3 −0.453125 −0.45(2) −0.45281(33)
σ4 −1.1875 −1.17(4) −1.1864(23)
σ5 −2.203125 −2.14(4) −2.2016(13)
σ6 −3.5 −3.36(5) −3.4981(19)

instead. In this study we used a parallel implementation of
this algorithm.

We grew branched structures by first growing a central
uniform star, and then growing additional branches from the
endpoints of the completed arms of the central star. The im-
plementation of the Wang-Landau algorithm grows f -stars by
first fixing a central node. The f arms are grown by sampling
f edges at the endpoints of the arms and appending them to
the star. If it is self-avoiding then the state is updated and
accepted, and the density is updated. If it is not self-avoiding,
then the updated state is rejected, the current state is read
again, and the density is updated accordingly.

When the star is fully grown a new (secondary) node is
chosen uniformly at random from the f endpoints of the
lattice star. Once the secondary node is chosen the remaining
branches are grown from it analogously to the arms of the star.

Let b denote the number of total branches (including the
original star arms), each of length �, of the comb or brush
under consideration. The process of first growing a star and
then growing the remaining branches is iterated so that each
structure of uniform length n = b� is independently sampled
via the Wang-Landau algorithm for � = 1, ..., 200. For each
�, on the order of 109 configurations were sampled. The im-
plementation was done in parallel by growing uniform trees
in separate CPU threads using omp protocols. These threads
interacted to control the density update in the Wang-Landau
algorithm. As with the parallel implementation of PERM [23],
this improved the performance of the algorithm.

As in the case of the parallel GARM sampling of
stars, a symmetry factor is introduced by the algorithm.
If tn(G) is the number of uniform square lattice combs or
brushes of total length n with b arms of length � (so that
n = b�), then the algorithm returned estimates of vn(G) =
(b− f )! ( f −1)! tn(G)/(42 f −b). By Eq. (6),

vn(G) = S f ,b tn(G) = S f ,b CG nγG−1 μn
2 (1 + o(1)), (19)

where S f ,b = (b− f )!( f −1)!/(42 f −b). Estimates of γG−1 can
be made by analyzing these data.

TABLE VI. Estimates of γG−1 in the square lattice.

γG−1 Exact value This work

γC−1 −0.21875 −0.2187(22)
γB1−1 −0.78125 −0.7817(40)
γB2−1 −1.34375 −1.3426(82)
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TABLE VII. Vertex exponents from uniform trees.

σ f Exact Table V from γG−1

σ3 (via C) −0.453125 −0.45281(33) −0.4531(11)
σ4 (via B1) −1.1875 −1.1864(23) −1.1880(51)
σ4 (via B2) −1.1875 −1.1864(23) −1.1869(41)

1. Estimating γG−1 for C1, B1 and B2

We use a similar approach as for stars [see Eq. (16)] by
determining the value of x so that

Pn(x) = log

(
vn(G)

μn
2 nx

)
� C0 + C1 n−1, (20)

where x = γG−1. To account for corrections due to small
networks, a cutoff �min was introduced and trees with branches
of lengths � < �min were excluded from the analysis. Re-
peated fits for a range of values of x gave a sequence of
estimates which were interpolated to find that optimal value of
x where Pn(x) � constant. These fits were repeated for �min ∈
{2, ..., 15} and then similarly extrapolated against 1/

√
�min to

determine our best estimate of γG .
In order to determine confidence intervals on our estimates,

we resampled our data. We selected 90% of the data to esti-
mate the exponent x. This gave several data sets for each value
of �min. Each of these data sets were analyzed by dropping
randomly one half of the �min and then estimating x. Repeating
this gave a distribution of estimates. Doubling the standard
deviation of this distribution is our confidence interval. In our
particular case 90% of the data were selected 10 times and
50% of the �min were randomly discarded 100 times. This gave
a distribution of 1,000 estimates of x over which the variance
was computed. The results are shown in Table VI. The exact
values were calculated using the relations in Eq. (8).

One may instead use the results in the last column of
Table VI to determine the σ f exponents using Eq. (8). This
gives the estimates in Table VII where we used the exact value
of σ1.

