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First passage under restart has recently emerged as a conceptual framework to study various stochastic
processes under restart mechanism. Emanating from the canonical diffusion problem by Evans and Majumdar,
restart has been shown to outperform the completion of many first-passage processes which otherwise would
take longer time to finish. However, most of the studies so far assumed continuous time underlying first-passage
time processes and moreover considered continuous time resetting restricting out restart processes broken up
into synchronized time steps. To bridge this gap, in this paper, we study discrete space and time first-passage
processes under discrete time resetting in a general setup without specifying their forms. We sketch out the steps
to compute the moments and the probability density function which is often intractable in the continuous time
restarted process. A criterion that dictates when restart remains beneficial is then derived. We apply our results to
a symmetric and a biased random walker in one-dimensional lattice confined within two absorbing boundaries.
Numerical simulations are found to be in excellent agreement with the theoretical results. Our method can be
useful to understand the effect of restart on the spatiotemporal dynamics of confined lattice random walks in

arbitrary dimensions.
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I. INTRODUCTION

There are certain benefits in starting anew. Restart or re-
setting, a new topic in statistical physics, teaches us that
stopping intermittently and starting over again and again can
increase the chances of reaching a desired outcome. Although
it seems nonintuitive at a first glance, the basic physics is
rather simple. Restart works by truncating the tails of long
detrimental trajectories thus rendering the large stochastic
fluctuations regular. In statistical physics, this mechanism was
first observed in the canonical diffusion model with stochastic
resetting by Evans and Majumdar [1,2]. Since then, restart
has emerged as a very active avenue of research in statistical
physics [1-8] and generic stochastic process [9—15] due to its
numerous applications spanning across interdisciplinary fields
ranging from computer science [16,17], population dynamics
[18], queuing theory [19], chemical and biological process
[20-23], foraging [24], and search processes with rare events
[25-27]. We refer to a recent review [28] (and references
therein) for a detailed account of the subject. The subject has
also seen advances through single particle experiments using
optical tweezers [29,30].

A hallmark of resetting is its ability to reduce the mean
and fluctuations of the first-passage time to a target. This
observation has led to many first-passage studies under reset-
ting over the years (see Ref. [28] for details). In particular,
a framework, namely, first passage under restart, has been
quite instrumental to study generic stochastic processes under
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various restart mechanisms [31]. The power of this approach
lies on the fact that it allows one to compute general ex-
pressions for important metrics, namely, the moments and
the distribution of completion time of restarted process
regardless of the specifics of the underlying first-passage pro-
cess [31-38]. Furthermore, it allows one to discover many
universal phenomena such as a criterion for restart to be bene-
ficial [31,35,39,40], a globally dominating restart mechanism
[31,41], a general Landau like theory for restart transitions
[42] and conditions on other quantiles of first-passage pro-
cesses [43] that emerge as an effect of restart.

A Brownian walker on a real line subject to a resetting to
the origin at certain rate is perhaps the most quintessential
example of restart phenomena [1]. In this problem, one is
interested in the first-passage time to a target which is lo-
cated at a given distance and it was shown that restart can
expedite the completion. This problem was then studied in
higher dimensions [44] and complex geometries [45,46], in
the presence of multiple targets [36,47], and also in the pres-
ence of generally distributed resetting time density [7,31,35].
It is important to emphasize that resetting occurring at a con-
stant rate essentially implies that the waiting times between
resetting events are taken from an exponential distribution.
In other words, here, resetting is a continuous time Markov
process. Notably, majority of the studies in the field spanned
around the continuous time Brownian motion and its variants,
e.g., scaled diffusion [48], underdamped [49], and random
acceleration process [50] (also see Ref. [28] for other model
systems). A general version of random walk (RW), namely,
the mesoscopic continuous time random walks with heavy
tailed jump distributions (such as Lévy flights) were studied

©2021 American Physical Society


https://orcid.org/0000-0003-2963-4915
https://orcid.org/0000-0001-6806-5431
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.052129&domain=pdf&date_stamp=2021-05-24
https://doi.org/10.1103/PhysRevE.103.052129

