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Optimization of an active heat engine
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Optimization of heat engines at the microscale has applications in biological and artificial nanotechnology
and stimulates theoretical research in nonequilibrium statistical physics. Here we consider noninteracting
overdamped particles confined by an external harmonic potential, in contact with either a thermal reservoir or a
stochastic self-propulsion force (active Ornstein-Uhlenbeck model). A cyclical machine is produced by periodic
variation of the parameters of the potential and of the noise. An exact mapping between the passive and the
active model allows us to define the effective temperature Teff (t ), which is meaningful for the thermodynamic
performance of the engine. We show that Teff (t ) is different from all other known active temperatures, typically
used in static situations. The mapping allows us to optimize the active engine, regardless of the values of the
persistence time or self-propulsion velocity. In particular, through linear irreversible thermodynamics (small
amplitude of the cycle), we give an explicit formula for the optimal cycle period and phase delay (between the two
modulated parameters, stiffness and temperature) achieving maximum power with Curzon-Ahlborn efficiency.
In the quasistatic limit, the formula for Teff (t ) simplifies and coincides with a recently proposed temperature for
stochastic thermodynamics, bearing a compact expression for the maximum efficiency. A point, which has been
overlooked in recent literature, is made about the difficulty in defining efficiency without a consistent definition
of effective temperature.
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I. INTRODUCTION

In Ref. [1] Feynman envisioned a microscopic motor work-
ing at small scales, even at the single-atom level. Such a
motor would be the first step required to achieve the ability
of “manipulating and controlling things on a small scale.”
Sixty years later, Feynman’s idea has been realized in several
experiments and its theoretical implications have been deeply
analyzed [2–4].

A motor is a device that delivers mechanical work, for
instance, by pushing a weight in a given direction. Work is
obtained by converting a fraction of energy taken from reser-
voirs; such a fraction represents the motor’s efficiency. In the
microscopic world, the list of available energy reservoirs is not
substantially different from the macroscopic scale, i.e., mainly
chemical or electrochemical reservoirs or chemically induced
heat reservoirs.1 In physics of course the choice of heat reser-
voirs is the one that better stimulates theoretical research as
it involves translating principles of thermodynamics to small
scales, far from the thermodynamic limit [5]. The challenge
with microscopic heat engines is to achieve optimal control of
thermal fluctuations, which not only are involved as the energy
source and sink (as in macroscopic heat engines) but also spoil
the stability and reliability of the delivered work. Microscopic

1The macroscopic world has additional sources of energy, unfor-
tunately (for our environment) of minor importance for the moment,
such as those related to natural macroscopic flows, e.g., air and water.

work, and therefore efficiency, is in fact a highly fluctuating
quantity [6,7]. The effect (also beneficial) of fluctuations on
motor efficiency is one of the most intriguing recent discover-
ies in the field of stochastic thermodynamics [8].

A. Passive microscopic heat engine

Microscopic heat engines have been at the center of the-
oretical and experimental research in the past decade. They
have been realized with colloidal particles in optical traps,
for instance, in Stirling cycles with isochoric and isother-
mal transformations [2] and Carnot cycles with adiabatic
and isothermal transformations [4]. The realization of adia-
batic passages (which would require complete isolation of the
Brownian particle) is obtained through a protocol, proposed
first in theoretical works [9], where both the characteristic
volume and temperature of the system are changed in such a
way that the entropy of the system is conserved. Heat engines
have also been realized at the atomic scale, by manipulating
a trapped ion [10]. The exploitation, at the single-atom level,
of so-called quantum squeezed states has also been proposed
as a way to circumvent the Carnot limit in efficiency [3].
The theoretical research on small-scale engines has involved
also the possibility of designing specific cycles with optimal
power or efficiency [11]. An important challenge in this field
is going beyond the single-particle limit and achieving control
or design of systems made of a small number (e.g., 100–1000)
of particles, which can be meaningful for biophysical applica-
tions [12].
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A severe limitation against a straightforward experimen-
tal realization of a heat engine stems from the difficulty of
controlling the temperature with due precision, plagued by
the unwanted development of gradients and the presence of
long relaxation times [5]. A typical work-around is to replace
the high-temperature reservoir with a source of noise, e.g.,
an applied noisy voltage as in [2,4]. A different fascinating
possibility is to consider engines made of a different kind
of working substances which stay at an effective temperature
different (typically higher) than the environment or solvent
[13]. This can be achieved by means of active particles, i.e.,
particles which are self-propelled, for instance, bacteria or
sperms or active colloids (e.g., Janus particles) [14].

B. Active heat engines

Every active particle has its own internal motor which
induces, in the presence of a viscous solvent, a typical speed
v0. Of course v0 is unrelated to the thermal speed, that is, v0 �=√

kBT/m, where T is the temperature of the environment, kB

is the Boltzmann constant, and m is the mass of the parti-
cle. Most importantly, considering that active microswimmers
move through overdamped kinematics, their unconfined dif-
fusivity Da is typically much larger than molecular diffusivity
D, Da = τav

2
0 � D = kBT/γ , with τa the active persistence

time and γ the viscous drag of the particle [14]. This consid-
eration leads naturally to the definition of a diffusivity-based
active temperature TD = γ Da/kB � T . The equilibrium limit
τa → 0 is typically taken in such a way that TD → T , which
requires v2

0 → D/τa.
Early studies and experiments demonstrating the possibil-

ity of converting random self-propulsion into directed motion
or work have been realized in the realm of active ratchets
[15–19], which are autonomous engines. In the most recent
years several proposals of cyclical heat engines have been
done and in a few cases also experimentally realized.

In [20] an early example of a Stirling engine (two isotherms
and two isochores) was obtained, where bacteria were in-
volved as the bath and the central system was made of a
trapped colloidal particle: An external control of the sol-
vent temperature was reflected in a variation of the average
speed (activity) of the bacteria, measured through tracking the
position fluctuations of the colloidal particles. The authors
verified that isothermal transformations (compressions and
expansions) were also isoactive, i.e., activity did not depend
appreciably upon the trap stiffness. The advantage of such a
bacterial bath was to achieve a much larger range of effective
(active) temperatures than in the passive case.

The concept of an active Stirling engine was investigated in
a more recent theoretical study [21]. The authors showed that
the performances of the engine depend upon the temperature
which is kept fixed during the isothermal transformations: The
two candidates considered (here we set kB = 1) are Tvar =
k〈x2〉, as chosen in [20], related to the energy in a harmonic
potential of stiffness k, and the diffusion temperature TD de-
fined above, as proposed in [22]. At equilibrium (i.e., for
thermal particles at temperature T ) of course Tvar = TD = T .
The authors consider several different models for the bacterial
bath (including non-Gaussian effects and/or temporal correla-
tions, i.e., persistence), concluding that if Tvar is kept constant

in isothermal transformations then the equilibrium limit for
efficiency (given by the Carnot value) cannot be surpassed,
while different things may happen if TD is adopted for the
isothermal branches of the cycle.

Other authors [23] have considered a different theoretical
model where the central particle is a self-propelled parti-
cle (pushed by a random force with exponentially decaying
autocorrelation, with typical time τa, as in the active Ornstein-
Uhlenbeck particle model, discussed below) immersed in a
bath of passive particles. The authors consider both Stirling-
type engines (cyclical modulation of temperature and stiffness
at fixed τa) and engines with modulation of τa and stiffness,
at fixed temperature. Of course the second case does not
have a passive counterpart and therefore there is no direct
way to compare performances. It is important to stress that
the authors here have decided to connect the thermal bath
temperature to the self-propulsion speed, similarly to [20],
making it more difficult to disentangle their contributions.

