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Harmonic oscillator chains connecting two harmonic reservoirs at different constant temperatures cannot
act as thermal diodes, irrespective of structural asymmetry. However, here we prove that perfectly harmonic
junctions can rectify heat once the reservoirs (described by white Langevin noise) are placed under temperature
gradients, which are asymmetric at the two sides, an effect that we term “temperature-gradient harmonic
oscillator diodes.” This nonlinear diode effect results from the additional constraint—the imposed thermal
gradient at the boundaries. We demonstrate the rectification behavior based on the exact analytical formulation
of steady-state heat transport in harmonic systems coupled to Langevin baths, which can describe quantum and
classical transport, both regimes realizing the diode effect under the involved boundary conditions. Our study
shows that asymmetric harmonic systems, such as room-temperature hydrocarbon molecules with varying side
groups and end groups, or a linear lattice of trapped ions may rectify heat by going beyond simple boundary
conditions.

DOI: 10.1103/PhysRevE.103.052130

I. INTRODUCTION

Energy transport processes play central roles in chemical
reactivity, biological function, and the operation of mechani-
cal, electronic, thermal, and thermoelectric devices [1–3]. Un-
derstanding energy transport in both the classical and quantum
regimes is fundamental to thermodynamics, relaxation dyna-
mics, chemical reactivity, and biomolecular dynamics [3–5].

Linear, one dimensional (1D) chains of particles and
springs serve to model vibrational (phononic) heat transport
through molecular chains. The force field, the functional form
of the potential energy and its parametrization is often con-
structed by hand, such as in the eminent Fermi-Pasta-Ulam
model, to represent basic harmonic and anharmonic interac-
tions [6,7]. In molecular simulations, the force field is taken
from first-principle density functional theory calculations [8].
Recent experiments probed the flow of vibrational energy
(heat) through self-assembled monolayers of alkanes [9–11]
down to a single molecular junction [12,13]. These junctions
comprise a linear (quasi-1D) molecule bridging two solids
with the steady-state thermal heat current or the thermal con-
ductance as observables of interest.

When the temperature is low relative to the characteris-
tic vibrational frequencies, the harmonic force field can be
adopted to model interactions in molecules since atomic dis-
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placements stay close to equilibrium. However, the harmonic
potential leads to several intriguing, anomalous properties:
Heat current in harmonic chains was calculated in both the
classical [14] and the quantum [15,16] regimes displaying an
anomalous thermal conductivity that was diverging with size,
in disagreement with the phenomenological-macroscopic
Fourier’s law of heat conduction [4].

Purely harmonic systems connecting harmonic baths at
fixed temperatures TH and TC cannot support the thermal diode
effect: The heat current is exactly symmetric upon exchange
of temperatures between the heat source and the drain, as
directly observed from the Landauer formula for heat con-
duction [4,15,16]. Recent studies realized a diode effect in
harmonic junctions—by making parameters to be temperature
dependent—thus sensitive to the direction of the thermal bias
[17]. Fundamentally, such effective harmonic models emerge
due to underlying nonlinear interactions.

The thermal diode (rectifier) effect had been demonstrated
in numerous 1D chains by combining anharmonic interactions
and spatial asymmetry starting from Refs. [21,22]. In one
type of modeling, the chain is made of different segments
and the diode effect can be explained due to the mismatch
in the phonon spectral density in the forward and backward
temperature-bias directions. Thermal rectifiers were further
proposed in other models based on classical [23–25] and
quantum transport equations [25–30], with recent efforts ded-
icated to achieving high rectification ratios that persist with
length [31–34].
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FIG. 1. (a) N-particle chain connecting two heat baths (modeled
by Langevin thermostats), hot and cold, with bead 1 connected to the
hot bath and bead N coupled to the cold one. In this example, N = 2.
(b) and (c) N-site chain made of NH + NC exterior beads coupled to
Langevin heat baths and NI particles in the central, interior zone. The
imposed temperature at the edges may be homogeneous as in panel
(b) or inhomogeneous as in panel (c), the latter potentially realizing
a TGHO diode. In panels (b) and (c), we used N = 8 total number of
beads.

At the nanoscale, the key ingredients of a thermal diode
realized with harmonic reservoirs are (i) structural asymmetry,
e.g., by using graded materials, and (ii) anharmonicity of the
force field [5,35,36]. Anharmonicity in the form of a two-state
system [26,27] can be readily realized in hybrid models with
an impurity [36] or spin chains coupled to boson baths [37,38]
(as well as in the opposite scenario of a boson chain coupled
to spin baths [39]); recent experiments have demonstrated heat
rectification with Josephson junction qubits [40,41].

In contrast, in molecules such as alkane chains the har-
monic force field dominates interactions at room temperature.
Therefore, similar asymmetric molecules (e.g., decorated by
side groups) do not realize a noticeable diode effect in a
steady-state solid-molecule-solid configuration when constant
temperatures (TH and TC) are maintained at the boundaries
[15]. Pump-probe transient spectroscopy experiments have
demonstrated unidirectional vibrational energy flow between
different chemical groups (e.g., nitro and phenyl) [42,43];
corresponding observations of steady-state asymmetric heat
flow through molecules are still missing [44].

