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Leaking elastic capacitor as model for active matter
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We introduce the “leaking elastic capacitor” (LEC) model, a nonconservative dynamical system that combines
simple electrical and mechanical degrees of freedom. We show that an LEC connected to an external voltage
source can be destabilized (Hopf bifurcation) due to positive feedback between the mechanical separation of
the plates and their electrical charging. Numerical simulation finds regimes in which the LEC exhibits a limit
cycle (regular self-oscillation) or strange attractors (chaos). The LEC acts as an autonomous engine, cyclically
performing work at the expense of the constant voltage source. We show that this mechanical work can be
used to pump current, generating an electromotive force without any time-varying magnetic flux and in a
thermodynamically irreversible way. We consider how this mechanism can sustain electromechanical waves
propagating along flexible plates. We argue that the LEC model can offer a qualitatively new and more realistic
description of important properties of active systems with electrical double layers in condensed-matter physics,

chemistry, and biology.
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I. INTRODUCTION

The formation of an electrical double layer (EDL) at the
interface between dissimilar materials is common to many
systems of interest and has many practical applications. Such
EDLs are often treated in terms of an equivalent circuit with
a capacitor and two resistors, one in parallel and the other
in series with the capacitor, as shown in Fig. 1. This simple
model can be applied to the electrode-electrolyte interface in
batteries and fuel cells [1,2], p-n junctions in photovoltaic
and thermoelectric devices [3], cell membranes (based on
lipid bilayers) in living organisms [4], and double layers in
inhomogeneous plasmas [5].

The deformability of EDLs and the effect of deformations
on their capacitance have long been a subject of interest in
applied physics. In 1966, Babakov, Ermishkin, and Lieberman
reported that increasing the voltage applied to an artificial
bimolecular lipid membrane caused it to deform in such a
way that the capacitance increased, and they argued that such
“electromechanical properties” could “play an essential part
in the activity of the cell membrane” [6]. These and other
similar results [7,8] motivated experimental and theoretical
investigations into the interaction between the mechanical and
the electrical properties of EDLs in biophysics [9-11] and
later also in electrochemistry [12—16].

n [11], Crowley introduced the term ‘“elastic capacitor”
(EC) to describe a model of the double layer in which the equi-
librium configuration arises from a mechanical elasticity that
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counteracts the electrical attraction between the two charged
plates. For research connected to the EC in a technological
context, see, e.g., [17] and the treatment of “memcapacitive
systems” in [18] (the latter reference is interesting in that
it considers the dynamical response of the EC when sub-
jected to external voltage pulses). Partenskii and Jordan have
shown how the EC model can be extended to account for
certain properties of biological and chemical EDLs [19-22],
and they have reviewed the subject from a pedagogical
perspective in [23].

In this article we propose a new physical model for EDLs,
which we call the leaking elastic capacitor (LEC). It consists
of a parallel-plate capacitor in which the mechanical separa-
tion X between the two plates is treated as a function of time
in the relevant equations of motion. Moreover, we take this
X (t) as determining not only the capacitance (as in the EC
model), but also the internal conductivity and/or the potential
applied to the capacitor by the external voltage source, as
shown in Fig. 2. Under certain conditions that we determine
mathematically, this coupling of the mechanical X (¢) to the
electrical degrees of freedom gives rise to a positive feedback
that causes self-oscillation of X, the capacitor’s charge Q,
and the capacitor’s voltage V. The LEC therefore provides
a remarkably simple model of an alternating-current (AC)
generator. In the framing of this model we have simplified
the EDL structure as far as possible, abstracting all details
about their implementations in a particular context, such as
electrochemistry, solid-state physics, plasmas, or biological
membranes.

Self-oscillation can be defined as the generation and main-
tenance of a periodic motion, at the expense of a source
of power that has no corresponding periodicity [24]. Self-
oscillators are engines, which cyclically extract work from
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FIG. 1. Equivalent AC circuit for the electrical double layer, with
capacitance C, internal resistance R;, and external resistance R,.
Adapted from Fig. 5-21 in [2].

an underlying disequilibrium and whose operation is thermo-
dynamically irreversible. This physical approach to classical
self-oscillators was pioneered by Le Corbeiller in [25]
and [26] and has more recently been advocated and explored
in [27]. This work extraction is manifested as an active,
nonconservative force upon a macroscopic degree of freedom
that serves as the engine’s piston or turbine. In the litera-
ture, such a nonconservative force has been introduced as
a negative friction or antidamping (as in the van der Pol
model [28,29] and in treatments of self-propelled Brown-
ian particles [30,31]), as a circulatory force (see, e.g., the
treatment of the nonconservative force in stochastic thermody-
namics [32]), as a time delay in the oscillator’s response (see,
e.g., [33] and [34]), or as an external periodic forcing (see,
e.g., the model of Brownian motors in [35]). None of these
mathematical descriptions, however, provide a physically re-
alistic account of how the nonconservative force is generated
dynamically by the autonomous operation of the engine.

In practice, the active, nonconservative force driving the
self-oscillation requires a positive feedback between at least
two macroscopic degrees of freedom and can arise only in
open systems coupled to an external thermal or chemical
disequilibrium. In the case of the LEC, this disequilibrium
corresponds to the external voltage source. Self-oscillation
results from a positive feedback between the plate separation
X and the capacitor charge Q. The necessary nonconservation
is provided by the ohmic conductivity (i.e., by the leakiness).

R.(X)
1 R;(X)
Vo

T C(X):Zi X

FIG. 2. The leaking elastic capacitor (LEC) model: an
electromechanical circuit containing a constant source of voltage
Vo, a capacitor C with variable plate separation X, and two resistors
R, and R;. The values of the capacitance and of the two resistances
depend on X.

We also show that the work extracted cyclically by the
LEC from the external voltage can be used to generate
an electromotive force (emf), which may pump charges to
build up potential differences or to drive the electric charges
along a closed path. On the emf as the integral of an active
nonconservative force, and on the impossibility of accounting
for it using only potentials, see [36]. Note that the transforma-
tion of the external Vj into cyclical work (from which an emf
can be obtained) is an irreversible process and that some of
the free energy corresponding to the external voltage source
W is necessarily dissipated by the ohmic conductivity.