In [24] a new heat engine was proposed where a passive
particle is trapped in a harmonic potential with time-
dependent stiffness and is put in contact with a thermal bath
in the first half of the cycle and with an active bath (time-
persistent noise) in the second half. In this paper the relevance
of Tvar as a sort of effective temperature and a general equation
for its evolution, for a broad class of choices of the driving
noise, were shown (an equation discussed in greater detail in
[25]).

In [26] a Stirling engine was considered where the central
substance is a particle that changes its nature during the cycle
itself, i.e., it is passive for three of the four steps and is an
active Ornstein-Uhlenbeck particle (AOUP) during the fourth
step, which is isothermal compression. In this paper a higher
efficiency (with respect to the passive case) was claimed when
activity is present, a fact which evidently depends upon the
chosen definition of efficiency.

In [27] the authors considered a model with many active
Brownian particles (ABPs), i.e., such that their self-propulsion
velocity has fixed magnitude and diffusing orientation. The
external potential (which also act on the propulsion’s orien-
tation) has many parameters that can be varied. The presence
of many of the potential’s parameters allows one to design
cycles without changing other properties (such as bath tem-
perature or properties of the activity). Efficiency appears to
be proportional to the extracted power and both are optimal
together.

We conclude this overview of the recent literature with
[25], where the authors proposed a general mapping from an
active heat engine to a passive heat engine. The mapping can
be made explicit when the confining potential is harmonic,
and this can be done for whatever model of self-propulsion
is proposed: Only the autocorrelation of the self-propulsion
affects the evolution of the effective temperature. The authors
gave explicit examples of their formalism using an ABP in a
harmonic trap, where a Stirling-like cycle is operated by tun-
ing the stiffness, temperature, and parameters of activity (both
speed and persistence time). The important point raised by the
authors, also relevant for the interpretation of the experiments
in [20], is that the effective temperature may change also
during the (apparently) isothermal transformations, because
it depends upon all the system’s parameters.
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TABLE I. Main definitions of effective temperatures used in the
context of active particle models (in one dimension). We recall that
γ is the viscous drag coefficient and kB the Boltzmann constant, both
set to 1 throughout the paper.

Name Definition Application

TD γ Da/kB free diffusion [14]
Tvar k〈x2〉/kB steady states [20]
Tkin m〈v2〉/kB steady states with inertia [40]

Ta(t ) γ

kB

v2
0 (t )τa

[1+τak(t )]2 dynamical UCNA [38]

TCl (t ) γ

kB

v2
0 (t )τa

1+τak(t ) Clausius relation [28,29](and limω→0 Teff (t ))
Teff (t ) see Eq. (19) heat engines [25]

C. The present paper

Here we propose a study which is complementary to that
done in [25]. We consider AOUPs which have a natural
mapping to passive systems with an active temperature Ta(t ),
which in fact depends upon the potential’s parameters, in the
low persistence limit. A recent study of entropy production for
AOUPs also revealed the existence of a Clausius relation that
connects entropy changes with an active heat flow divided by
a temperature TCl (t ) [28,29]. Our main point is that the proper
effective temperature Teff (t ), relevant for the thermodynamic
behavior of the engine, can be quite different from Ta(t ) and
TCl (t ), as well as from other temperatures such as Tvar, TD,
and Ta. Later, in Table I, we summarize some of the most used
definitions of temperatures in this context.

The knowledge of the correct effective temperature is cru-
cial to optimize the engine’s performance, for instance, of its
delivered power. As an explicit application of this concept, we
show how to achieve maximum power by tuning Teff through
the control of self-propulsion speed, a possibility which has
been experimentally realized recently with light-controlled
bacteria [17,30] and colloids [31].

Let us summarize the structure of the paper. In Sec. II we
introduce a few standard thermodynamic tools which are use-
ful for finite-size and finite-time thermodynamics (i.e., when
models are stochastic and the period of a cyclic transformation
is not infinite). In this section we briefly discuss the definition
of heat flow coming from the high-temperature thermostat,
which is important for nonactive systems and becomes even
more important for active heat engines where the tempera-
ture is not directly under control. In Sec. III we present the
passive and active models investigated in the paper, showing
the mapping that makes them equivalent from the point of
view of heat engine performances [25]. In Sec. IV we study
the periodic heat engine model with only passive particles,
particularly in the limit of linear irreversible thermodynamics,
deriving a few results which are complementary to those given
for the same model in [32]. In Sec. V we show how to transfer
the knowledge of the passive engine to optimize the active
one. In Sec. VI we summarize and provide conclusions and
perspectives for future work.

II. WORK AND HEAT FOR MICROSCOPIC (PASSIVE)
HEAT ENGINES

In the context of microscopic engines, basic thermody-
namic concepts, such as heat and work, need a definition

in terms of stochastic quantities, even if only averages are
needed. For simplicity we consider models with a single
(passive or active) particle in a solvent fluid which is vis-
cous enough to make inertia negligible. The particle therefore
obeys dynamical equations which result from some external
potential H(x, λt ), thermal fluctuations, and self-propulsion
(in the active case). An external agent can control the param-
eters λt of the potential and also the properties of the thermal
bath and the active self-propulsion; in doing so, it performs or
extracts work. In stochastic thermodynamics the definition of
the stochastic work injection rate (or injected power) is related
to the variation of the external potential [33,34], i.e.,

Ẇ =
∑

i

∂H
∂λi

λi = ∂H
∂t

. (1)

Instantaneous (stochastic) heat exchange is defined for com-
plementarity from work [35], i.e.,

Q̇ = dH

dt
− Ẇ , (2)

so the first principle is guaranteed. When the parameters λt are
tuned according to a cyclical protocol, i.e., λt+tcycle = λt with
tcycle the machine period, most of the models and the initial
conditions lead to a limit cycle where averages are periodic
with the same period tcycle. It is then meaningful to consider
the average work integrated in a period

Wp =
∫ t0+tcycle

t0

dt〈Ẇ 〉, (3)

where t0 is a time large enough to consider the system in
the limit cycle. We recall that, in our notation, Wp must be
negative to have a working machine.

A. Adsorbed heat

For the purpose of computing the engine’s efficiency, it is
crucial to define a measure of energy consumption through
heat

Qh =
∫ t0+tcycle

t0

dtwads(t )〈Q̇〉, (4)

where wads(t ) ∈ [0, 1] is a (periodic) weighting function that
discriminates how much heat is to be considered as energy
gain, while the remaining fraction 1 − wads(t ) is to be consid-
ered as dissipation. We believe that a good choice (and a good
understanding) of wads(t ), even in the framework of passive,
not active, particles, deserves a brief discussion, since it seems
that there is not unanimous agreement about it in the literature,
even in recent works. In Carnot’s original heat engine, there
are two well-defined thermostats, i.e., one at high temperature
Th and one at low temperature Tc, with adiabatic connections;
then heat is only adsorbed when in contact with Th and is only
released when at Tc. This means that one can safely set

wads(t ) = �(〈Q̇〉(t )), (5)

where � is the Heaviside Theta function [4,36]. However,
in more general cases, the definition (5) has drawbacks. For
instance, the Stirling engine, even in the quasistatic limit,
exchanges heat during the isochoric branches of the cycle,
when in contact with intermediate values Tc < T (t ) < Th: If
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Eq. (5) is adopted, then Qh receives a contribution also from
one of the isochores and the quasistatic efficiency is in gen-
eral smaller than the Carnot one [2,21]. Such a definition is
also problematic from the conceptual point of view, since Qh

should be related to heat flowing from a thermostat to a differ-
ent one. However, Eq. (5) gives Qh > 0 also when there is a
single thermostat, i.e., when Qh comes from the same thermo-
stat which, considering the whole transformation, dissipates
heat. This happens in several examples with a time-dependent
Hamiltonian (periodically modulated potential energy) at a
constant temperature. Notwithstanding these drawbacks, the
definition (5) is frequently adopted [2,20,21,23].2