Can harmonic systems support the diode effect? In this
paper, our goal is to revisit the problem of steady-state heat
transfer in asymmetric harmonic junctions and make clear
the conditions for the realization of a thermal diode effect.
In our model all components are harmonic: the reservoirs,
representing, e.g., solids, the chain (molecule), and their
couplings. Furthermore, we do not effectively include anhar-
monicity by making parameters temperature dependent. As
we have just discussed, microscopic harmonic chains that
bridge two harmonic solids, a heat source and a heat drain
at constant temperatures TH and TC , respectively, as depicted
in Figs. 1(a)–1(b), cannot act like a diode irrespective of
structural asymmetry. However, once we modify the boundary
condition as we show in Fig. 1(c) and impose thermal gradi-
ents in the contact region, the junction can rectify heat due to
the (multiaffinity) boundary conditions, with particles directly
coupled to different baths.

We exemplify this scenario, referred to as the temperature-
gradient harmonic oscillator (TGHO) chain in Fig. 1(c).
The hot solid is divided into several regions with externally
controlled temperatures, T1 > T2 > T3. Similarly, the colder
region may be divided into domains with externally controlled
temperatures. This setup can be realized experimentally by
controlling local temperatures (as in trapped-ions chain in op-
tical lattices [46]), or computationally, as a mean to introduce
thermal gradients in structures, the result of genuine inelastic
scatterings.

Our analysis is performed using formally exact expres-
sions for the heat current based on the quantum Langevin
equation [4]. Both classical and quantum harmonic diodes are
demonstrated, with quantum effects leading to an improved
performance of the TGHO diodes. Furthermore, we describe
a unique, purely quantum TGHO diode, which does not have a
classical analog. As for classical diodes, we perform classical
molecular dynamics simulations of heat flow in anharmonic
junctions to demonstrate the extent of the diode effect under
explicit anharmonicity in comparison to the TGHO diode.

Altogether, in this work we (i) derive conditions for re-
alizing a different type of thermal diode, the TGHO diode
based on structural asymmetry and inhomogeneous temper-
ature boundary conditions; (ii) identify a purely quantum
TGHO diode; and (iii) make clear conditions for realizing
thermal diodes in either genuine or effective harmonic models.

II. MODEL AND METHOD: LINEAR CHAIN
COUPLED TO HEAT BATHS

A. Model

We focus on a 1D harmonic oscillator chain with a total
of N beads. The chain is coupled at its to edges to two
thermostats, also referred to as solids. In simulations of heat
transport through solid-molecule-solid junctions, typically,
rather than including the solids’ atoms explicitly, they are
emulated through Langevin baths to which the first and last
atoms of the molecule are attached [see Fig. 1(a)]. This setup
has been considered in numerous computational studies (see,
e.g., Refs. [4,15,27]), and since the system as a whole is
microscopically harmonic, it cannot support the diode effect.

Let us now consider a more complex picture of a junction
with several beads on each side (NH , NC) each attached to
an independent Langevin noise term. The NI interior particles
are not thermostated. For example, in Figs. 1(b) and 1(c) we
display an N = 8-bead chain where atoms 1, 2, and 3 are
coupled to hot baths, while beads 6, 7, and 8 are connected
to colder reservoirs. We can think about this scenario in two
different ways: We may regard all N beads as part of the
molecular system, with the heater and sink reservoirs (im-
plemented via Langevin noise) acting on several edge sites.
Alternatively, we can picture this setup as a molecule made
of the NI interior beads only (4 and 5), with the modeling of
the thermal reservoirs enriched: The solids are described by
NH and NC physical beads, each connected to an independent
Langevin bath. In fact, this latter approach has been adopted
in molecular dynamics simulations of thermal conductance
of nanoscale systems. It allows one to engineer a nontriv-
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ial phonon spectral function within a standard (white noise)
Langevin simulation method [47].

What about the temperatures imposed at the boundaries?
We consider two cases.

(i) The temperature is homogeneous at the edges, TH =
T1,2,3 and TC = T6,7,8. That is, beads 1, 2, and 3 are coupled
to three independent Langevin baths, but each is maintained
at the same temperature (and similarly for the cold side). This
scenario is depicted in Fig. 1(b).

(ii) A temperature profile is implemented at the edges:
beads 1, 2, and 3 are coupled to Langevin baths with a thermal
gradient such that the temperatures of the attached baths fol-
low the trend T1 > T2 > T3 > T4 > T5 > T6 [see Fig. 1(c)]. It
is not required that all temperatures vary; at minimum we re-
quire two affinities (three baths of different temperatures). We
refer to this scenario as the temperature-gradient harmonic-
oscillator chain.