With minor generalizations, the equations of motion that
we derive for the LEC can be applied to a very broad class
of active systems. (See the Appendix for the precise sense
in which we are here using the term active.) These include
such diverse examples as the “beating mercury heart” [37],
the electron shuttle [38,39], and proposed dynamical models
for the operation of photovoltaic [40,41], thermoelectric [42],
fuel [43], and electrochemical cells (i.e., batteries) [44].
Double layers are present in all of these systems. For photo-
voltaic cells, collective oscillations in the terahertz frequency
range have already been reported [45,46].!

There is now ample evidence of the importance of the
mechanical properties of lipid bilayers to the functionality of
biological cell membranes [47]. Passive and active ion chan-
nels can be described in an LEC model in terms of controlled
resistance and emf, respectively (see, e.g., [48]). A description
based on work extraction and charge pumping by a self-
oscillating LEC may be both simpler and more realistic than
the Hodgkin-Huxley [49], the FitzHugh-Nagumo [50,51], and
other models of excitable cell membranes (on the active dy-
namics of these models, see, e.g., [52] and references therein).
Moreover, if the rigid plates are replaced with flexible sur-
faces, the system of ordinary differential equations for the
LEC is replaced by coupled wave and reaction-diffusion equa-
tions with solutions corresponding to self-sustained traveling
waves. In the last section of this paper we argue that this
offers a promising new model for neural signaling and electric
energy transport in biological systems.

It is also worth noting here that Alfvén and others have
stressed the importance of EDLs in inhomogeneous plasmas
and their role in particle acceleration in the laboratory and in
astrophysics. Such phenomena are difficult to account for us-
ing the equations of magnetohydrodynamics, leading Alfvén
to advocate instead a phenomenological approach based on
simple circuit models [53]. Experiments with gaseous plasmas
have found coherent EDL oscillations, with the fast com-
ponent at around the plasma frequency [54,55]. Amusingly,
in [53], Alfvén also suggested an analogy between plasma
double layers and biological membranes. In biophysics, Amin
proposed in 1982 that EDLs might play an important role
in the active transport of water in plants [56], a hypothesis
that has since found some theoretical and experimental sup-
port [57]. Plants generate audio and ultrasound signals that
may be associated with such transport [58,59]. The range of

'A very close analog of the LEC applies also to simple steam en-
gines (see the discussion of the “putt-putt engine” in [27] and [41]),
even though there the relevant interface is not electrically charged.
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active systems to which the LEC model could potentially be
relevant is therefore very broad.

This is an interdisciplinary theoretical investigation. The
fundamental problem addressed pertains to nonequilibrium
thermodynamics: to understand how an active EDL can
extract work in a sustained and thermodynamically irre-
versible way. The simple electromechanical LEC model is
presented in Sec. II. In Sec. III we apply to that model certain
concepts and techniques from the mathematical theory of
dynamical systems, in order to determine the conditions in
which the LEC can self-oscillate. In Sec. IV we describe the
results of some numerical simulations of a particular nonlinear
implementation of the LEC, which show that the LEC is
capable of both periodic self-oscillation and chaotic behavior.
In Sec. V we show, in terms of classical electrodynamics,
that the LEC can generate an emf despite the absence of
any time-varying magnetic flux. This allows us to connect
our results to the understanding of active matter in electro-
chemistry and biophysics. In Sec. VI we consider how to
extend the LEC model to accommodate self-sustained travel-
ing waves. The mathematical treatment offered here is neither
generic nor exhaustive, while the electromechanical models
considered are the simplest ones, consistent with basic ther-
modynamic principles and other relevant physical constraints,
that allow for active EDL dynamics. Many details, particularly
on the traveling wave model in Sec. VI, are left for future
investigation.

II. LEC MODEL

Consider the LEC described by the electromechanical cir-
cuit shown in Fig. 2, which consists of a capacitance C(X),
an internal resistance R;(X) (“leakage”), and an external re-
sistance R,(X) that can control the potential supplied to the
LEC by the constant external voltage Vj. The mechanical
degree of freedom is described by the dynamical variable
X (1), representing the distance between the two parallel plates
of the capacitor. The second dynamical variable is the charge
Q(t) accumulated in the capacitor. By Kirchhoff’s current law,

0 =-TX)Q+I1(X), (1
where
F(X):[ L, 1 }>0, 1(X) = Yo
CX)Ri(X) CX)R.(X) R.(X)
)

One could consider a more general circuit in which the ex-
ternal voltage Vj is also controlled by the dynamical variable
X. Since the calculations presented below use an arbitrary
function /(X), they are also valid in this more general case.
One might also easily extend the model to have I" and /
depend on both X and Q, but for simplicity we do not do that
in this article.

The mechanical equation of motion (Newton’s law)
for X is

. N
X+yX+——UX, 0 =0, 3
trX+ s VX Q) 3)

where M is the mass of the moving plate and y > 0O is the
damping coefficient. The potential U can be decomposed into

an electrostatic and a mechanical part:

QZ
UX,0) = 2000 + Un(X). “4)
The mechanical potential U, should include a short-
range repulsion to prevent an unphysical crossing of the
capacitor’s plates.”

The dependence of I" or/and I on X, together with the de-
pendence of U on Q, provides the feedback necessary for the
emergence of self-oscillations. Equations (1) and (3) describe
an autonomous dynamical system, which can be expressed in
terms of three coupled first-order differential equations for the
dependent variables X, P = X, and Q,

X =P
P=—yP+f(X.0Q)
Q= -T(X)Q +1(X), 5)
with a force per unit mass
1 9
f(X,Q)=—A—/IﬁU(X, Q). (6)

For any physical system, the damping rates y and I'(X)
must be positive. In the self-oscillating regime, M f =
—adU/0dX is the active, nonconservative force that cyclically
extracts work from the external Vj. The infinitesimal work

W =Mf(X, Q)dX (7

is an inexact differential due to the time dependence of
Q introduced by Eq. (1). Note that Eq. (1) represents a
thermodynamically irreversible dynamics, since it involves
ohmic dissipation. The fact that engines capable of generating
positive power must operate irreversibly has recently been
stressed, e.g., in [60] and [61].