The results in Tables VI and VII shows (numerically) that
the vertex exponents σ f , as related to uniform trees via Eq.
(8), are consistent. In other words, this is strong numerical
evidence that the results in Eq. (7) are correct, at least when
applied to monodisperse, acyclic, branched polymers.

III. DISCUSSION

Accurate estimates of lattice star vertex exponents σ f can
only be found if the exponent σ1 (and thus the entropic ex-
ponent γ of self-avoiding walks) is known with sufficient
accuracy. We estimated γ in Eq. (11), and this compares well
with the exact value 43/32 = 1.34375. This, together with our
numerical results for square lattice stars, show compelling ev-
idence that the exact (but not rigorously proven) values of the
vertex exponents [13,21,22] are correct. In addition, our data
on uniform trees show that the relations in Eq. (8) are satisfied
to high accuracy, providing evidence that the scaling relation
in Eq. (7) is correct as well. Overall, our results show that
the exact values of the vertex exponents and the conjectured
relations for monodispersed acyclic branched networks in
Eq. (8) are consistent.

In addition to estimating the vertex exponents, we also
analyzed our data to estimate the amplitudes C and C f

k in
Eqs. (2) and (3). The amplitude C in Eq. (2) is the amplitude
of self-avoiding walks. In the case of f -stars, C( f )

k is estimated
taking the symmetry factors in Eqs. (13) and (15) into account.
Defining U ( f ) = k! ( f −k)!C( f )

k for 3 � f � 4, and U ( f ) =
V ( f )

k C( f )
k for 5 � f � 6, our data show that asymptotically

U ( f ) is independent of the parity class (see, for example,
Fig. 4, where parity effects decrease quickly with increasing
nmin).

In order to estimate U ( f ), we used the log-ratio models

log

(
u( f )

n

cn

)
= log

(
U ( f )

C

)
+ B0 log n + C0

n
, (21)

and

log

(
u( f )

n√
c2n

)
= log

(
U ( f )

2σ1
√

C

)
+ B1 log n + C1

n
. (22)

Linear fits were done for n � nmin where nmin ∈
{10, 20, . . . , 200} and the results were extrapolated using

log

(
U ( f )

C

) ∣∣∣∣
nmin

≈ β0 + β1

nmin
+ β2

n2
min

, (23)

log

(
U ( f )

2σ1
√

C

) ∣∣∣∣
nmin

≈ δ0 + δ1

nmin
+ δ2

n2
min

. (24)

Using the estimate of σ1 in Table I, one can solve simulta-
neously for {U ( f ),C}. The amplitudes C( f )

k are then estimated
from the value of U ( f ). The results are shown in Table VIII,
where U (1) ≡ C is the self-avoiding walk amplitude. Notice
that the estimates for f = 5 and f = 6 appear to break the

TABLE VIII. Estimated lattice star amplitudes in the square lattice. The U ( j) are estimated from all our data, while the C ( f )
k are calculated

from the U ( f ) using Eqs. (14) and (15).

f U ( f ) C ( f )
0 C ( f )

1 C ( f )
2 C ( f )

3 C ( f )
4 C ( f )

5

1 1.164(23)
3 1.2617(52) 0.21028(86) 0.6309(26) 0.6309(26)
4 1.2256(78) 0.05107(33) 0.2043(13) 0.3064(20) 0.2043(13)
5 5.252(17) 0.4377(15) 1.3131(43) 0.4377(15) 1.3131(43) 0.8754(29)
6 25.190(82) 0.6997(23) 2.0992(68) 2.0992(68) 0.6997(23) 2.0992(68) 2.0992(68)
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TABLE IX. Estimates of C(G) and C in the square lattice.

Uniform tree CG C

G = C 0.404(66) 1.186(92)
G = B1 0.164(69) 1.187(98)
G = B2 0.071(28) 1.191(39)

trend set by amplitudes for f � 4. This is due to the dif-
ferent style central nodes in 5-stars and 6-stars, as shown in
Fig. 2.

The amplitudes for the lattice networks were similarly es-
timated using models like those in Eqs. (21) and (22), and
then extrapolated similarly to Eq. (24). Taking into account
the symmetry factors, the results in Table IX were obtained.
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