In what follows, we show that these two cases are funda-
mentally distinct. In the first setup, Fig. 1(b), a diode effect
cannot show up even under structural asymmetries; remember
that we work with harmonic oscillators. In contrast, in the
second scenario, Fig. 1(c), a diode effect develops in both the
classical and quantum regimes when the gradients are distinct
and structural asymmetry is introduced. Moreover, we show
that in a certain setup, a TGHO chain can support a purely
quantum diode—with no corresponding classical analog.

We emphasize that the TGHO diode of Fig. 1(c) deviates
from the standard setting of diodes due to the nonconstant
temperatures at the boundaries. We explain the breakdown of
reciprocity in this harmonic model below Eq. (12).

B. Langevin equation formalism

We write down the classical Hamiltonian and the corre-
sponding classical equations of motion (EOM); a quantum de-
scription based on the Heisenberg EOM directly follows [4]:

H =
N∑

i=1

p2
i

2mi
+ 1

2

N+1∑
i=1

ki−1(xi − xi−1 − a)2. (1)

Here, x0 and xN+1 are fixed, setting the boundaries, and a is
the equilibrium distance between nearest-neighbor sites.

At this stage, we assume that every particle i is coupled
to an independent heat bath. This coupling is incorporated
using the Langevin equation with a friction constant γi and
stochastic forces ξi(t ) obeying the fluctuation-dissipation re-
lation associated with exchanging energy with a heat bath,
〈ξi(t )ξi′ (t ′)〉 = 2Tiγiδ(t − t ′)δi,i′ . The Boltzmann constant kB

is set to unity. In the model for the diode below, we specify the
interior region (which is not thermostated) by setting its fric-
tion constants to zero. However, the TGHO effect is generic
and can be discussed even when every bead is attached to a
thermostat.

The classical EOM for the displacements is

miẍi = −ki−1(xi − xi−1 − a) + ki(xi+1 − xi − a)

− γivi + ξi(t ), (2)

with vi as the velocity of the ith particle.
The steady-state heat current can be evaluated inside the

chain by calculating the heat exchange between beads or at

the contact region with each bath. Using the latter approach,
the classical (C) heat current from bath l to its attached bead
is (kB ≡ 1, h̄ ≡ 1) [4]

JC
l =

∑
m

γlγm

∫ ∞

−∞
dω

ω2

π
|(G(ω))l,m|2(Tl − Tm). (3)

The summation is done over every thermostat. In what fol-
lows, we introduce the compact notation

Mlm ≡ γlγm

∫ ∞

−∞
dω

ω2

π
|(G(ω))l,m|2 (4)

and write down JC
l = ∑

m Mlm(Tl − Tm).
It can be shown that Eq. (3) generalizes in the quantum (Q)

case to [4]

JQ
l =

∑
m

γlγm

∫ ∞

−∞
dω

ω3

π
|(G(ω))l,m|2[nl (ω) − nm(ω)],

(5)

with nl (ω) = [eω/Tl − 1]−1, the Bose-Einstein distribution
function of bath l of temperature Tl . Here, G(ω) is a sym-
metric matrix. The matrix G−1(ω) for the five-site model that
we simulate below is given in Appendix A.

To calculate the net heat current, we separate the heat baths
into two groups: NH heat sources placed to the left of the
interior region, and NC heat sinks at the other side. The total
input heat power is

J =
NH∑
l=1

Jl , (6)

and it equals the total output heat current at the colder baths.
We now reiterate that a thermal diode effect cannot

appear in harmonic chains coupled to heat baths at
two different temperatures (single affinity setup). If NH

beads are coupled to heat baths at TH and, similarly,
NC beads are attached to reservoirs at temperature
TC , the net quantum heat current is given by JQ =∑

l∈NH

∑
m∈NC

γlγm
∫

dωω3

π
|(G(ω))l,m|2[nH (ω) − nC (ω)].

This expression is symmetric under the exchange of
temperatures even if long-range interactions are included
so that G(ω) is a full matrix. Thus, this setup cannot support
a diode effect. The multiaffinity scenario is discussed in the
next section.

III. TGHO DIODES

In this section, we describe the principles behind the
TGHO diode. We begin by exemplifying this effect in an
N = 5-bead chain depicted in Fig. 2, and then we generalize
the discussion to longer systems. As a case study, we set
NI = 1, NH = NC = 2; beads 1 and 2 are connected to hot
baths, beads 4 and 5 are coupled to colder reservoirs, and the
central bead 3 is not thermostated. This separation is arbitrary
and in practice should be based on the physical structure.