III. SELF-OSCILLATION

To establish that the dynamical system of Eq. (5) admits a
self-oscillatory regime, we study the stability of the equilib-
rium configuration (fixed point) {Xy, Po, Qp} for Eq. (5). If, as
the parameters of the system are varied, this equilibrium goes
from stable to unstable, a Hopf bifurcation occurs, leading to
self-oscillation [27].

The equilibrium is determined by the equations

R=0. [(0.00)=0, Q=02 ()
I'(Xo)
Introducing the dimensionless variables
X - X —
x= =0 _92-% 9)

q
Xo Qo

2Some electrochemical models allow for negative capacitance in
the vicinity of Q = 0, which in the simple EC picture would cor-
respond to X < 0. Such negative capacitance might result from
the nonmonotonous distribution of ionic density associated with
“superequivalent” adsorption, “overscreening,” or ‘“overcharg-
ing” [19]. We do not consider such possibilities here.
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and a normalized velocity p = x with the dimension of
time ™!, one obtains a set of evolution equations for the devi-
ation from equilibrium. For small deviations, nonlinear terms
can be neglected and Eq. (5) reduces, in matrix form, to

X 0 1 0 X
pl=|-9% -v —-allpr] (10)
q b 0 —F() q

These matrix elements contain the parameters

0
Q= — /X0, Q). To=T(Xo),

__ Q0
a= X 8Qf(X0’ Qo),
. dl dr
b=Xo[Q0‘E<Xo)—E(Xo)] (11)

Stability of the fixed point is determined by the eigenvalues
of the 3 x 3 matrix in Eq. (10), given by the roots X¢, A, and
A_ of the characteristic equation

A+ TR+ y) + Q5] +ab=0. (12)

Simple approximate formulas for A; can be obtained in the
weak-damping regime (i.e., y,[op < ¢), as long as the
product ab (which characterizes the strength of the feedback)
is also small. More precisely, since for typical choices of
mechanical potential U, (X ) one obtains a =~ Q(z) [see Eq. (30)
below], we assume that |b| < €y and then obtain that

ho = i + 2 (22 13
+ = xif2y + 2 ( 9(2) V) ( )
satisfy Eq. (12) up to small corrections.

For large enough ab, the real part of Ay in Eq. (13) is
positive, which implies that the amplitude of small oscilla-
tions about equilibrium, with angular frequency €2, increases
exponentially with time until they are limited by nonlineari-
ties. This corresponds to a Hopf bifurcation [62]. In Sec. IV
we show numerically how the nonlinear effects stabilize the
amplitude of the oscillations, leading either to a limit cycle or
to a strange attractor.

The bifurcation can be found without the weak-damping
approximation by using the test functions

q(t) = qo sin(wt + ). (14)

The solution with real @ in Eq. (14) corresponds to the critical
condition for which the oscillations show zero linear damping,
which is the Hopf bifurcation point. Inserting Eq. (14) into
Eq. (10) we obtain

x(t) = xg cos wt,

—w?x( coS wi = —Q%xo Cos wt 4y wxy sin wt —aq sin(wt +a),
(15)

wqo cos(wt + ) = bxy cos wt — [oqo sin(wt + «). (16)

Evaluating Eq. (15) at wf = 7 /2 we obtain

cosa = X2 (17)
aqo

Evaluating Eq. (16) at ot =m/2 and substituting
Eq. (17) we get
r
—wqp sina = —Tggocosa = —M. (18)

Evaluating Eq. (15) at ¢+ = 0 and combining the result with
Eq. (18) we arrive at

' = Q2+ yT. (19)
Meanwhile, Eq. (15) can be rewritten as

(R} — ?)xo cos wt — ywxp sin wt

—qo sin(wt + ) =
a

—Toyxp coswt — ywxy sin wt
_ oY Xo Y wXxo . (0)
a

where we have used Eq. (19) in the last step. Substituting
Eq. (20) in Eq. (16) and evaluating the result at r = 0 gives

b
O coso = = — T2, Q1)
YXo 14
Substituting Eq. (21) into Eq. (17) we arrive at
b
o' == -T2, (22)
Y

In light of the results of Egs. (19) and (22) we introduce the
feedback parameter

_ ab
T @+ T+ yTy)

such that n = 1 corresponds to the Hopf bifurcation. It is easy
to see, by comparing this to the stability analysis of Egs. (12)
and (13) (or to the numerical results of the nonlinear equations
of motion in Sec. IV), that n < 1 corresponds to a stable
fixed point and 1 > 1 to the self-oscillation. We can interpret
this as a condition on the strength of the positive feedback
parameter ab.

Note that the results of Egs. (19) and (22) establish that,
if the feedback ab is large enough, then the LEC can self-
oscillate in the strongly overdamped regime (y > Q) with a
frequency w high compared to the resonant €2y. In that case,
w is controlled by the damping rates. This corresponds to
the highly nonsinusoidal “relaxation oscillation” regime (see,
e.g., [27]). Physically speaking, relaxation oscillations are
characterized by the fact that no significant energy is stored
by the oscillator from one period of the limit cycle to the
next. Instead, the external source must supply almost all of
the oscillator’s energy once per period [63]. We expect that
this relaxation-oscillation regime should be common in active
soft-matter systems, which are strongly dissipative (see also
the discussion of self-sustained traveling waves in Sec. VI).

That the plates of the capacitor in Fig. 2 may self-oscillate
due to a positive feedback between X and the charge Q of the
capacitor is easy to understand qualitatively. For simplicity
and definiteness, consider the particular example of an LEC
in which the sum R;(X) 4+ R.(X) is fixed and X therefore acts
as a simple voltage divider, as shown in Fig. 3. A greater
Q increases the electrostatic attraction between the plates
and, therefore, tends to reduce X. A smaller X reduces the
voltage applied to the plates and therefore also the charge Q.