An alternative recipe was offered in [12,32], adopted by us
in the present study,

wads(t ) = β(t ) − βc

βh − βc
, (6)

where β(t ) = 1/T (t ) and βc(h) = 1/Tc(h). This definition
weighs more heat (whatever its sign) coming from higher
temperature. Equation (6) is justified by splitting the entropy
production into two contributions that depend upon two dif-
ferent thermodynamic forces, one related to the variation of
potential energy (which generates work) and one related to
the variation of temperature (which generates a heat flux Qh

going through the system from high to low temperature) [32].
Such a recipe also guarantees that in the quasistatic limit the
Carnot efficiency ηc = 1 − Tc/Th is always reached, including
the Stirling engine.3 Once work and adsorbed heat are defined,
one can define the average power

P = Wp

tcycle
(7)

and the average efficiency

η = −Wp

Qh
. (8)

B. Active-passive equivalence

A fundamental observation can be made for harmonic po-
tentials, i.e., when

H(t ) = 1
2 k(t )x2(t ). (9)

For such a choice, the average work (and average total heat,
which is the opposite of average work, in a period) is known

2A different definition for Qh has been proposed recently in the
context of active engines coupled with both a steady active bath and
a steady thermal bath, which are of course at different temperatures
[37]. In that case a cyclical engine can be obtained by tuning in time
two parameters of the external potential and the proposed definition
of adsorbed heat is all the heat exchanged with the active bath, which
is positive on average.

3With this definition, the entropies produced in a period due
to work and heat flux are equal to Sprod,W = βcWp and Sprod,h =
Qh(βc − βh ), respectively [32], so that η = −Wp/Qh = Sprod,W (βh −
βc )/(Sprod,hβc ). In the quasistatic limit Sprod,W /Sprod,h = −1, which
leads to the Carnot efficiency η = 1 − βh/βc = ηc.

through the knowledge of σ (t ) = 〈x2〉 and k(t ) only [25]:

Wp =
∫ t0+tcycle

t0

dt
1

2
k̇(t )σ (t ). (10)

The same holds true for the instantaneous total heat 〈Q̇〉; see
Eq. (2) as well for its integral over a period. On the contrary
and at variance with what was concluded in [25], adsorbed
heat

Qh =
∫ t0+tcycle

t0

dtwads(t )
1

2
k(t )σ̇ (t ) (11)

in general does not depend only upon σ (t ) and k(t ), since the
definition of wads(t ) could depend upon other parameters; for
instance, in the definition adopted by us, Eq. (6), it depends
upon T (t ).

III. PARTICLE MODELS

In this section we discuss the model of active (and passive)
particles and the adopted cycle for the heat engine we want to
study. We stick to a harmonic potential with time-dependent
stiffness and we adopt the AOUP model for self-propulsion.

A. Passive model

As a reference, we consider first an overdamped passive
particle with time-dependent diffusivity D(t ) = kBT (t )

γ
. We

choose units such that the viscous drag γ and the Boltzmann
constant kB are both set to 1. The model then reads

dx(t ) = −k(t )x(t )dt +
√

2T (t )dw(t ), (12)

where x(t ) is particle’s position at time t , k(t ) is the time-
dependent harmonic stiffness, and dw(t ) is the infinitesimal
increment of the Wiener process. The model has been studied
in detail in [11]. The model has a Gaussian propagator and
in the absence of drifts and initial displacements its dynamics
is fully described by the variance of the position σ (t ), which
obeys

σ̇ (t ) = −2k(t )σ (t ) + 2T (t ). (13)

In the quasistatic limit of tcycle → ∞, one can change the time
variable in Eq. (13), defining s = t

tcycle
(so that in s the period

is 1) and obtaining

−2k(s)σ (s) + 2T (s) = O(1/tcycle ), (14)

which of course in the limit tcycle → ∞ gives σ (t ) = T (t )
k(t ) .

B. AOUP active model

The AOUP model is considered a good description of a
colloid in a bath of swimmers such as bacteria [38]. This
model has some properties in common with the ABP model,
for instance, the exponentially decaying time correlation of
the Cartesian components of the self-propulsion force (but the
ABP model has non-Gaussian fluctuations and therefore it is
more complicated to get analytical results). The AOUP model
has the advantage of being more accessible to calculations;
in particular, it has a very well studied approximation in the
passive limit (discussed below), where, in the case of constant
parameters, it is mapped into a passive model. We will see,
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however, how this mapping is not the proper one to understand
the performance of this model as a heat engine.

We consider noninteracting AOUPs (in one dimension) in
the hypothesis of large viscosity, that is, inertia is neglected
and the dynamics is overdamped. We also neglect the ther-
mal noise (which has a small effect with respect to activity),
writing

dx(t ) = [−k(t )x(t ) + fa(t )]dt,

dfa(t ) = − 1

τa
fa(t )dt + 2Da

1/2

τa
dw(t ). (15)

The role of self-propulsion is played by fa(t ), which is a
colored noise with exponentially decaying time correlation
(with t � s)

〈 fa(t ) fa(s)〉 = Da

τa
e−(t−s)/τa , (16)

modeling a force which remains persistent for a time of order
τa. The self-propulsion model has two parameters: the persis-
tence time τa and the active diffusivity Da. In the absence of
external potential and if Da is constant, at large times t � τa,
the particle displays normal diffusivity with coefficient Da.
From it one can define the average self-propulsion speed
v0(t ) = √

Da(t )/τa. The passive model is recovered taking
τa → 0 and v0(t ) → ∞ with Da → D. The more general case
we consider is a time-dependent Da(t ) or v0(t ), a situation
which has been demonstrated experimentally, for instance, in
[17].

The model in Eqs. (15), being the external potential har-
monic, is again a Markovian diffusive model with Gaussian
propagator in two variables [39]. Again, in the absence of
drifts and initial displacements, the dynamics is fully de-
scribed by the entries of the covariance matrix that obey the
following system of coupled equations:

d〈 f 2
a 〉

dt
= − 2

τa

〈
f 2
a

〉 + 2v2
0

τa
, (17a)

d〈x fa〉
dt

= 〈
f 2
a

〉 − 1 + τak

τa
〈x fa〉, (17b)

d〈x2〉
dt

= σ̇ = −2k〈x2〉 + 2〈x fa〉. (17c)

The latter is equivalent to Eq. (15) of [25] and for a direct
comparison with Eq. (13) defines the effective temperature

Teff (t ) = 〈x fa〉(t ), (18)

which is the temperature of the passive system which gives
the same σ (t ) and therefore the same delivered work or
power. Remarkably, this expression of Teff is directly pro-
portional to the kinetic temperature Tkin = m〈v2〉/d (where
d is the dimensionality) recently calculated in a static
harmonic potential for an inertial AOUP model [40]. In-
terestingly, it is also proportional to the so-called swim
pressure [41,42].

In the present case, Teff (t ) obeys quite a simple differential
equation [from combining Eqs. (17a) and (17b)]

T̈eff +
(

3 + τak(t )

τa

)
Ṫeff

+
[

k̇(t ) + 2
1 + τak(t )

τ 2
a

]
Teff (t ) − 2

v2
0 (t )

τa
= 0, (19)

which represents a central result of this paper. In the passive
limit τa → 0 with τav

2
0 (t ) → Da(t ) Eq. (19) gives the correct

expectation Teff (t ) → TD(t ). However, already at first order in
τa, one has Teff (t ) �= TD.