We begin with the classical (C) limit, Eq. (3). The total heat
input in the forward (J) direction, corresponding to the setup
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FIG. 2. A thermal rectifier based on an N = 5-bead harmonic
chain. Two beads at the boundaries are considered part of the solids,
and they directly exchange energy with Langevin thermostats. (a) In
the forward direction we set T1 > T2 > T4 > T5 and calculate the
total heat input J from the baths attached to sites 1 and 2. (b) In the
backward direction we interchange the temperatures such that bead
1 (2) is now attached to a thermal bath at temperature T5 (T4), and
similarly for the other half. In this case we calculate the total heat
input J̃ from the hot baths, attached now to beads 4 and 5.

of Fig. 2(a) is

JC = (T1 − T4)M14 + (T2 − T5)M25

+ (T1 − T5)M15 + (T2 − T4)M24. (7)

Reversing the temperature profile as in Fig. 2(b), T1 ↔ T5 and
T2 ↔ T4, the reversed (J̃) current is

J̃C = (T5 − T2)M14 + (T4 − T1)M25

+ (T5 − T1)M15 + (T4 − T2)M24. (8)

The sum of the opposite currents, which quantifies the diode
effect is

�J ≡ JC + J̃C

= [(T1 − T2) − (T4 − T5)](M14 − M25). (9)

We can now identify the necessary conditions for realizing
the diode effect, �J 	= 0: (i) The temperature gradients should
be distinct at the two boundaries, (T1 − T2) 	= (T4 − T5). (ii)
The setup should include a spatial asymmetry such that M14 	=
M25. Asymmetry should be introduced in the thermostated
region, as we prove next. Explicitly, assuming the friction
constants are uniform, γ1,2,4,5 = γ , we get (Appendix A)

M14 = γ 2

π

∫ ∞

−∞
dωω2 |k1k2k3(−ω2 + iγω + k4 + k5)|2

| det G−1|2 ,

M25 = γ 2

π

∫ ∞

−∞
dωω2 |k2k3k4(−ω2 + iγω + k0 + k1)|2

| det G−1|2 .

(10)

Therefore, asymmetry in the central zone (see definitions
in Fig. 2) in the form k2 	= k3 cannot lead to the required
asymmetry M14 	= M25, since these terms are not sensitive
to the asymmetry. For the diode effect to hold, structural

asymmetry must be included in the thermostated zones. For
example, it could be introduced in the form k1 = k0 	= k4 =
k5. In Appendix A we consider chains of arbitrary size NI ,
with NH = NC = 2 and prove that structural asymmetry must
be introduced within the thermostated zones to realize a diode.

Furthermore, in a chain of length N with NB beads in each
thermostated zone,

JC =
NB∑
i=1

NB∑
j=1

(Ti − TN+1− j )Mi,N+1− j,

J̃C =
NB∑
i=1

NB∑
j=1

(TN+1−i − Tj )Mi,N+1− j . (11)

Therefore,

�J =
NB∑
i=1

∑
j 	=i

[(Ti − Tj ) + (TN+1−i − TN+1− j )]Mi,N+1− j .

(12)

The design of the TGHO diode deviates from standard settings
in that it relies on modifying the boundary conditions at the
thermostats.

The diode effect in our harmonic model can be explained
as the breakdown of conditions for satisfying the Rayleigh
reciprocity theorem, combined with structural asymmetry: In
the context of electromagnetism, Rayleigh reciprocity theo-
rem states that in time-invariant harmonic electric systems the
applied potentials and measured charge currents, at different
points, can be interchanged to provide the same result. By
analogy to electromagnetic systems, consider for example
beads 1 and 4 in Fig. 2. In the forward direction, the classical
heat current between these two beads is (T1 − T4)M14. If we
were to interchange the temperature following the (Rayleigh
reciprocity) protocol T1 ↔ T4, the magnitude of the reversed
heat current between beads 1 and 4 would be identical, sat-
isfying reciprocity. However, in our setup the temperature
profile is modified in a different manner, such that in the
reversed direction T1 ↔ T5 and T4 ↔ T2 [see Fig. 2(b)]. As
a result, the reversed current flowing between beads 1 and
4 is (T5 − T2)M14, possibly different in magnitude than the
forward direction. Reciprocity between particles 1 and 4 (and
similarly between any other pair) is broken here due the ap-
plication of thermal gradients in the thermostats, since we do
not exchange the temperatures as required by the reciprocity
theorem.

While breaking reciprocity is a necessary condition to re-
alize the TGHO diode, it is insufficient: In the absence of
spatial asymmetry the different terms in the total expression
for the heat current are paired such that overall there is no
diode effect. Therefore, as an additional necessary condition
for the TGHO diode we build-in spatial asymmetry such that
M14 	= M25 and T1 − T2 	= T4 − T5. This ensures not only that
reciprocity is broken between a pair of beads but also that the
total net heat currents in the forward and reversed directions
are distinct in magnitude.

Physically, the two asymmetries (structural and in the
applied thermal gradients) are achievable in molecular junc-
tions by connecting a molecule to distinct solids: Different

052130-4



HARMONIC CHAINS AND THE THERMAL DIODE EFFECT PHYSICAL REVIEW E 103, 052130 (2021)

materials are characterized by different phonon properties
such that the force constants at the left side would be distinct
from those at the right side, leading to the required spatial
asymmetry (ii). Furthermore, given that different materials
are employed at the two sides, it is reasonable to assume that
a total imposed gradient �T would be divided unevenly on
the two boundary regions such that condition (i) is satisfied.
(In real materials, these gradients develop due to lattice
anharmonicity.)