(23)
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FIG. 3. (a) Self-oscillating LEC expanding (X > 0) as the elastic
force exceeds the electrostatic attraction, so that the net force F tends
to push the plates apart. (b) Self-oscillating LEC contracting (X < 0)
as an increased electrostatic attraction results in a net F that pulls the
plates together. Note that, in the particular circuits shown here, X
acts a voltage divider because R;(X) 4+ R.(X ) = const. Therefore, X
directly modulates the potential difference between the plates.

This, in turn, reduces the electrostatic attraction between the
plates. Mechanical elasticity can then cause the separation X
to increase, as shown in Fig. 3(a). This favors the charging of
the plates and therefore tends to pull them back together, as
in Fig. 3(b). If the electrostatic force (proportional to —Q?)
varies in phase with X, then the motion of the plates will
be effectively antidamped, leading to an electromechanical
self-oscillation powered by the external voltage source Vj.

IV. NUMERICAL SIMULATIONS

To illustrate the qualitative features of the dynamics of
the LEC as an engine, we perform numerical simulations for
a particular nonlinear implementation. For an ideal parallel-
plate capacitor, the capacitance can be expressed as

Co
14+x’
in terms of the dimensionless x of Eq. (9), where Cj is the
equilibrium capacitance [Cy = C(Xp)]. In order to reduce the
number of free parameters, henceforth we take a constant
external resistance R.(X) = Ry. As a further simplification,
we consider the internal resistance as a switch that closes the
circuit when the capacitor is squeezed and opens it when the
capacitor expands. A simple way to implement this is to take

CX)=Ck) = (24

Ri(X) = Ri(x) = Roe™* (25)
for a dimensionless 8 > 0. Then
1 —pBx 2
FX)=Tx) = 3Tl +x)(14+e ), To= ,
CoRo

(26)

where 21" I'= RyCy is the time constant for the RC circuit.

Given the aims of our present investigation, we do not
attempt to derive the mechanical potential U, (X) from a
microphysical picture of a particular implementation of an
EDL, such as the electrochemical Gouy-Chapman model [64].
This is a task that we leave for future investigation. For our
simulations we simply use

U, (X) = M%, o >0, 27)

which prevents the crossing of the plates (X < 0), as dis-
cussed in Sec. II, and is qualitatively consistent with the
picture of a pressure exerted by a gas of ions confined within
the EDL. The phenomenological parameter o in Eq. (27) can
be taken from the measured values of X, and Q at equilib-
rium. The property that Xy — oo for Qyp — 0 is consistent
with the electrochemical double layer dissolving if the elec-
trode 1is uncharged.3 On the other hand, for a bimolecular
lipid membrane X, remains finite for Qy — 0, so that an
elastic term should be added to the potential of Eq. (27). It
is important to stress that our conclusions do not depend in
any significant way on the details of the nonlinear interaction
corresponding to the choice of U,,.

Using the parametrization described above and inserting
the equilibrium conditions of Eq. (8), we obtain equations of
motion of the form

g= _%Fo[(l + 01+ ) (1 +e77) —21,

i = —yi— 203|(14+q7 1 (28)
A bl R LT |
where
Q2
Q= 29
07 MCoX? 9

By choosing the units of time appropriately, we can always
set 29 = 1. We can then plot the trajectories projected on
the (x, g) plane for various values of the (now dimensionless)
parameters y, 'y, and B, as shown in Fig. 4. To determine the
feedback parameter of Eq. (23) we compute first

a=Q5 b=1iTy(B-2), (30)
so that
__ To-2
2y(1+ T2+ yTy)
The experimentally accessible variable is usually the

capacitor voltage V.(t) = Q(@)/C(X(t)). A plot of its
normalized, dimensionless counterpart

Ve(t) =V
v(t) = —0
V,

c

n 31)

vO —
A

— (1) + 4(t) + x()q(0), g—j,

(32)

is given in Fig. 4 for various choices of y, I'y, and 8.
A useful mathematical object is a power spectrum of the
voltage v(¢), defined as
T 2
/ v(t)e " dt
0

1
Sr(w) = nT

S(w) = lim Sr(w),

(33)

3Note that the elasticity of the LEC (represented by the springs
drawn in Fig. 3) must, for the choice of U, in Eq. (27), be inter-
preted as the first-order term in the power series in X of the force
M f(X, Q) in Eq. (6), expanded about the fixed point {Xy, Qp}. Thus,
the “elasticity” of the LEC here depends on the charge and is not
constant over time.
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FIG. 4. On the top, parametric plots of the deviation from equilibrium of the charge g(¢) vs capacitor plate separation x(¢). The initial state

is x(0) = x(0) = 0, g¢(0) = 0.01. The bottom plots show the corresponding deviation from equilibrium of the voltage v(¢) as a function of
time. See the main text (Sec. IV) for the values of the parameters corresponding to each case.

This can be applied to distinguish the limit cycle from the Figures 4 and 5 refer to the following four choices of
strange-attractor regimes, as illustrated in Fig. 5. On the use parameters:

of this power spectrum for studying the chaotic regime of a (@ y=0.1,Ty=0.1, B =1, and n = —0.48. This cor-
dynamical system, see, e.g., [65]. responds to a low dissipation regime with a negative
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0.001¢

27 ST(w)

10—6,

(©

FIG. 5. Power spectrum for the choices of parameters corresponding, respectively, to cases (c) and (d) in the text (Sec. IV). These spectra

are computed for a time interval 7" = 1600.

feedback parameter. The system rapidly tends to the fixed
point.

(b) y=1,T9=0.3, 8 =10, and n = 0.86. This corre-
sponds to a moderate dissipation regime with a subcritical
feedback parameter. Sinusoidal and exponentially damped os-
cillations of x, g, and v approach the fixed point.

0 y=1,Ty=0.5, =10, and n = 1.14. This corre-
sponds to a moderate dissipation regime with an overcritical
feedback parameter. The system slowly approaches a limit
cycle with approximately sinusoidal voltage oscillations. The
fundamental frequency and its harmonics are clearly visible
in the power spectrum plot. This corresponds to a weakly
nonlinear regime, as described in [27].

(d y=0.5,Ty=0.1, B =50, and n = 4.52. This corre-
sponds to a moderate dissipation regime, high 8, and highly
overcritical feedback parameter. The attractor projected on the
(x, g) plane [see Fig. 4(d)] appears to exhibit a self-similar
(fractal) structure. This and the noisy component of the cor-
responding power spectrum (see second plot in Fig. 5) are
indicative of chaos.