When the parameters are constant or vary very slowly (ω =
2π/tcycle → 0 as in Eq. (14)), the system reaches a (steady or
quasistatic) state where

〈
f 2
a

〉
(t ) = v2

0 (t ), (20a)

〈x fa〉(t ) = Teff (t ) = v2
0 (t )τa

1 + τak(t )
, (20b)

〈x2〉(t ) = σ (t ) = v2
0 (t )τa

k(t )[1 + τak(t )]
= Teff (t )

k(t )
. (20c)

It is useful to stress that, even in the quasistatic limit (very
slow transformations), Teff (t ) �= TD(t ) if τa > 0, i.e., if the
system is active. In other terms, even with very slow trans-
formations, an active system has a different thermodynamics
with respect to a passive one. Interestingly, in the recent
literature a temperature equal to Teff in the quasistatic limit,

TCl = v2
0τa

1+τak , has shown to bear thermodynamic properties, as
it underlies a Clausius relation for the entropy change of active
particles [28,29].

We conclude this section by summarizing the meaning of
the dynamical effective temperature introduced here, Teff (t ):
It is the temperature which, replacing T (t ) in the passive
model (12), gives the same evolution of σ (t ) in the presence
of the same protocol k(t ), which guarantees that work, heat,
and power are exactly the same. We also remark that the
equation governing Teff (t ) [Eq. (19)] is valid for this partic-
ular case where the external potential is harmonic and the
self-propulsion is of the Ornstein-Uhlenbeck type, so the full
system is linear. For other models of self-propulsion, effective
temperatures can be more difficult to compute but, provided
the potential is harmonic, a definition for the purpose of
engine thermodynamics exists and always takes the implicit
form (18), as discussed in [25]. Generalization to nonhar-
monic potentials is under investigation. For purposes different
from engine thermodynamics, nevertheless, the concept of
effective temperature can be more elusive (see, for instance,
[13,43]).

C. Approximation for small persistence

It is easy to show [38] that the model in (15) can be
mapped, without any approximation to a Klein-Kramers
model with an effective mass τa, a harmonic force with an
effective stiffness k̇ + k

τa
, and a viscous bath with effective
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drag coefficient 1 + τak(t ),

dx = vdt,

dv = −�(t )

τa
vdt −

(
k̇ + k

τa

)
xdt +

√
2v2

0 (t )

τa
dw,

(21)

with

�(t ) = 1 + τa∂
2
x H = 1 + τak(t ). (22)

Again, the model has a Gaussian propagator and its dynamics
is described by the coefficient of the covariance matrix

d〈v2〉
dt

= −2�(t )

τa
〈v2〉 + 2

τak̇ + k

τa
〈xv〉 + 2v2

0

τa
,

d〈xv〉
dt

= 〈v2〉 + �(t )

τa
〈xv〉 − τak̇ + k

τa
〈x2〉,

d〈x2〉
dt

= 2〈xv〉,

(23)

whose steady (or quasistatic) state reads

〈v2〉(t ) = v2
0 (t )

�(t )
= TCl (t )

τa
,

〈xv〉 = 0,

〈x2〉(t ) = v2
0 (t )τa

k(t )�(t )
= TCl (t )

k(t )
.

(24)

In the limit of τa → 0, the model in Eqs. (21) can be
approximated by a heuristic procedure, equivalent to over-
damping, where inertia (i.e., dv) is neglected. This procedure
generalizes to the case of time-dependent parameters the
so-called unified colored noise approximation (UCNA) ex-
pansion [44,45] and (for the case of a harmonic potential)
gives

dx = −τak̇ + k

1 + τak
xdt +

√
2v2

0τa

(1 + τak)2
dw. (25)

For simplicity, in the rest of the paper we call this model the
dynamical UCNA. We notice that it is equivalent to the pas-
sive model (12) and therefore has variance satisfying Eq. (13),
with k(t ) and T (t ) replaced by

ka(t ) = τak̇(t ) + k(t )

1 + τak(t )
, (26a)

Ta(t ) = v2
0 (t )τa

[1 + τak(t )]2
. (26b)

We highlight that Ta(t ) �= Teff (t ), even at first order in τa.
Of course in the passive limit (τa → 0 and v2

0 (t )τa → Da(t ))
both temperatures Ta(t ) and Teff (t ) go to TD(t ).

In the steady or quasistatic regime (constant or very slowly
varying k(t ) and v0(t )), Ta(t ) and Teff (t ) are still different,
even at first order in τa:

Teff (t ) ≈ τav
2
0

[
1 − k(t )τa + O

(
τ 2

a

)]
, (27a)

Ta(t ) ≈ τav
2
0

[
1 − 2k(t )τa + O

(
τ 2

a

)]
. (27b)

TABLE II. Three important physical limits which can be consid-
ered when discussing an active heat engine (the definition of cycle
amplitudes εk , εT , and ε are given in Sec. IV A).

Limit Definition

passive τa → 0, v0 → ∞, τav
2
0 → Da

quasistatic tcycle → ∞ (ω → 0)
linear cycle amplitude ε, εk, εT → 0

However, σ (t ) = Ta(t )/ka(t ) coincides with that in
Eq. (20c). For small τa, it takes the form

σ = v2
0τa

k
(1 − τak) + O

(
τ 3

a

)
. (28)

It is important to understand that the passive problem with
parameters ka(t ) and Ta(t ) is not thermodynamically equiv-
alent to our original active problem, since the work (and
therefore power) of the original problem must be evaluated
against the original stiffness k(t ) and not against ka(t ). There-
fore, the analogy appearing in Eq. (25) cannot be immediately
used for optimization purposes. In Table I we summarize the
main definitions of the temperatures used in this paper. We
also summarize, in Table II, the important physical limits
which can be considered when discussing active heat engines.

D. Possible strategies for optimizing the active heat engine

We have shown that the active engine with the parameters
τa, k(t ), and v0(t ) is equivalent, for the purpose of both the
evolution of σ (t ) and the computation of work, to a passive
engine model defined in Eq. (12) with the parameters k(t )
and Teff (t ) obeying Eq. (19). Such an equivalence allows us
to transfer results from the study of the passive model to the
active heat engine.

Note that the passive model has maximum efficiency [using
for wads(t ) the definition of [32], that is, Eq. (6)] given by the
Carnot efficiency in the quasistatic limit

η � ηc = 1 − Tmin

Tmax
, (29)

where Tmin and Tmax are the minimum and maximum of
T (t ), respectively. In the active case this limit holds for the
equivalent efficiency, but one must take Tmin and Tmax as the
minimum and maximum of Teff (t ) given by Eq. (19). The
efficiency of an active heat engine, however, is not a univocal
concept. It depends, through Eq. (8), upon the definition of
Qh, which is already ambivalent for passive particles (see the
discussion at the end of Sec. II) and is even more ambivalent
for active ones, since it could rely on the adopted choice of
effective temperature. Our point of view is that the choice
of Teff for reference temperature, together with the choice
illustrated in [32] for Qh (which is using Eq. (6), detailed in
Sec. IV B), guarantees that η reaches the Carnot efficiency in
the quasistatic limit, for any choice of the other parameters
(including activity). Therefore, it is a meaningful figure of
merit, in the sense that it makes clear how far the machine
is from the maximum deliverable power. Of course a more
severe measure of efficiency could be considered, where Qh

includes the energy spent to feed the active particles, but this
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is of course beyond the scope of the present paper (see the
discussion in [25]).