OFEK LAUBER BONOMO AND ARNAB PAL

PHYSICAL REVIEW E 103, 052129 (2021)

in Refs. [51,52]. Continuous-time RWs have also been stud-
ied under various resetting strategies (power law, Markovian,
etc.) [53-56]. In a recent work [57], a continuous time lattice
RW was considered in the presence of resetting conducted
at a rate and stationary probability distribution, mean first-
passage time were computed for an infinite and semi-infinite
chain. Interacting continuous time lattice RW's with exclusion
were studied in the presence of stochastic resetting [58,59].
Continuous time RWs on a network in the presence of stochas-
tic resetting were studied in Refs. [60,61]. Arguably, most
of these models also use resetting to be a continuous time
process for the computations there have neater mathematical
structure.

Nonetheless, there are some recent works which shed light
on the discrete time lattice RW with discrete resetting. A
discrete time RW on a real line (but with jumps drawn from
a continuous and symmetric distribution) in the presence of
resetting was studied in Ref. [9]. A discrete time unidirec-
tional RW, namely, Sisyphus lattice RW was studied in the
presence of the resetting probability which can be random
or site-dependent [62]. They analyzed the first-passage time
and survival probabilities for the walker to reach a certain
threshold in the lattice. Recently, preferential visit models
have been introduced to generalize resetting with memory of
history [63]. This is most naturally illustrated by a discrete
time lattice RW which with some reset probability is returned
to its previous position at a randomly selected time from
the past. More precisely, the walker relocates to a previously
visited site with a probability proportional to the number of
past visits to that site. It was shown that the RWs perform
slow sub-diffusion due to the dynamics of memory-driven
resetting [63,64]. The model above was further studied in the
presence of a single defect site where the RW stays with a fi-
nite probability [65,66]. Another discrete time RW on a lattice
was considered in Ref. [67] where resetting with a probability
relocated the walker to the previous maximum. Very recently,
discrete time random walks on arbitrary complex networks
was studied in the presence of stochastic resetting [68]. The
authors studied the stationary probability distribution as well
as the mean and global first-passage times. Unlike the contin-
uous time and space first-passage processes under continuous
time resetting, the discrete counterparts are only handful. Also
it is not apparent how the nonstochastic restarts can ramify
the first-passage processes. To this end, we build a general
framework for discrete first-passage processes under discrete
time resetting. Crucially, we need not specify the details of
the underlying first-passage process or the resetting time. The
derivation follows the steps from Ref. [31] developed by one
of the authors of the current paper. Importantly, this approach
holds even when both the first-passage and restart processes
are not necessarily Markovian as long as the memory from
the past is erased after each resetting. Pertaining to this prop-
erty, renewal framework has been used extensively in the
above-mentioned fields along with in stochastic thermody-
namics [69], quantum mechanics [70] and nonlinear dynamics
[71]. We provide working formulas for the moments and the
probability density function for the first-passage time under
restart. We then derive a condition which asserts when restart
is going to expedite the completion. We employ our results to

the application of 1D lattice RWs in confined geometry under
two different restart strategies.

Lattice RWs are a special class of Markov processes
which were popularized following Pélya’s seminal work on
the dimensionality dependence of the recurrence probability,
that is, the probability that a random walker on an infinite
space d-dimensional lattice eventually returns to its starting
point [72-77]. Needless to say that the subject is now a text
book material and the applications are myriad. Somewhat
surprisingly, and in contrast to Brownian walks, the space-
time dependence of the confined lattice walk probability and
first-passage time quantities has been accessible mainly via
computational techniques due to combinatorial hindrances
and only a few exact results exist [78-80]. Although for 1D
confined domains, the time-dependent propagator for absorb-
ing boundaries [81] and periodic domains [78] were known,
no analytical results were known for mixed or reflective
boundary conditions in 1D and in high dimensions for all the
above-mentioned boundary conditions. Only recently, Giuggi-
oli has derived exact results for the space and time dependence
of the occupation probability, first-passage time probability
for confined Pdlya’s walks in arbitrary dimensions with reflec-
tive, periodic, absorbing, and mixed (reflective and absorbing)
boundary conditions along each direction [82]. Further gen-
eralizations were made by Sarvaharman and Giuggioli for
the biased RWs with different boundary conditions [83]. Our
derivation shows that the solution for the restarted process
can be given in terms of the solution for the underlying
process in accordance with many other previous works (see,
e.g., Refs. [6-10,31]). This often reduces the overall com-
plexity since one may not need to solve the master equations
for position density function or the backward Fokker-Planck
equations for the survival probability with resetting terms.
Instead, one can directly use some of the existing solutions
for the underlying process in the renewal relations. Taking
advantage of this, we show here, how these very recent results
by Giuggioli and coauthors naturally set the perfect stage for
us to employ them directly when restart is involved.