Chaotic behavior is to be expected in a nonlinear dynamical
system with more than two degrees of freedom, but previ-
ous work on the electron shuttle (another electromechanical
self-oscillator) has reported only limit-cycle behavior [38,39].
The chaotic regime of the LEC could be of some interest
for biophysics, since the coexistence of regular and chaotic
dynamics is a feature of biological systems at various levels
of complexity; see, e.g., [66]. The numerical results presented
here are far from an exhaustive characterization of the math-
ematical properties of the LEC as a dynamical system. Since
the focus of the present work is on the physical interpretation
and application of this new model, such an analysis is left for
future work.

V. ELECTROMOTIVE FORCE

We have demonstrated that positive feedback between the
mechanical and the electrical degrees of freedom can desta-
bilize the equilibrium configuration of the LEC, producing
either regular self-oscillation or chaotic motion. In either
case, this is a manifestation of the extraction of work, rep-
resented by the integral of Eq. (7) over a complete cycle of
the LEC’s motion. In this section we discuss how that work

can be used to generate an emf and, therefore, to pump an
electrical current.

In classical electrodynamics, the emf is often equated with
the circulation of the electric field,

e-E. ds= 1%
cdt

where C is a closed path along the relevant circuit and A
is the area that this path encloses. But many devices, such
as batteries, photovoltaic cells, fuel cells, and thermoelectric
generators, can actively drive current along a closed circuit
C even though the circulation in Eq. (34) is negligible be-
cause there is no coherent, time-varying net magnetic flux
through A.

If the electric field is irrotational (i.e., V x E = 0), there
exists a scalar potential ¢ such that

—Vo(t,r).

The power that the electric field exerts on the current con-
tained within a volume V can be expressed in terms of the
current density J(z, r) as

= f E-Jd3r=—/(V¢)~Jd3r
v v

—y§¢>J~da+/ oV -Dd’r,
S v

B - da, (34)

E@t,r)= (35)

(36)

where S is the two-dimensional, closed boundary of the vol-
ume V. If V contains all points at which J # 0, the surface
term in Eq. (36) vanishes. Charge conservation implies the
continuity condition

dp

vV.J=-2F
1 ot’

where p(t, r) is the local charge density. Combining Eqs. (36)
and (37), we obtain
0
_ f ¢,_'0 43
y ot

In a discharging capacitor, we have that dp/dt < 0 in the
conducting plate with ¢ = ¢ and the opposite dp/dt > 0 in
the conducting plate with ¢ = ¢_. Let V =V, + V_, where
V. are the volumes of the respective plates. Then Eq. (38)

(37

(38)
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implies that

P= —¢+/ a—pd3r+¢,/ a—pd3r:V1, (39)
V., ot v ot
where V = ¢, — ¢_ and the current [ is the absolute value
of the integral of dp/dt over either V. or V_. In the steady
state, this positive power delivered by the electric field to
the moving charges is matched by the negative power IR>
dissipated by the internal friction of the load resistance R.
Note that, in this case, the charge does not move along a closed
path and no emf is involved. In the scheme described in the
Appendix, this corresponds to a passive electrical system.
For a stationary charge density dp/dt =0 and Eq. (38)
implies that P = 0. However, if 0 /39t # 0, then current may
be driven along a closed path, even though the circulation of
the electric field in Eq. (34) vanishes. This is the case, e.g.,
in cyclotrons and other particle accelerators, where a charged
bunch goes around in such a way that its motion is synchro-
nized with the switching of a localized electric potential [67].
Note that the short-range, repulsive interactions between
particles (a quantum effect not properly described in terms of
the classical E field) can be incorporated into this analysis by
including a chemical potential term p,, for each species n with
particle charge g,. In terms of the electrochemical potential

®, = qn¢ + Uns (40)

Eq. (38) can be generalized to

90,
pnz_/ ®, 2P 23y, (41)
Vv ot

where P, is the power transmitted to the current of particle n,
with number density p,. Note that P, > 0 is incompatible with
stationary densities (90, /9t = 0).

Now let us consider the case of the self-oscillating LEC.
Suppose that the negatively charged plate is fixed and that
the positively charged plate oscillates in X. In the contraction
phase (X < 0), the positive charge moves out of a region of
higher potential ¢ (corresponding to the separation X at time
t) and into a region of lower potential ¢ — d¢ (corresponding
to the separation X — dX at time ¢t + dt). In other words, in
the vicinity of the positive plate the charge density is leaving
a region of higher potential and entering a region of lower
potential, which implies that P > 0 in Eq. (38).

On the other hand, in the expansion phase X > 0), the
positive charge is at each moment moving out from X to
X +dX, but the region into which the plate is moving is
electrically screened. For the ideal double-plate capacitor, this
would give P = 0 in Eq. (38). In a more realistic setting, we
expect P < 0, but the power lost in the expansion phase will
be less than the power gained in the contraction phase. If we
define P as the average of the power over a full period T of the
LEC’s self-oscillation,

T

P= ! / P(t)dt, (42)
0

we therefore can obtain P > 0, because the symmetry
between contraction and expansion is broken by the fact
that the electric field is large inside the capacitor and small
outside of it.

This means that the mechanical oscillation of an isolated
elastic capacitor must die out quickly, since the mechanical
oscillation leads to a net acceleration of the charges, and this
energy must be dissipated within the capacitor. On the other
hand, the LEC connected to an external circuit can generate
an effective emf,

PT
E=— >0, (43)
Q

where O is the total charge driven around the closed circuit
during a macroscopic time 7' > t. That is, the self-oscillating
LEC is an electrically active device that can pump an electric
current through an external load connected to its terminals
(see the Appendix). We therefore expect the LEC model to be
applicable to the description of the operation of various active
electrical devices in which the emf cannot be described in
terms of Eq. (34). Note that the quantity PT in the numerator
of Eq. (43) is equal to the mechanical work W done during
time 7 by the self-oscillating LEC’s nonconservative force
[see Eq. (7)] minus some loss due to internal frictions that
make the efficiency of conversion from mechanical to electri-
cal work less than 1.