We highlight that, in the method of reverse nonequilibrium
molecular dynamics simulation of thermal conductance (or
conductivity), one imposes as the boundary condition the in-
put power, rather than the temperature bias. In steady state,
one then calculates the resulting temperature profile, which
typically displays a linear gradient at the metal contacts (see,
e.g., Ref. [11]). Most importantly, we reiterate that imposing
structural asymmetry (k2 	= k3 in Fig. 2) while using identical
boundaries (k0 = k1 = k4 = k5) cannot result in thermal rec-
tification in our model.

In Appendix B, we discuss the corresponding TGHO diode
effect for harmonic chains with local trapping (pinning) po-
tentials. We show that the TGHO diode effect can develop
only once pinning potentials at the two thermostated regions
are different—applying as well unequal thermal gradients.
This setup could correspond to a linear chain of trapped ions
as described in Refs. [19,20].

We now discuss several aspects of TGHO chains.
(i) Absence of rectification with two affinities. If the beads

at the thermostated segments are coupled to equal-temperature
baths, T1 = T2 and T4 = T5 in Fig. 2, then �J = 0 irrespective
of structural asymmetry implemented via, e.g., mass gradient,
differing force constants, or couplings to the baths.

We emphasize that rectification does not develop in this
single-affinity scenario even when the model is made more
complex, e.g., by making the statistics of the baths quantum,
including long-range (yet harmonic) interactions, or by allow-
ing the baths to couple to all beads (with different strengths).
This observation emerges from the analytic structure of the
Landauer heat current expression.

(ii) Classical and quantum TGHO diodes. As we show
in Eq. (9), �J 	= 0 once the gradients are different, (T1 −
T2) 	= (T4 − T5), unless a mirror symmetry is imposed with
M14 = M25. To break the symmetry between M14 and M25, the
thermostated regions should be made structurally asymmetric,
i.e., k1 	= k4.

(iii) Purely quantum TGHO diode. In the quantum limit,
the temperatures in Eq. (9) appear within the Bose-Einstein
distribution functions, included in the frequency integral.
In this case, as long as at least three affinities are ap-
plied, e.g., T1 > T2 > T4 > T5, and even when the gradients
are equal, (T1 − T2) = (T4 − T5), thermal rectification would
show up (assuming structural asymmetry is included as
required.)

(iv) Self-consistent reservoir method. The TGHO system
is distinct from the self-consistent reservoir (SCR) method,
which was discussed in, e.g., Refs. [48–53] in the context
of thermal rectification in quantum chains. The role of the
SCRs is to mimic anharmonicity. These fictitious thermal
baths are attached to interior beads while demanding zero
net heat flow from the physical system to the SCRs. The
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FIG. 3. Contour plot of the rectification ratio in an N = 5-
particle harmonic chain with NH = NC = 2. (a) Classical case and
(b) quantum calculation with T1 = 1, T2 = 0.5, T4 = 0.2, T5 = 0.1,
and γ = 1; the central bead is not coupled to a thermostat. We intro-
duce different harmonic force constants at the thermostated regions,
but use k2 = k3 = 1 for the interior part. Masses are set at m = 1.

temperature of the SCRs is dictated by this condition. In
contrast, in the TGHO chain the thermostats are responsible
for the power input and output from the system, and their
temperature is freely assigned as an independent boundary
condition.

IV. SIMULATIONS

A. Classical and quantum TGHO diodes

The rectification effect can be measured in different ways,
with �J 	= 0, defined in Eq. (9), or based on a rectification
ratio, R ≡ |J/J̃|. We demonstrate the TGHO diode effect in
Fig. 3, where we study the effect in the five-bead system corre-
sponding to Fig. 2. We implement spatial asymmetry by using
different force constants, k0 = k1 	= k4 = k5. The current was
calculated as the total input heat (6) (confirmed to be identical
to the total heat dissipated to the cold baths) by numerically
integrating Eqs. (3) and (5) with a fine frequency grid up to
a cutoff frequency larger than all other energy scales. For a
discussion of the subtleties of the heat current definition, see
Ref. [54].

We show that both classical and quantum calculations can
create the diode effect. In Fig. 3(a), the rectification ratio
reaches up to R ≈ 1.4 in both the classical and quantum cases.
While the effect is not very large, it is in fact comparable to
rectification ratios emerging due to an anharmonic potential,
as we discuss below in Fig. 8. In Fig. 3(b) we display the
behavior of the quantum TGHO diode, indicating a somewhat
stronger diode effect (bottom-right domain).

How can we tune the system to increase the rectification
ratio? As can be seen from the analytic form of the heat
current for a five-bead chain, there are four terms that play
a role in the rectification ratio, M14, M25, M15, and M24. These
contributions are displayed in Fig. 4. We conclude that at large
asymmetry (bottom-right part), M14 should dominate—once
the gradients are made large. At this region, roughly R ≈
|(T1 − T4)/(T5 − T2)|, which is ≈2 in our parameters, close
to the achieved maximal rectification ratio of 1.4.