IV. DISCUSSION OF THE PASSIVE HEAT ENGINE

The optimization of the passive model was first studied in
[11], where specific Carnot-like protocols (two isothermal and
two adiabatic) were considered and optimization was done
towards the maximum power at fixed minimum and maximum
σ . A study of the same model within the framework of linear
irreversible thermodynamics [46,47] was presented in [32]. In
that study the Onsager coefficient relative to the passive model
for cyclical protocols k(t ) and T (t ) (undergoing small varia-
tions) was given, with a formula for the efficiency and power
as a function of the parameters of the model. Optimization is
done by fixing the efficiency and the temperature protocol and
looking for the optimal stiffness protocol producing maximum
power. In this section we consider a class of harmonic pro-
tocols with phase shift (between stiffness and temperature),
investigating the more common question of the efficiency at
maximum power with, in this protocol class, results equivalent
to the Curzon-Ahlborn formula [48].

In this paper we consider k(t ) and T (t ) to be periodic func-
tions with period tcycle corresponding to an angular frequency
ω = 2π/tcycle. The maximum variations of k(t ) and T (t ) are
proportional to εk and εT , respectively. In some situations we
consider εk ∝ εT ∝ ε.

Equation (13) has a formal solution

σ (t ) =
[∫ t

0
eK (t ′ )2T (t ′)dt ′ + σ (0)

]
e−K (t ), (30)

where K̇ (t ) = 2k(t ). In general, whatever the initial variance
σ (0), given the periodic protocols described above, we ob-
serve a relaxation of Eq. (30) towards a limit cycle. We assume
that this relaxation is achieved within a time t0 (typically a few
periods are sufficient). The power and efficiency of the model
are computed through integration of Eqs. (10) and (11) with
σ (t ) given by the solution in (30). This task can be nontriv-
ially processed analytically, even for simple protocols such
as sinusoidal functions. We resort to numerical integration
of differential equations4 for σ (t ), Wp, and Qh and, to get
analytical formula, to the linear response regime, i.e., when
the amplitudes of variations of k(t ) and T (t ) are small.

A. Qualitative picture of cycle thermodynamics

To get a first qualitative picture it is useful to set the
protocols equal to simple sinusoidal functions (with the same
relative amplitude)

k(t ) = k0 + εk sin ωt, (31)

T (t ) = Tc + εT
1 − cos ωt

2
. (32)

The protocol is illustrated in Fig. 1. The stiffness and temper-
ature variations are out of phase by a fourth of a period: The

4Our numerical scheme is a classical fourth-order Runge-Kutta
integrator with time step dt = 10−3 for the passive system and dt =
10−4 for the active one.

FIG. 1. Sketch of the stiffness and temperature protocols used in
Sec. IV A. In Sec. IV B we consider a phase shift (denoted by φ)
with respect to the case shown in the figure, for T (t ), which can be
adjusted to optimize the delivered power. In this plot we have chosen
Tc = k0 = 1 and εk = εT = 0.1.

temperature maximum is synchronized with the instant where
the expansion (decreasing stiffness) is fastest. This choice
is inspired by the classical idealized Stirling engine. In the
discussion of the linear response regime below we show that
this choice is not optimal (i.e., a slightly different lag between
temperature and stiffness can be found to increase delivered
power), a fact rarely discussed.

In Fig. 2 we summarize the behavior of the passive heat
engine with the protocol given by Eq. (31). Figure 2(a) shows
the total work per cycle Wp as a function of ω for εk = 0.1
(with k0 = 1 and Tc = 1). The blue curve is for εT = 0, i.e.,
when the temperature does not change during the cycle (it is
constant at T = Tc); the work in a period is never negative,
a fact which is consistent with expectation from thermody-
namics, i.e., there is no way to extract work from a single
thermostat. Moreover, in the quasistatic limit ω → 0 one has
σ (t ) = T/k(t ) at each time. In this limit one gets Wp = 0
because the curve in the k-σ plane goes back and forth along
the same route and the enclosed area is empty. As soon as
a temperature variation is introduced, as shown by the yellow
curve computed for εT = 0.1, the work may become negative,
i.e., there can be a positive power output so that the system
behaves as a heat engine. This occurs at small frequencies
(including the limit ω → 0), while at high frequency the work
returns to being positive and the machine stops acting as an
engine. In Figs. 2(b) and 2(c) we show what happens in the
k-σ plane. It is seen directly from Eq. (10) that a negative
(produced) work occurs when the limit cycle in that plane is
swept in the counterclockwise direction, as it is observed for
low frequencies [Fig. 2(b)] and opposite to high frequencies
[Fig. 2(c)].

The facts observed above can be understood analytically
in the small perturbation limit, computing an approximate ex-
pression for σ (t ), even before going to the full linear response
treatment discussed in the next section. For this purpose we
consider two simplified situations: (i) a situation where only
the stiffness is perturbed so that εk = k0ε and εT = 0 and (ii)
a situation where we assume that the two perturbations (stiff-
ness and temperature) are similar; more precisely, we set εk =
k0ε and εT = εTc. In both cases we set σ (t ) = σ0(t ) + εσ1(t )
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FIG. 2. Study of the passive engine. (a) Work per cycle Wp in the
cases at εT = 0.1 [blue curve, constant T (t ) = Tc] and at εT = 0.1
(yellow curve, variable temperature). Also shown is the Clapeyron
plane and the different senses of rotation for two different frequencies
of the engine cycle: (b) ω = 0.2 and (c) ω = 2. In all plots the
parameters are k0 = 1, εk = 0.1, and Tc = 1.

and then replace it in the expanded Eq. (13), equating equal
powers in ε, concluding by dropping terms with powers of ε

larger than 1.
In the first situation (εk = k0ε and εT = 0) we get

σ

σs
= 1 + ε

2k0

ω2 + 4k2
0

[−2k0 sin(ωt ) + ω cos(ωt )], (33)

where we have defined the static variance σs = Tc/k0 (the
formula given here is valid if 0 < σs < ∞). Power adsorbed
in this case reads

P = ε2k0Tc
ω2

2
(
4k2

0 + ω2
) , (34)

which is always non-negative, meaning that with εT = 0 this
machine cannot do useful work, but only adsorb it.

In the second situation (εk = k0ε and εT = εTc) instead we
get

σ

σs
= 1 + ε

{
1

2
+ k0

2(ω − k0) cos(ωt )−(4k0 + ω) sin(ωt )

ω2 + 4k2
0

}
.

(35)

Integration of Eq. (10) with the latter approximated expression
of σ (t ) gives, for the average power,

P = ω

2
k0Tcε

2 ω − k0

ω2 + 4k2
0

. (36)

Such a formula is consistent with the observation of a criti-
cal frequency separating a regime (at low frequency) where
the model produces work, i.e., P < 0, and a regime (at high
frequency) where it adsorbs work, i.e., P > 0; in this small-ε
limit the critical frequency is ω∗ = k0. Efficiency is more
complicated to get, since it requires integrating the heat on
the heat-adsorbing part of the cycle. In the next section we
calculate the heat and efficiency, again in the linear regime,
following a more powerful approach, i.e., recalling the study
of Onsager coefficients done in [32] and discussing the pos-
sible optimization strategies for the passive engine with the
chosen protocols.

B. Linear irreversible thermodynamics

In order to exploit general results obtained in [32], we
consider here the choices of the parameter time dependence

k(t ) = k0 + εkγw(t ), (37a)

T (t ) = TcTh

Th − εT γq(t )
≈ Tc + εT γq(t ), (37b)

with the cold temperature Tc, the hot temperature Th = Tc +
εT , and γw(t ) and γq(t ) two adimensional periodic functions
with period tcycle oscillating the first between +1 and −1 and
the second between 0 and 1. The new temperature protocols
then oscillate with the same period between Tc and Tc + εT .
With such a protocol one may easily see that the weight-
ing function for adsorbed heat, needed in Eq. (4), according
to the recipe in Eq. (6), is wads(t ) = γq(t ). Here we adopt
the choice γw(t ) = sin ωt and γq = 1

2 (1 − cos ωt + φ). With
such a choice for small ε, the protocol for φ = 0 is identical to
the protocol discussed in the preceding section. The advantage
of the form (37b) is the possibility of inheriting all the results
presented in [32] where the linear thermodynamics study of
the same model was discussed broadly.