In a particle accelerator, the motion of the charges and the
modulation of the electrical potential must be externally syn-
chronized to achieve P > 0. But in the LEC both of them are
controlled by the same self-oscillation in a way that generates
an emf autonomously. Note that the emf of Eq. (43) will, in
general, depend on the average current I = Q/T drawn from
the active device. The battery’s emf is usually measured under
open-circuit conditions, which corresponds to taking / — 0
(in which case also P — 0). The decrease in £ as I increases
is then treated phenomenologically as an “internal resistance.”
This is similar to the behavior of hydraulic pumps, in which
the “head rise” (analogous to the emf) begins to decrease as
the flow rate (mass of water drawn per unit of time) increases;
see, e.g., [68].

The problem of understanding the dynamics of the gen-
eration of an emf in the absence of a macroscopic and
time-varying magnetic flux applies to a variety of microscopic
energy transducers, including batteries, fuel cells, solar cells,
and thermoelectric generators. The proposal that we have
worked out here of the LEC as a self-oscillating charge pump
is qualitatively similar to what we had previously proposed to
the solar cell [41]. There, however, we failed to recognize the
fundamental difference between the operation of a capacitor
and that of a battery, considered as power sources. This led
us to a mistaken contrast between the solar cell as an active
system and the battery as a passive one. On the application of
the LEC model to the battery, see [44].

In plasma physics, the role of EDLs in the acceleration of
particles has aroused controversy, both because the formation
of a double layer is difficult to describe using the equations
of magnetohydrodynamics and because the electric field of
a static EDL is conservative and therefore cannot act as a
particle accelerator [69]. On the other hand, experiments show
that plasma double layers oscillate with both slow and fast
frequency components, with the fast component being close
to the plasma frequency [54,55]. We therefore expect that
our LEC model may be directly relevant to the dynamics of
plasma double layers.
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Experiments in sonoelectrochemistry have found that
acoustic driving can pump current through an EDL [70]. In a
recent review of the subject, this effect has been described as
“a great enhancement of mass transfer of electroactive species
from the bulk solution to the electrode surface through the
double layer,” induced by an ultrasound signal [71]. The self-
oscillation of an EDL can be used directly to pump a current,
as proposed in [44] in the context of batteries. The case of
ion transport in biological cells is more involved, since the
membrane’s ion channels have complex molecular structures
that make them chemically selective. Nonetheless, since the
results obtained here establish that the self-oscillation of an
EDL can actively pump an electric current in a way that is
thermodynamically irreversible and compatible with classical
electrodynamics, we expect that this can help to clarify some
of the basic obscurities in our present understanding of the
role of the electric field in the transport of charges in biolog-
ical systems. On that question see, e.g., [72] and references
thererin.

VI. SELF-SUSTAINED TRAVELING WAVES

Partenskii and Jordan have shown the importance of in-
corporating lateral flexibility into electromechanical models
of EDLs [16,19,21-23]. Correspondingly, various forms of
active matter may be modeled by an extension of the LEC in
which the capacitor plates are not perfectly rigid. An impor-
tant example of this is the biological cell membrane, whose
mechanical elasticity can be described by various moduli [73].
Such membranes can therefore support traveling waves, with
possibly complicated dispersion laws.

A patch of membrane can be treated as a capacitor charged
by biophysical processes involving active channels (pumps)
and discharged by passive channels. Both types of channels
are controlled by electromechanical forces [47,48], yielding
the feedback that can generate self-oscillations in the LEC
model. Locally excited oscillations can propagate along the
plane of the double layer as self-sustained waves, fed by
energy from the underlying chemical process. This energy is
necessary to compensate the wave damping, which must be
considerable in a soft-matter system. We consider it plausible
that such self-sustained waves may transport information and
electrical energy in biological systems.

As an illustration of how this mechanism could work,
consider a spatially uniform model admitting only trans-
verse waves and treated within the linear approximation. The
double-layer plane is parametrized by spatial (x, y) variables.
The field ¥ (x, y; t) represents the local variation of the inter-
layer distance, previously denoted X () — Xo. Another field,
n(x, y;t), represents the variation of the local density of the
relevant charge carriers, replacing Q(t) — Qp in the LEC
model in Sec. II. This gives us a wave equation with dissipa-
tion for ¥, coupled to a reaction-diffusion equation for n (on
reaction-diffusion systems and their applications to pattern
formation in active media, see [74] and references therein).
In the linear approximation

2 2 2
¥ e a—+8— + Q32 | (x, y;1)
0rz C*\oxz  9y?

a
=y gY@y —asnx i), (44)

9 32 2
En(-xsy;t) - D(@ + B_yz>n(x’y;t)
=—To-n(x,y;t)+b- ¥, yt). 45)

Here c, is the phase velocity of the free linear waves and D
is the diffusion constant for charge carriers. The parameters
Qo, ¥, o, a, and b have a similar meaning to the corre-
sponding symbols used in Sec. II [see Eq. (11)].

We are interested in solutions to this system of coupled
equations corresponding to self-sustained plane waves:

Y(x,y;t) = W cos[w(k)t — kex — kyyl,
n(x, y;t) = N sinfo(k)t — kyx —kyy +a], k= \/]‘%Tk%
(46)

Inserting Eq. (46) into Egs. (44) and (45) one obtains the
following relations for the parameters of this solution.
(1) Dispersion law:

w(k) = Vak? + &2, E:\/CEvL—DW, Q=,/Q5+ yTo.

(47)
(2) Phase-shift parameter o:
Dk*+T
tane = o 10 (48)
w(k)
(3) N/W ratio:
N k
N _ ye®) (49)
v acoso
The last equation, of the form
b
wk)? + (D2 +To) = 2, (50)
v

gives the unique value k,, of the magnitude of the wave vector
for self-sustained plane waves. Note that k,, exists only for
strong enough coupling between the electromechanical and
the chemical components of the system, characterized by the
product ab. The threshold for its existence is given by the
inequality

ab >y - (Q*+T}). (51)

The critical value k,, corresponds to the bifurcation point in
the LEC model in Sec. II, given by the equality n =1 in
Eq. (23). It means that the waves with lower k are exponen-
tially amplified while those with higher k are exponentially
damped. Due to nonlinear effects, the waves with 0 < k < k,,,
are stabilized and can form self-sustained, propagating wave
packets.