Thus, a viable strategy to increase rectification is to impose
large structural asymmetry between the two ends, as well as
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FIG. 4. The elements Mi j for the classical model corresponding
to simulations in Fig. 3. Rectification arises due to the asymme-
try M14 	= M25 (diagonal panels), while the asymmetry between
M15 and M24 (off-diagonal panels) does not control rectification. Pa-
rameters are the same as those in Fig. 3.

to apply significantly unequal thermal gradients at the left
and right sides. The large spatial asymmetry results in the
dominance of a single transport pathway. Furthermore, by
imposing a large gradient at the left side, �TH , and a small
gradient at the right side, �TC , with a small temperature drop
on the central region (such that in the example used T4 ∼ T2),
the rectification ratio of the model scales as R ∝ |�TH/�TC |.
Below (Fig. 7) we further show that in long chains the rectifi-
cation effect is suppressed with NB = NH,C , but it only weakly
depends on NI . We therefore suggest that R ∝ 1

NB
|�TH
�TC

|.

B. Purely quantum TGHO diode

The dependence of the classical and quantum TGHO diode
effect on the local gradients is presented in Fig 5. As described
above, the diode effect is enhanced when, e.g., the left side
experiences a large thermal gradient, while temperatures on

FIG. 5. Dependence of rectification on the temperature dif-
ferences �TH = T1 − T2 and �TC = T4 − T5 in (a) classical and
(b) quantum calculations. Rectification is enhanced when one gradi-
ent is very large and the other small. Here, T1 = 10, T2 = 10 − �TH ,
T4 = �TC , and T5 = 0. The force constants are k0 = k1 = 2, k2 =
k3 = 1, k4 = k5 = 0.1, m = 1 and γ = 1.
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FIG. 6. Purely quantum TGHO diode operating when the ther-
mal gradients at the two boundaries are equal, �TH = �TC . We
display the diagonal of Fig. 5. Parameters are T1 = 10, T2 = 10 −
�T , T4 = �T , and T5 = 0.

the right side are almost identical. The classical case cannot
support the diode effect when the local gradients are equal,
�TH = �TC . In contrast, quantum statistics allows the diode
behavior under equal gradients. This effect is illustrated in the
behavior along the diagonal of Fig. 5(b), presented for clarity
in Fig. 6.

C. Length dependence of the TGHO diode effect

Figure 7 displays the behavior of the rectification ratio as
the size of the system increases. In Fig. 7(a) we increase the
number of thermostated sites NB while fixing the overall tem-
perature differences �TH and �TC , assuming a linear gradient
in each region. We find that rectification decays as the number
of thermostated sites increases. In contrast, the rectification
ratio persists and saturates as we increase the number of sites
in the interior region, NI . This saturation is expected since
in harmonic chains thermal transport is ballistic. Thus, the
impact of the central region on the rectification effect should
become independent of length, NI , for long enough chains.

5 10

1.14

1.18

1.22
(a)

5 10 15 20

1.15

1.17

1.19

1.21

(b)

FIG. 7. Behavior of the rectification ratio with (a) NB, number
of thermostated sites, and (b) NI , number of interior sites. We set
temperatures and gradients as T1 = 1, T2 = 0.5, T4 = 0.2, and T5 =
0.1; thus, �TH = 1 − 0.5 and �TC = 0.2–0.1. In panel (a), a linear
gradient is assumed within each thermostated region. In panel (b),
NH = NC = 2. Other parameters are γ = 1 and force constants in
the left (right) thermostated region at 1 (0.1); other constants are set
to 1. Simulations were performed using classical expressions.
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FIG. 8. The rectification ratio in the Frenkel-Kontorova anhar-
monic chain. The setup is analogous to Fig. 1(a) with the leftmost
and rightmost particles thermostated. Rectification is achieved by
adding different anharmonic on-site FK potentials to the left (first
two beads) and right (last three beads) sides of the five-bead chain.
Here, on the left side, VL = 1 and k = 1, while on the other half of the
chain VR varies and k = 0.1. Other parameters are TH = 1, TC = 0.1,
and γ = 1. The inset presents the currents in the forward (J) and
reversed (J̃) directions.

D. Comparison to an anharmonic diode

To appreciate the magnitude of the rectification effect in
the TGHO chain, we present in Fig. 8 the diode behavior
emerging when anharmonic interactions are explicitly added
to the chain. We use the Frenkel-Kontorova (FK) potential
that was used in many demonstrations of nonlinear thermal
devices, e.g., Refs. [22,55,56], adding on-site potentials to
Eq. (1),

V (x) = VR/L cos

(
2π

a
x

)
. (13)

Specifically, for the five-site chain, we encode asymmetry in
the force constants and in the local potentials, VL vs VR.