The paper is organized as follows. In Sec. II, we build
up the framework of first-passage step under restart, de-
rive the working formulas for the statistical moments, and
the probability mass function for the completion time. In
the consecutive subsections, we discuss two different restart
strategies, namely, the geometric and sharp protocols. We
herein derive the sufficient criterion for geometric restart
to be beneficial for any first-passage process. In Sec. III,
we apply the framework to one-dimensional lattice RWs.
In Sec. IIC, we discuss the simple random walk, while in
Sec. III B we present the biased random walk in the presence
of the above-mentioned restart strategies. Our conclusions
are summarized in Sec. IV. Some of the derivations from
the main text and additional discussions are reserved for the
Appendix. Before we proceed, it will be useful to introduce
the notations used throughout the paper. We will use Py (x),
(X), a)%, and Gx(z) = (zX) to denote, respectively, the proba-
bility mass/density function (PMF/PDF), mean/expectation,
variance, and the probability generating function (PGF) of a
discrete random variable X taking values in the nonnegative
integers.
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FIG. 1. Schematic of a lattice random walker in a 1D confined
geometry under discrete restart. First passage occurs as soon as the
walker reaches one of the boundaries located at 1 and N. The restart
coordinate is n, same as the initial condition.

II. FIRST-PASSAGE STEP UNDER RESTART

Consider a generic discrete step first-passage process that
starts at the origin and, if allowed to take place without
interruptions, ends after a random number of steps N (see
Fig. 1). The process is, however, restarted after some random
number of steps R. Thus, if the process is completed prior, or
at the same time as the restart, then we mark a completion of
the event. Otherwise, the process will start from scratch and
begin completely anew. This procedure repeats itself until the
process reaches completion. Denoting the random completion
number of steps of the restarted process by Ng, it can be seen

that
<

R+N, N>R, 1

where Ny, is an independent and identically distributed copy
of Ng. Equation 1 is the central renewal equation for first-
passage step under restart and assumes that after each restart,
the memory is erased from the previous trial. To obtain the
mean number of steps for the restarted process, we note that
Eq. (1) can be written as Ngx = min(N, R) + I{N > R}Ng,
where I{N > R} is an indicator random variable that takes the
value 1 when N > R and zero otherwise. Taking expectations
on the both sides and using that N and R are independent of
each other, we find the mean completion time under restart to
be

(min(N, R))
Pr(N <R)’

The numerator can be computed by noting that the probability
Pr(min(N, R) > n) = Pr(N > n)Pr(R > n) and thus

2

(Ng) =

(min(N, R)) = Z Pr[min(N, R) > n]

n=0
=) < > PN<k)>( > PR(m>>, 3)
n=0 \k=n+1 m=n+1

where recall that Py(n) and Pg(n) are the probability density
functions for the first-passage and restart process, respec-

tively. The denominator in Eq. (2) can also be computed
easily:

Pr(N <R) =Y Py(n) ) _ Pr(m). )
n=0

m=n

We now turn our attention to derive the generating function
for the restarted process. The probability generating function
of the discrete random variable Ny taking values in the non-

negative integers 0, 1, .. ., n, is defined as
o0
Gy (2) = (%) =) Py (m)”, )
n=0

where Py, (n) is the probability mass function of Ng. It will
now prove useful to introduce the following conditional ran-
dom variables