Linear thermodynamics [47] is a framework where there
are thermodynamic fluxes Jw and Jq, proportional to the power
and rate of adsorbed heat, respectively, and conjugate thermo-
dynamic forces Fw and Fq, proportional to maximal variations
of stiffness and temperature (εk and εT ), respectively. More
precisely, one sets

Jw = P

TcFw

, (38)

Jq = Qh

tcycle
, (39)
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Fw = 2
εk

k0
, (40)

Fq = 1

Tc
− 1

Tc + εT
≈ εT

T 2
c

(41)

for the fluxes and the forces, respectively. We stress that, in our
definitions, work and power are positive when adsorbed, so Jw

has the same sign as P, which is different from the definition in
[32]. When forces are small Fw � 1 and Fq � 1 it is possible
to write linear relations between fluxes and forces, through the
introduction of so-called Onsager coefficients Lαβ , with α and
β indices that take the value w or q:

Jw = LwwFw + LwqFq + O(F 2), (42)

Jq = LqwFw + LqqFq + O(F 2). (43)

This immediately gives expressions for power, heat, and effi-
ciency:

P = TcFw(LwwFw + LwqFq), (44)

Qh

tcycle
= LqwFw + LqqFq, (45)

η = −TcFw(LwwFw + LwqFq)

LqwFw + LqqFq
(46)

(recall that the machine does useful work when P < 0 and
η > 0).

The coefficients are given by Eqs. (72) of [32], which we
rewrite with our notation:

Lαβ = −2T 2
c ξαξβ

tcycle

∫ tcycle

0
dt[γ̇α (t )γβ (t ) − γ̇α (t )�αβ (t )],

(47)

�αβ (t ) =
∫ ∞

0
dτ γ̇β (t − τ )e−2k0τ , (48)

ξw = 1

4Tc
, ξq = −1

2
. (49)

For the present case (i.e., chosen harmonic potential and cho-
sen temporal protocols), direct calculations give

Lww(k0, ω) = k0ω
2

8
(
4k2

0 + ω2
) , (50a)

Lqq(k0, ω) = k0ω
2T 2

c

8
(
4k2

0 + ω2
) , (50b)

Lwq(k0, Tc, ω, φ) = −k0ωTc[2k0 cos(φ) + ω sin(φ)]

8
(
4k2

0 + ω2
) ,(50c)

Lqw(k0, Tc, ω, φ) = −Lwq(k0, Tc, ω,−φ). (50d)

The positivity of Lww confirms that, in the absence of tem-
perature variation, the work is always positive, i.e., it is always
adsorbed. The relation between the off-diagonal coefficients
Lwq and Lqw is consistent with reciprocity, which is expected
from the assumption of the underlying time-reversible dynam-
ics (when in the absence of thermodynamic forces), which
here takes the form Lwq[k(t ), T (t )] = Lqw[k(−t ), T (−t )]
[32].

From the expressions (50) one gets the expressions for
power, heat, and efficiency as functions of the model’s param-
eters

P = ωεk

4k0

2εkωTc − εT k0 f+(φ, k0, ω)

4k2
0 + ω2

. (51a)

Qh

tcycle
= ω

8

εT k0ω + 2εkTc f−(φ, k0, ω)

4k2
0 + ω2

, (51b)

η = 2
εk

k0

−2 εk
k0

ω + εT
Tc

f+(φ, k0, ω)
εT
Tc

ω + 2 εk
k0

f−(φ, k0, ω)
, (51c)

where we have introduced the two phase-dependent fre-
quencies f±(φ, k0, ω) = 2k0 cos(φ) ± ω sin(φ). Note that the
efficiency is always lower than the Carnot efficiency, which is
reached when ω → 0:

η(ω > 0) � η(ω = 0) = εT

Tc
≈ 1 − Tc

Th
= ηc. (52)

Power is negative (i.e., the machine produces work) only in a
range of (non-negative) frequencies, at given φ, defined by

ω

k0
< r(φ) = ηc

2 cos φ

2 εk
k0

− ηc sin φ
, (53)

which implies that valid frequencies can be found only for
ranges of φ such that r(φ) � 0 (such ranges depend upon ηc

and εk/k0).
In formula (51a) we find interesting the role of φ, which

seems to be overlooked in the literature. At constant ω one can
get relevant improvement in power or efficiency by tuning φ:
It is sufficient to consider, for instance, that at φ = 0 the range
of working frequencies is ω < k0ηc

k0
εk

, but in general such a
range extends to higher frequencies when φ is increased.

In conclusion, we also report the expressions for power
and efficiencies for the case of proportional thermodynamic
forces, i.e., εT /Tc = εk/k0 = ε:

P = ωε2k0Tc

4

2ω − f+(φ, k0, ω)

4k2
0 + ω2

, (54a)

η = 2ε
−2ω + f+(φ, k0, ω)

ω + 2 f−(φ, k0, ω)
. (54b)

We note that the power for φ = 0 has the same expression
as in (36).

C. Optimization of power

In Fig. 3 we show the surface −P as a function of ω and
φ, with given k0 = Tc = 1 and εT = εk = 0.1. As a general
feature, the surface has a positive part in the low-ω and low-
|φ| region.

Now we find the optimal phase and frequency to get the
maximum delivered power −P at given εT , εk , k0, and Tc.
This maximum is obtained by imposing the simultaneous
conditions ∂φP = 0 and ∂ωP = 0 and excluding solutions with
ω � 0. The result of the procedure is the following formula
for the optimal values ω∗ and φ∗ and the corresponding values
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FIG. 3. Delivered power −P as a function of ω and φ, with k0 =
Tc = 1 and εT = εk = 0.1.

of power and efficiency:

ω∗ = 2k0
εT k0√

(4εkTc)2 − (εT k0)2
, (55a)

φ∗ = arctan
ω∗

2k0
, (55b)

−P(φ∗, ω∗) = k0ε
2
T

32Tc
, (55c)

η(φ∗, ω∗) = εT

2Tc
≈ 1 −

√
Tc

Th
. (55d)

Several comments are in order after looking at those for-
mula. First of all, we notice that the optimal frequency exists
only if εT /Tc < 4εk/k0. Second, we confirm the interest-
ing role of φ which must be tuned consistently to achieve
maximum power. Finally, we underline that the efficiency at
maximum power is given by the Curzon-Ahlborn formula
(approximated for small εT ) [48].

V. ACTIVE HEAT ENGINE

In this section we analyze how the previous results ob-
tained for the passive engine model can be exploited to get
an optimal active heat engine. In Sec. V A, for the purpose of
a knowledge of all possibilities, we discuss what can be done
using the dynamical UCNA (small τa) elaborated in Sec. III C
(and frequently used in the literature for problems with con-
stant parameters). Such an approximation is useful to get an
initial idea of when an active machine can do useful work;
however, it is not obvious how it can be optimized. In contrast,
in Sec. V B we discuss the result of the exact equivalence
between the active model and a passive one, with temperature
obeying Eq. (19), exploiting the optimization strategies of the
passive model.

A. Small-τa limit and the role of active temperature in the
dynamical UCNA

As discussed in Sec. III C, the dynamical UCNA obtained
in a weak active regime (τa → 0) constitutes an alternative
mapping of an active AOUP system into a passive one, with
active stiffness ka(t ) and temperature Ta(t ) given by Eqs. (26).
The fact that in the dynamical UCNA the active temperature
is spontaneously time dependent even when the characteristic

energy v2
0 , dictated by the active speed, is constant leads us

to argue that it is in principle possible that a thermic machine
is at work by modulating in time k(t ) only; this would be a
remarkable results, in view of the fact that for passive particles
it is forbidden (see Sec. IV A) and that it would be a great
advantage for experiments, where modulating v0 in time can
be complicated.