Unlike the harmonic case, which is analytically solvable, to
treat anharmonic interactions we turn to numerical molecular
dynamics simulations. The Langevin equations of motion are
integrated with the Brünger-Brooks-Karplus method; simu-
lations were preformed by propagating the dynamics long
enough to reach a steady state, and then finding the heat cur-
rent by averaging the local currents between adjacent beads.
Here we compute heat current as the net power exchanged be-
tween central beads, 〈JC〉 = k2

2 〈(v2 + v3)(x3 − x2 − a)〉. We
then average over time and over realizations of the noise.
Technical details were discussed in Ref. [54]. Results are pre-
sented in Fig. 8. Note that in the FK calculation, we resort to
the standard modeling with a single thermal affinity, TH at the
left thermostat and TC at the right side. Furthermore, only the
leftmost (bead 1) and rightmost (N) beads are thermostated,

Comparing Fig. 8 to, e.g., Fig. 3, we note that rectification
in the anharmonic FK model is comparable to values received
in the TGHO diode. Thus, while the rectification ratio demon-
strated with the TGHO chain model is not impressive, it is
similar to what one would achieve using similar parameters
in the FK anharmonic chain, a central model for diodes ex-
amined in the literature. The FK model has been optimized to

show a large rectification ratio [22]; similarly, it is interesting
to explore the means for enhancing the TGHO diode effect.

V. DISCUSSION AND SUMMARY

We described a different type of a thermal diode, which
is constructed in a purely harmonic system when attached to
multiple thermostats, thus imposing at least two affinities. The
TGHO diode operates when two conditions are met: The ther-
mostated regions are (i) structurally asymmetric with respect
to each other and (ii) placed under unequal thermal gradients.
We further proved the onset of a purely quantum TGHO diode,
which exists when the reservoirs (of different temperatures)
are placed under equal gradients. We analyzed the dependence
of the TGHO diode effect on chain length and the applied
temperature gradient and further compared its performance
to a diode model that was based on an anharmonic force
field.

Recent studies used harmonic junctions with a single
affinity [as in Figs. 1(a) and 1(b)] to realize a diode effect
[19,20]; this was achieved by making parameters such as
friction coefficients temperature dependent, γ1(T ) and γN (T ).
We refer to such models as effective harmonic-oscillator
diodes. In this case, going back for simplicity to the clas-
sical limit, Eq. (3), the net heat current is given by J ∝
(TH − TC )γ1(TH )γN (TC )M1N (TH , TC ), where we extracted the
friction coefficients from the definitions of M1N in Eq. (4).
Assuming, e.g., a linear dependence of friction coefficients
with the temperature of the attached bath, γ1,N (TH ) = γ1,N +
λ(TH − TC ), and γ1,N (TC ) = γ1,N − λ(TH − TC ), with λ as the
slope, one obtains a diode effect,

�J ∝ λ(TH − TC )2(γN − γ1)M1N (TH , TC ), (14)

where for simplicity we assumed that the friction coefficients
have a small effect on the Green’s function G(ω). The diode
effect �J 	= 0 relies on two conditions: (i) structural asym-
metry in the form here of γ1 	= γN , and (ii) hidden-effective
interactions λ 	= 0, making parameters temperature depen-
dent. Notably, this effective harmonic oscillator diode scales
quadratically with the temperature difference, �J ∝ (TH −
TC )2. This quadratic scaling is the fingerprint of a hidden an-
harmonicity, illustrating a nonlinear phenomena. In contrast,
the TGHO diode is a linear effect, characterized by the linear
scaling of the net heat current with local temperature biases,
�J ∝ �T [see Eq. (9)].

Purely harmonic junctions connecting heat baths at two
different temperatures cannot rectify heat. Our study shows
that one may achieve a diode behavior in harmonic setups
by using compound boundary conditions that enforce local
thermalization on several sites. Realizing a TGHO thermal
diode with a large rectification ratio remains a challenge. Fu-
ture work will be focused on testing the impact of long-range
interactions on the TGHO diode with the goal to enhance its
performance.
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APPENDIX A: TGHO DIODE WITH ASYMMETRIC INTERPARTICLE COUPLINGS

We show that rectification appears only when asymmetry is encoded such that the thermostated regions are distinct.
For the five-site model with equal friction constants, G−1(ω) =⎛
⎜⎜⎜⎜⎜⎝

−ω2 + iγω + k0 + k1 −k1

−k1 −ω2 + iγω + k1 + k2 −k2

−k2 −ω2 + k2 + k3 −k3

−k3 −ω2 + iγω + k3 + k4 −k4

−k4 −ω2 + iγω + k4 + k5

⎞
⎟⎟⎟⎟⎟⎠,

with zero elsewhere. As discussed in the main text, in our setup, NH = NC = 2 and NI = 1; two beads are thermalized at the
boundaries and a single bead at the center is not directly coupled to heat baths. The diode effect for this system can be quantified
by Eq. (9), and it is controlled by the asymmetry between M14 and M25. We provide now explicit expressions for these terms, as
defined in Eq. (4).