Nmin = {NIN = min(N, R)} = {NIN < R}, (6)
Rimin = {R|R = min(V, R)} = {R|N > R}, @)
with their respective densities
Y e Pr(m)
Py . = Py(n)="=2——, 8
Noin (1) = Py (1) Pr(N < R) ®)
Z;O—nJrl Py(m)
Pr . = Pr(n)—/——«—, 9
Ruin (1) = Pr(1) Pr(N = R) 9)

where Pr(N > R)=1—Pr(N < R). Using the renewal
Eq. (1) and the new random variables in Egs. (6)—(7), we can
write (see Appendix A)

Gy (2) = Pr(N < R)(Z¥™) + Pr(N > R)(Fnn ™). (10)

Now using the fact that N is an independent and identically

distributed copy of N in above, we arrive at the following

expression for the generating function of the restarted process,
(1 —=Pr(N > R))Gy,,, (2)

GNR(Z) = 1— Pr(N > R)GRm:(Z) ’ (11)

where Gy, (z) is the generating function for the random vari-
able Xyin. Equation (11) is extremely useful since it allows
one to compute all the moments,

9\
(N&) = (Za_> G (D=1, (12)
b4
and, importantly, also the probability density function of Ng,
G0
Py, (n) =Pr(Ng = n) = A;fl;’)’ (13)

where (Nf) is the kth moment and Gg(") (z) is the nth derivative
of Gx(z) with respect to z, and n = 0, 1, 2.... It is important
to emphasize that in continuous time setups, deriving the first-
passage time density for the restarted process requires Laplace
inversions, and thus it remains intractable in most of the
cases (except some asymptotic limits [1]). In stark contrast, in
discrete setup, computation of the first-passage time density
requires only derivatives of the generating function as seen in
Eq. (13), and thus is more accessible. It is easy to see that
the expression for the mean in Eq. (2) can be easily recovered

052129-3



OFEK LAUBER BONOMO AND ARNAB PAL

PHYSICAL REVIEW E 103, 052129 (2021)

using the generating function given in Eq. (11) and noting

(Ne) = ZBGNR(Z)
9z l=1-
_ 2(1=Pr(N > R)(=Pr(N > R)Gr,, ()G, (2)
= (1=Pr(N > R)Gg,, (2))’ =1
Pr(N > R)Gy,,,(2)Gg  (2)
B min . (14)
(1 —=Pr(N > R)Gg,,,(2)) =1-

Substituting z — 17, and utilizing the relations Gy, (17) =
Gro(17) =1, Gy (17) = (Nuin), Gy, (17) = (Ruyin), 0b-
tained from Eqs. (8) and (9), we get
_ Pr(N < R)(Nwin) + Pr(N > R)(Ruin)
B Pr(N < R)

(min(N, R))

T P(N<R)’ (15)

(NR)

which is indeed Eq. (2). Similarly, the second moment can be
computed using the following relation:

(Nz) = (26, (2) + Gy, (@)

Higher-order moments can also be computed in a similar
way. So far, we have kept our formalism extremely general
without specifying the forms of the restart time density. In
what follows, we will use two different distributions for the
restart time, namely, the geometric and the sharp distribution.

(16)

z=1""

A. Geometrically distributed restart

Consider a resetting number step taken from a geometric
distribution with parameter p (0 < p < 1),

Pr(n) =1 —p)'p, n 2 0. a7

In other words, restart would take place with a probability
p after n unsuccessful trials. Notably, this distribution is the
discrete analog of the exponential distribution, being one dis-
crete distribution possessing the memory-less property [84].
For this distribution, following Appendix B, we have

1 _
(min(N, R)) = Tp[l — Gy(1 = p), (18)

Pr(N < R) = Gy(1 — p). (19)

Substituting Eqgs. (18) and (19) into the formula for the

mean of the restarted process given in Eq. (2) yields
(Ng) = 1-Gy(1—p)1 P 20)