To test this hypothesis we plug our simple protocol k(t )
[Eq. (31)] in the equation for the variance, obtaining Ta(t ).
Then, similarly to what we did with the passive heat engine,
we look for a formal solution of σ (t ) [by replacing k with ka

and T with Ta in the expression (30)]. Given the difficulty in
writing this form explicitly, we move as usual to the linear
response regime and to a numerical approach.

The numerical integration betrays our expectations show-
ing that work in a cycle is positive at any frequency ω

[Fig. 4(a)]. This is furthermore verified by the small pertur-
bation in ε. We proceed as in Sec. IV A, expanding σ (t ) =
σ0(t ) + εσ1(t ) and computing an approximate expression for
ka and Ta to be inserted in (13),

ka = k0

�0
+ ε

k0

�2
0

(�0ωτa cos ωt + sin ωt ), (56a)

Ta = v2
0τa

�2
0

[
1 − ε

2τak0

�0
sin ωt

]
, (56b)

where we have used �0 = 1 + τak0.
The related work Wp = ε2(v2

0τa) k0
2�0

ω2

4k2
0+(�0ω)2 is positive

and does not cross 0 for any frequency value ω > 0. Note that
in the passive limit we recover the expression for the power
(34).

The fact that the pure modulation of k(t ), i.e., keeping v0

constant, does not produce a working machine in the small-τa

limit can be understood on a more general ground, i.e., inde-
pendently of the small-ε limit and of the choice of the protocol
k(t ). In fact, following the qualitative discussion given in
Sec. IV, we suggest that the form of Ta(t ) with v0 constant
does not meet the requirement of a working Stirling engine:
The expansions (k̇a < 0) are not in phase with the maximum
temperature Ta (see Fig. 4(b) for an example). Given the
positivity of k, it is straightforward to see that the following
constraints are never satisfied at the same time:

Ṫa = 0, T̈a > 0,

k̇a < 0.
(57)

The presence of a lag between stiffness and temperature, such
that the temperature maximum is in the expansion phase of the
confining potential, is decisive in the realization of a working
engine, similarly to the passive case. We need to let v0(t ) vary
in time in order to force Ta(t ) to take the required form.

For small τa note that ka → k and Ta → TD = v2
0τa, so

it is natural to propose a v0 which resembles the passive
temperature in (31). We take

v2
0 (t ) = u2 + εu

1 − cos ωt

2
. (58)

This intuition is qualitatively right: The active AOUP model
with a time-dependent typical velocity is able to produce
work, as we can see in Fig. 4(c). Along with the numeri-
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FIG. 4. Study of thermodynamics for the AOUP model at small
τa. (a) Work per cycle Wp as a function of ω in the case of constant
self-propulsion speed v0; no work is produced for τa = 0.01 (higher
curve) and −0.1 (lower curve). (b) Active stiffness and temperature
(in the case with τa = 0.1 and ω = 1) when v2

0τa = 1 is constant; the
maxima of Ta(t ) are always in phase with the minima of ka(t ), failing
to meet a working machine condition. (c) Work Wp and adsorbed
heat Qh per cycle when v0(t ) is time dependent. (d) Active stiffness
and temperature (with τa = 0.2 and ω = 1) in the time-dependent
v0(t ) case. The time modulation of v0 in (c) and (d) occurs with the
parameters τau2 = 1 and εu = 0.1u2. In all plots k0 = 1 and εk = 0.1.

FIG. 5. Efficiency rescaled by the Carnot efficiency in the pas-
sive limit ηc = εu/u2 = 0.1 in the small-τa AOUP model when v0(t )
follows the protocol in Eq. (58), inspired by the dynamical UCNA.
The efficiency decreases with activity. The parameters are ω = 0.1,
εk = 0.1, k0 = 1, u2 = 1/τa, and εu = 0.1u2.

cal result, it is possible to repeat our linearization strategy
for σ (t ) and show that the power, obtained with the correct
approximation for Ta, is P = ε2(v2

0τa) k0
2�0

ω(ω−k0 )
4k2

0+(�0ω)2 . We note
a regime change for ω = k0 and the agreement with the ex-
pression (36) in the passive limit. In order to evaluate the
efficiency of this working machine, in particular its behavior
with τa, we resort to numerical integration of adsorbed heat
and work. For adsorbed heat we use the definition (6) for
wads(t ), using TD(t ) = τav

2
0 (t ) in place of T (t ). The results

for efficiency are represented in Fig. 5: We emphasize that
it is maximum in the quasistatic and in the passive limits.
The effect of self-propulsion within this approach seems to
decrease efficiency, but this is basically due to the fact that the
chosen protocol is not sensitive to τa and k(t ), while the real
effective temperature Teff is. Changing τa without adapting the
protocol degrades the efficiency.

In the next section we explore the aforementioned passive-
active equivalence, which gives the possibility to adjust the
protocol when τa is varied, in order to control the power and
efficiency of the engine.

B. Optimization by passive equivalence

The idea of exploiting passive-active equivalence is the fol-
lowing. Whatever particular optimization procedure is applied
to the passive model, one gets optimal passive protocols k∗(t )
and T ∗(t ). At that point the mapping equation (19) can be used
to derive the corresponding protocols for the active models;
such protocols will give exactly the same power and the same
efficiency and therefore will be optimal in that particular set
of protocols. Note that, if the passive engine is optimized in
the family of protocols k(t ) and T (t ) given by Eq. (37a), with
the parameters k0, Tc, εk , εT , ω, and φ, the family of protocols
which is spanned in the optimization procedure is given by
the same k(t ) and a function v0(t ) which satisfies Eq. (19)
with Teff = T (t ). Putting Eq. (37a) into Eq. (19), we get the
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corresponding family of protocols for v0(t ),

v2
0 (t )τa = T (t ) + τak(t )T (t )

+ 3

4
ωτaεT sin(ωt + φ)

+ ωτ 2
a

2

[
εk cos(ωt )T (t ) + εT

2
sin(ωt + φ)k(t )

]

+ ω2τ 2
a εT

4
cos(ωt + φ), (59)

which is parametrized by k0, Tc, εk , εT , ω, φ, and τa.
Summing up, if τa and k(t ) are imposed by the experiment

and one looks for an optimal v0(t ), the task is relatively easy,
i.e., one may (a) choose arbitrary values for Tc and small εT

(discussed below) and then (b) directly find the optimal ω∗
and φ∗ for the passive problem (in the family of sinusoidal
passive protocols given by Eq. (37a)), i.e., the formula in
Eqs. (55), and finally (c) use formula (59) to get the corre-
sponding active optimal protocol for v0(t ), which guarantees
the maximum possible power and a corresponding Curzon-
Ahlborn efficiency, whatever the value of τa. Given that εT /Tc

must be small and therefore it is not really a free number
(reasonable values are 0.1 or smaller), some freedom remains
in choosing Tc, which can be exploited in two ways: One may
(i) set the desired optimal frequency ω∗ (based upon possible
experimental requirements) and then invert Eq. (55a) to get
the corresponding Tc or, alternatively, (ii) observe that Eq. (19)
is invariant for common rescaling of Teff (and therefore Tc)
and v2

0 , that is, one may meet any experimental upper or lower
limit for v2

0 by accordingly rescaling Tc.
In Fig. 6 we show the optimal protocols for a given choice

of Tc, k0, εT , and εk . As anticipated, there is an important dif-
ference between the optimal protocol for τav

2
0 (t ) and Teff (t ).