First, G14 = det(C14 )
det(G−1 ) , where C14 is the minor of G−1, missing row 1 and column 4,

C14 =

⎛
⎜⎜⎝

−k1 −ω2 + iγω + k1 + k2 −k2

−k2 −ω2 + k2 + k3

−k3 −k4

−ω2 + iγω + k4 + k5

⎞
⎟⎟⎠, (A1)

so

det(C14) = −k1k2k3(−ω2 + iγω + k4 + k5). (A2)

Similarly,

C25 =

⎛
⎜⎜⎝

−ω2 + iγω + k0 + k1 −k1

−k2 −ω2 + k2 + k3 −k3

−k3 −ω2 + iγω + k3 + k4

−k4

⎞
⎟⎟⎠, (A3)

so

det(C25) = −k2k3k4(−ω2 + iγω + k0 + k1). (A4)

In order to obtain det(C14) 	= det(C25) we need to introduce an asymmetry, for example, setting k0 	= k5 or k1 	= k4. The
parameters of the interior (unthermalized) region, k2 and k3, play no role in determining whether or not there will be rectification.
Nevertheless, they can control the magnitude of the effect. Explicitly,

M14 = γ 2

π

∫ ∞

−∞
dωω2 |k1k2k3(−ω2 + iγω + k4 + k5)|2

| det G−1|2 . (A5)

The denominator is a degree 20 polynomial of ω. Its exact value depends on all the system parameters. Other contributions to
the current are given in terms of

det(C15) = k1k2k3k4,

det(C24) = k2k3(−ω2 + iγω + k0 + k1)(−ω2 + iγω + k4 + k5). (A6)

Longer chains have the analogous property that force constants between beads not connected to heat baths play no role in
rectification: Asymmetry must appear between the sections directly thermalized by baths. More precisely, in an N-bead chain
with NH = NC = 2, so that beads 1 and 2, N − 1 and N , are connected to thermostats, we get

det(C1(N ) ) = k1kN−1

(
N−2∏
i=2

−ki

)
,

det(C1(N−1)) = − k1

(
N−2∏
i=2

−ki

)
(−ω2 + iγω + kN−1 + kN ),
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det(C2(N ) ) = − kN−1

(
N−2∏
i=2

−ki

)
(−ω2 + iγω + k0 + k1),

det(C2(N−1)) =
(

N−2∏
i=2

−ki

)
(−ω2 + iγω + k0 + k1)(−ω2 + iγω + kN−1 + kN ). (A7)

Rectification appears when det(C1(N−1)) 	= det(C2(N ) ), thus k1 	= kN−1 and/or k0 	= kN ; asymmetry in the central region force
constants, k2, . . . , kN−2, is not sufficient to enact rectification.

APPENDIX B: TGHO DIODE WITH ASYMMETRIC ONSITE POTENTIALS

In this Appendix we include asymmetry by introducing local trapping potentials with the force constant k̃; the interparticle
potentials are assumed to be identical. For the five-particle chain with harmonic on-site potentials, the inverse Green’s matrix
has the form

G−1(ω) =

⎡
⎢⎢⎣

−ω2 + iγω + 2k + k̃1 −k
−k −ω2 + iγω + 2k + k̃2 −k

−k −ω2 + 2k + k̃3 −k
−k −ω2 + iγω + 2k + k̃4 −k

−k −ω2 + iγω + 2k + k̃5

⎤
⎥⎥⎦.

We again set NH = NC = 2 and NI = 1; two beads are thermalized at each boundary, while the single bead at the center (particle
3) is not thermalized. The diode effect for this system can be quantified by Eq. (9), and it is controlled by the asymmetry between
M14 and M25. We provide now explicit expressions for these terms to analyze the required source of asymmetry.

The elements det(Ci j ) take the following forms:

det(C15) = k4,

det(C14) = −k3(−ω2 + iγω + 2k + k̃5),

det(C25) = −k3(−ω2 + iγω + 2k + k̃1),

det(C24) = k2(−ω2 + iγω + 2k + k̃1)(−ω2 + iγω + 2k + k̃5). (B1)

In this case, rectification can show up once k̃1 	= k̃5, resulting in M14 	= M25. As in the case of asymmetric interparticle forces,
this holds for chains of any size. For an N-bead chain with NH = NC = 2,

det(C1(N ) ) = kN−1,

det(C1(N−1)) = −kN−2(−ω2 + iγω + 2k + k̃N ),

det(C2(N ) ) = −kN−2(−ω2 + iγω + 2k + k̃1),

det(C2(N−1)) = kN−3(−ω2 + iγω + 2k + k̃1)(−ω2 + iγω + 2k + k̃N ). (B2)

Therefore, it is the asymmetry k̃1 	= k̃N that is responsible for the diode effect. Inspecting this form, we expect that the TGHO
chain with an asymmetry in the interparticle force constants would support rectification ratios larger than those of the case with
pinning potentials.
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