The dispersion law of Eq. (47) implies that one can gen-
erate localized wave packets moving at arbitrarily low group
velocities. It is amusing to note that the resulting mathematical
description is analogous to that of the relativistic de Broglie
matter waves in quantum mechanics (see, e.g., [75]), with ¢
playing the role of the speed of light and Q that of the mass
(in units in which Planck’s constant is set to 7z = 1). The
fast oscillation of the separation between the flexible plates,

with frequency €2, is then analogous to the unobservable
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Zitterbewegung (“trembling motion”) of the relativistic matter
waves [76].

In Sec. III we discussed how the LEC could self-oscillate
in a weakly nonlinear regime, with approximately sinusoidal
motion, or in a strongly nonlinear (relaxation oscillation)
regime, with a frequency controlled by the damping rates.
Those respective regimes have their analogs in the model of
self-sustained traveling waves given by Egs. (44) and (45).
There is a regime in which waves travel almost adiabatically,
carrying substantial electromechanical energy with them. On
the other hand, there is a strongly overdamped regime in
which ¢ and/or € in Eq. (47) are controlled by the damping
rates, rather than by the conservative parameters c; and 2.
In the latter case, an incoming pulse does not impart signif-
icant electromechanical energy, since most of that is rapidly
dissipated. Instead, the traveling wave is sustained because
the incoming pulse absorbs energy from the local electric
discharging.* As before, we note that this regime may be
particularly important in soft-matter systems.

Let us now show that, if this model were applied to neural
axons, the power supplied by the charged membrane would
suffice to produce a self-sustained wave distinguishable from
thermal noise. The driving power density per unit surface P,
should be of the same order of magnitude as the electric power
density corresponding to the typical current through the mem-
brane (which is given by active ion pumping and driven by
metabolic processes). That power is VO2 /R, where Vj ~ 0.1 V
is the typical membrane voltage and R >~ 1073 Qm? is the
minimal specific resistance of the membranes [78]. Thus,

V2
Py ~ ?? ~ 10 W/m>. (52)

We take the axon of the neuron to be a hollow cylinder whose
surface is a bimolecular lipid membrane. The diameter of that
cylinderisd 2 1 um [79]. The duration of the spike at a fixed
point along the axon is At >~ 1 ms [78]. The nerve conduction
velocity is v = 50 m/s [80]. The effective width of the spike
is therefore

£=v-At ~5cm. (53)
The effective surface area of the spike is then
S=mdl>15x10"" m?. (54)

Combining Egs. (52) and (54), we estimate the driving power
supplied to the excited surface to be

Ps=P;-S>10W/m?> x 1.5 x 1077 m? = 1.5 uW. (55)

Let P be the power per unit surface supplied by the
thermal environment to the few (order 1) mechanical degrees
of freedom that support the spike. The condition for being able
to distinguish the spike signal from thermal noise is

kgT
P> P~ 37 (56)

“This can be pictured as analogous to the “Mexican wave” behavior
of human crowds in sports stadiums [77]. No significant energy is
transmitted among individuals as the wave moves through the crowd.
Rather, the wave is sustained entirely by the internal energy of the
participating individuals.

where kg is the Boltzmann constant, 7 the ambient temper-
ature, and 1 the thermal relaxation time for the bimolecular
lipid membrane. Thus the plausibility of our model for neural
signaling requires that

— ~ ~ 107", (57)

The typical time scale for heat transfer along the bimolecular
lipid membrane, as reported in [81], is T = 1 ps, fulfilling the
condition of Eq. (57).

VII. DISCUSSION

We have proposed a simple dynamical system, the LEC,
whose operation depends only on electrostatic and mechan-
ical forces, plus ohmic conductance. Feedback between the
mechanical separation X and the capacitor charge Q can cause
this system to self-oscillate, making it into an AC genera-
tor. Nonlinearity is needed only in the mechanical response
of the elastic capacitor for large displacements away from
the equilibrium separation, which is obviously a physically
realistic property. In Sec. IV we have also used a nonlinear
relation between X and the capacitor’s internal resistance R;
[see Eq. (25)], but this is not necessary to obtain the active
dynamics of the LEC.

The simplicity of the LEC may be useful in the design of
cheap electromechanical clocks and other oscillators. It may
also provide a more elementary and realistic description of the
dynamics accounting for the extraction of work that character-
izes active matter, as stressed in Sec. L. For instance, the study
of excitable membranes in biophysics has, so far, focused on
mathematical descriptions of their function rather than on a
realistic understanding of their physical mechanism. Thus, the
FitzHugh-Nagumo model [50,51] uses an inductor and a tun-
nel diode, electronic elements not found in living matter. The
simple Lapicque integrate-and-fire model [82], like the more
sophisticated Hodgkin-Huxley model [49], invokes a current
source without attempting to describe the active dynamics that
generates and sustains that current.

The LEC model may point towards a more realistic physi-
cal description of excitable membranes, helping to realize the
project, which Babakov, Ermishkin, and Lieberman suggested
already in 1966, of accounting for the “activity of the cell
membrane” in terms of its electromechanical properties [6].
The importance of the mechanical properties of such mem-
branes is now well established [47,48]. The LEC model shows
how the underlying electrochemical disequilibrium across the
membrane can power a sustained (i.e., enginelike) generation
of mechanical work. That work can then be used to gen-
erate the emf that pumps the active currents seen in living
cells. We have also sketched in Sec. VI how an extension of
the LEC model, which includes a mechanical flexibility of
the capacitor plates, may provide a realistic description of
neural signaling and electrical energy transport based on self-
sustained traveling waves.

Our research has been motivated in large part by the mod-
ern “quantum thermodynamics” approach to understanding
the dynamics in time by which an open system irreversibly ex-
tracts work from an underlying disequilibrium (see, e.g., [83]
and references therein), even though everything in the present
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treatment of the LEC has been classical. For recent work in
which the microphysics of the generation an emf by a tribo-
electric generator is considered in terms of an open quantum
system, see [84].