We underline that, following this strategy, if one spans a range
of τa, keeping the same k(t ), the optimal effective temperature
Teff (t ) is not changed. What is changed is the corresponding
protocol for v0(t ); if one follows it, whatever the value of τa,
the power and the efficiency of the engine will always be the
same. Also for this reason it is useless to show a plot with
efficiencies as a function of τa. The constancy of power and
efficiency as a function of τa demonstrates the superiority of
this approach with respect to other approaches not informed
with the correct formula for Teff (for instance, the one of the
preceding section, where the efficiency decays with τa (see
Fig. 5)).

The situation is more complicated if τa and v0(t ) are im-
posed by the experiment and one wants to look for the optimal
k(t ). In such a case, a possible strategy is to use Eq. (19) to
get a functional constraint between k(t ) and Teff (t ); thereafter,
one needs to solve the passive problem with a variation of the
coupled protocols k(t ) and Teff (t ) with the given constraint.

Strategies of passive-to-active equivalence are substan-
tially simplified if very slow transformations are considered,
i.e., in the limit of large period tcycle, more precisely by taking
τa/tcycle � 1. In this limit Eq. (19) is considerably simpler, as
it reduces to the identity (valid for any magnitude of forces εk

and εT )

Teff (t ) = τav
2
0 (t )

1 + k(t )τa
. (60)

FIG. 6. Examples of the optimal protocol τav
2
0 (t ) for an ac-

tive engine to achieve maximum power when k0 = Tc = 1, εT =
εk = 0.1 (which, according to formula (55), give ω∗ ≈ 0.52 and
φ∗ ≈ 0.25), and τa = 0.1. Two values are considered: τa = 0.1 and
τa = 3. We underline that in both cases the engine gives the same
maximum power approximately equal to 3 × 10−4 and the same
Curzon-Ahlborn efficiency approximately equal to 0.05. The blue
curve is τav

2
0 (t ) and the red curve is k(t ). For reference we also in-

clude T (t ) = Teff (t ) = Tc + εT
1
2 [1 − cos(ω∗t + φ∗)] (yellow dashed

curve) and the constant Tc(1 + τak0 ) (green dashed curve), which is
the approximation of Eq. (59) at zeroth order in ω, εk , and εT .

As mentioned, in this limit Teff (t ) is still different from Ta(t ),
even at first order in τa (see Eq. (27a)). We underline that
the same problem discussed above (see the discussion above
Eqs. (57)) occurs for the expression of Teff (t ) in formula (60):
If v0(t ) is taken constant, the resulting effective temperature
is always in opposition of phase with k(t ) (i.e., maxima of
k correspond to minima of Teff and vice versa). Several em-
pirical attempts by numerical integration of Wp for a wide
range of choices of all the parameters convinced us that such a
situation always leads to Wp � 0, i.e., a machine that does not
produce work. We recall that this is rigorously proven in the
linear forcing regime (see Sec. IV B and formula (51a), where
the opposition of phase between k(t ) and T (t ) corresponds to
φ = −π/2).

Equation (60) gives an estimate of the maximum efficiency
(to be attained in the ω → 0 limit, that is, at vanishing power),
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i.e.,

ηc = 1 − min

{
v2

0 (t )

1 + τak(t )

}
max

{
v2

0 (t )

1 + τak(t )

}−1

, (61)

which is striking evidence of the nontrivial relation between
the two thermodynamic forces (for temperature and volume
forces) in shaping the efficiency of active heat engines. Equa-
tion (60) can be also used to find the shape of v0(t ) to get
any desired efficiency ηc (at vanishing power ω → 0). This
is achieved by imposing that ηc = εT /(Tc + εT ) and recalling
the nonlinear expression for T (t ) (see (37b)). Then we obtain

v2
0 (t ) = Tc

τa

1 + τak(t )

1 − ηcγq(t )
τa→∞−−−→ Tck(t )

1 − ηcγq(t )
. (62)

We warn, however, that Eq. (60) only guarantees that the
passive model with temperature Teff (t ) gives the same evo-
lution for σ (t ) and therefore produces or adsorbs the same
work, but is not necessarily a heat engine. The positivity
of work production (which in our notation corresponds to
Wp < 0) depends upon the phase shift between Teff (t ) and
k(t ). Therefore, in Eq. (62) one needs to put the proper k(t )
and γq(t ), i.e., the correct choices of ω, k0, and φ; the desired
efficiency is reached provided the machine does useful work.
We know, however, that for small εk and εT (as demonstrated
by Eq. (54a) in the ω → 0 limit) such a condition is satisfied
for φ ∈ (−π/2, π/2).

VI. CONCLUSION

A well defined thermostat temperature is a crucial in-
gredient for definitions of basic thermodynamic tools (e.g.,
adsorbed heat and efficiency) as well as to transfer known
results valid for thermal systems: For a lack of such a well
defined temperature, active heat engines elude intuition and
expectation in stochastic thermodynamics. Here, building
upon an important observation made in [25], we have shown
an example where such a temperature can be defined and gives
important advantages, useful also in experiments.

The effective temperature for this particular model satisfies
Eq. (19) and is different from all other temperatures based
upon particular, usually static, configurations (e.g., TD related
to unconfined diffusion, Tvar related to equilibrium steady
states, and Ta related to the small-τa limit). It represents,
exactly, the thermostat of an equivalent passive model which
gives, in the presence of the same external harmonic potential,
the same position variance and therefore the same power
and the same total heat exchanged. An observation about the
definition of adsorbed heat (see the discussion at the end
of Sec. II) suggests that the equivalence noted in [25] may
be extended to efficiency only for a particular definition of

adsorbed heat, which comes at the price of losing the sim-
plicity and generality of the Carnot bound. In fact, such
an extension gives an efficiency that in the quasistatic limit
depends not only upon the maximum and minimum tem-
peratures of the system but also upon other parameters. We
suggested a different definition of adsorbed heat, considering
the efficiency of the equivalent passive model and following
[32] for the adsorbed heat definition: Since it is designed
to give a Carnot efficiency ηc = 1 − Tc/Th in the quasistatic
limit, whatever the values of the other parameters, one can
use it as a proper figure of merit for the purpose of evaluating
the performance of the machine.

The active-passive equivalence (19), which contains time
derivatives of T (t ) and k(t ), suggests the study of the opti-
mization of a passive model with smooth protocols, which
is different from what is usually done with piecewise linear
modulations (for Carnot-like or Stirling-like engines). There-
fore, we have extended previous studies to a family of smooth
protocols where the lag (between temperature and stiffness
modulation) is varied to improve efficiency. In the linear ap-
proximation of fluxes we have found the optimal frequency
and phase lag (Eqs. (55a) and (55b)) that produce max-
imum power output (and correspondingly Curzon-Ahlborn
efficiency, roughly half of Carnot efficiency), a result which
is readily translated to active engines through Eq. (19). This
equivalence equation also immediately gives the Carnot effi-
ciency of an active engine (see Eq. (61)), which is valid for
any activity time τa (i.e., also far from the passive limit) and
any amplitude of the protocols (i.e., also far from the linear
regime), but of course can be attained only in the quasistatic
limit, that is, at vanishing power.

Future investigations may concern the possibility of ex-
tending, through suitable approximations, the results of our
study to nonharmonic potentials [25], as well as to other active
particle models. It would also be interesting to consider fluc-
tuations of the relevant quantities, such as power or efficiency,
which constitute an important ingredient of microscopic en-
gines. Finally, a promising direction of research would be to
consider bunches of active particles with interactions in order
to probe the effect of collective behavior on the performance
of such kinds of heat machines.
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