Note that the active LEC is a “dissipative structure” in
the sense in which Prigogine and his collaborators introduced
that term into the theory of nonequilibrium thermodynam-
ics [85]. That approach, like Haken’s “synergetic” treatment
of similar questions [86], was met with strong objections (see,
e.g., [87]), which in our view were justified by its inability
to describe the dynamics in time of such structures operating
as cyclical engines. Prigogine, Haken, and other theoreti-
cians had inherited that conceptual limitation from Onsager’s
formulation of nonequilibrium thermodynamics (including
active systems like thermoelectric generators) in terms only
of thermodynamic potentials and their gradients [88].

What is qualitatively novel in our description, compared
to that Onsagerian approach, is our focus on the feedback
dynamics giving rise to the active nonconservative force of
Eq. (6). It is this force that is responsible for the work output
of Eq. (7), which in turn is the physical explanation of the dy-
namics in time illustrated by the numerical results in Sec. I'V.
On why this approach is needed to describe active matter in
a physically realistic manner, see also the discussion in the
Appendix.

With some natural generalizations, the LEC’s equations
of motion define a class of dynamical systems with a broad
range of possible applications. The presence of EDLs in many
active systems of interest in solid-state, plasma, chemical, and
biological systems suggests that the LEC could find a range
of interesting applications, some of which we mentioned in
Sec. I. We therefore hope that the simple model that we
have presented here may open new avenues towards a better
understanding of active systems across various areas of pure
and applied science.

One question that evidently calls for careful investigation
is the microphysical derivation of a realistic potential U,,(X)
in Eq. (4) for the EDL in each of the active systems of interest.
Another is the inclusion of thermal noise in a consistent sta-
tistical treatment of LEC dynamics that distinguishes between
dissipation by viscous damping of the energy in the oscillation
of X and the extraction from it of work by pumping of zero-
entropy currents (on this problem see Sec. III D in [44], as
well as the treatment of the single-electron shuttle in [89]). We
have also left for future research the details of the dynamics
of nonrigid LECs and the simulation of the corresponding
traveling waves proposed in Sec. VI. Much analytical and
numerical work remains to be done in order to fully un-
derstand the possible dynamics that can be obtained from
the LEC model and its extensions, but we are confident that
the results presented here already offer significant lessons for
the better understanding of active matter.
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APPENDIX: PASSIVE VS ACTIVE SYSTEMS

Electronics textbooks distinguish between passive com-
ponents such as resistors, capacitors, inductors, and trans-
formers, on the one hand, and active components, such as
transistors and operational amplifiers, on the other. The usual
definition given is that an active component, unlike a passive
one, can amplify the power that it receives from the circuit.
Evidently, this requires that the active component have an
external source of power which is not the circuit on which it
operates. Horowitz and Hill add that active devices “are distin-
guishable by their ability to make oscillators, by feeding from
output signal back into the input” [90], i.e., to self-oscillate.
According to this classification, the ordinary capacitor is pas-
sive while the LEC is active.

Compare this to the definition of “active matter” given in
statistical mechanics and in soft condensed-matter physics, as
matter composed of elements that can consume and dissipate
energy, in the process executing systematic movement [91].
The recent literature on active matter usually accounts for the
energy consumed by those elements from an underlying ther-
modynamic disequilibrium, but it does not treat the dynamics
of work extraction in a physically realistic way. As we have
argued in Sec. I, this is because it does not consider the feed-
back dynamics that produces the nonconservative force that
drives the piston or turbine through which work is extracted.

What we mean by the precise distinction between a passive
system and an active one, as we have applied it throughout
this article, is schematically illustrated in Fig. 6. A passive
system, represented by Fig. 6(a), can consume and dissi-
pate free energy, but it cannot use this to perform sustained
work or to generate an emf. An active system, represented in
Fig. 6(b), uses some of the free energy that it consumes to
generate an active, nonconservative force, which can be used
to pump a flow against an external potential or to sustain a
circulation. For an electrical device, the integral of the force
per unit charge that produces that circulation corresponds to
the emf.

Note that Fig. 6 shows the work being extracted by a
rotor or turbine, rather than by a self-oscillating piston like
the plate separation X of the LEC. The mathematical de-
scription of the rotor’s motion appears different from that
of the piston; one may describe it as a “self-rotation” (see,
e.g., [92]). However, from a thermodynamic standpoint self-
rotors and self-oscillators are very similar. In both cases work
is extracted irreversibly by the open system coupled to an
external disequilibrium. There is a positive feedback between
the macroscopic motion of the rotor or oscillator and the
state of the working medium, giving rise to the active non-
conservative force that accounts for the system’s persistent
generation of work. In the case of self-rotation, this may
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FIG. 6. (a) General conceptual scheme for a passive

device that consumes free energy from an external source.
This energy is dissipated in the load and the system
cannot maintain any circulation of the flow. (b) General
conceptual scheme for an active device that uses the
free energy consumed from an external source to perform
sustained work, represented here as the driving of a pump that
maintains the circulation of the flow in the circuit on the right.
For an electrical device, the integral per unit charge of the active,
nonconservative force that drives that circulation is the emf.

be characterized as a circulatory force. On the generation
of work by rotors considered in the context of quantum
thermodynamics, see [93].

Our model of the LEC fits into the scheme for an active
system in Fig. 6(b). The voltage Vj is an external disequi-
librium that can be used to extract work via the mechanical
self-oscillation of X (see Fig. 2), which acts as a piston.
In Sec. V we showed how that this self-oscillation can, in
turn, generate an emf, pumping electrical current through the
double layer. This emf can do something that the voltage Vj
on its own cannot: drive current along a closed circuit when a
load is connected to the LEC’s plates.

It is our contention that mathematical treatments of
off-equilibrium processes based entirely on thermodynamic
potentials and their gradients can correctly describe passive
systems, but not active ones. The “blind spot” of theoretical
physics surrounding the dynamics-in-time of engines and ac-
tive systems in general has caused a great deal of conceptual
confusion. On this, see also the discussion in Sec. VII.
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