Gy(1 —p) p

The above expression can be understood intuitively from the
knowledge of the mean number of restart events till the first
passage and the mean number of steps taken between any
two restart events [here, we have assumed that restart can
also occur at n = 0 with probability p — see Eq. (17)]. At the
limit p — 0%, namely, when restart is rare, Eq. (20) reduces to
(following L’ Hospital’s rule) lim .o+ (Ng) = G (17) = (N).
We now turn to the derivation of the PGF of the restarted
process under geometric restart. We first compute the PGFs

for the conditional random variables N, and Ry,;,. Following
Appendix B, we find

_ Gylz(l = p)]
G () = 5 1)
plGnlz(1 — p)] — 1}
Gg. . = . 22
Rl = T e — Gl
Substituting Eqgs. (21)—(22) into Eq. (11) we find
Gx, (2) = [1 — (1= p)z]Gy[(1 — p)z] 23)

(1 = p)(1 = 2) + pGy[(1 = p)z]’

from which one can derive the probability mass function of
the restarted process by taking the derivatives of the gen-
erating function using Eq. (13). Another equivalent way is
to derive the moments from PGF of the survival function
On,(n) = Pr[Ng > n], i.e., probability that the process has not
ended by the time step n with restart steps. This is given by
(Appendix C)

1 — p)Gg,[(1 — p)z]
1 _pGQN[(l —P)Z] )

We also refer to Eq. (C2) which derives a relation between
the PGFs of the survival and first passage function in discrete
case. A similar relation like in Eq. (24) was first derived in
Ref. [9] (only difference is that our process can also start with
a restart event in zero step). This difference becomes more
apparent in the mean first passage of the restarted process,
namely, in Eq. (20), which was also obtained in Ref. [9].
We mention that the mean can also be obtained from the
survival PGF by noting (Ng) = Gg,,(z — 17), as was done in
Ref. [9]. We now compute the second moment using Eq. (23)
in Eq. (16)

Go,,2) =Y 7"On,(n) = ( (24)

n=0

(I =p)Gyd = p)Bp -2 - pGy(l — p)]
PGy (1= p)
201 = pP(pGy(1 = p) = 1)
P*Gy(1—p)
One of the key properties of the restart is its ability to lower
the underlying mean first-passage time and this often leads to
an optimal value of the restart rate at which the mean time
reaches a global minimum. To elucidate this in the discrete

setup, we now study whether there exists a sufficient enough
criterion under which restart is always beneficial.

(8] =

(25)

B. A criterion for geometric restart to be beneficial

To derive the criterion, we first observe a first-passage time
process and turn on an infinitesimal restart probability p —
0. If restart has to lower the mean time, then it is sufficient
enough to check whether d(Ng)/dp|,—o < 0, where (Ng) is
given by Eq. (20). A small p expansion of (Ng) gives

(Ng) ~ Gy (1) + 1p[2Gy(1)* — 2Gy (1) — Gy (D]. (26)

Now noting that Gy, (1) = (N), G (1) + Gy (1) — Gy (1)* =
Var(N) and substituting into Eq. (26), the criterion can be
recast as

CV:>1-— 1 27)
(N)’
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where CV? = % is the squared coefficient of variation of
the underlying first-passage process. This essentially means
that whether restart would favour a completion depends on the
underlying first-passage time process. Moreover, this criterion
is also not sensitive to the entire density, but only to the
first two moments of the underlying process. We refer to a
similar criterion that was derived for the continuous stochastic
resetting case in Ref. [31].

It is, however, clear that repeated restart will only prolong
the completion since the process is almost “frozen” to the
resetting configuration, and thus the average completion time
will be exceedingly large. Taking this fact along with the
criterion Eq. (27) simply implies that the mean completion
time must be having at-least one minimum as a function of p.
The optimal probability, p*, which minimizes this mean first-
passage time [Eq. (20)], can be determined from the following
root equation:

Gy(1 = p*) = Gy(1 = p") + (1 = p)p* Gy (1 = p*) = 0.
(28)

Clearly, the valid solution of the above equation provides us
with an optimal probability p* for which the mean completion
time attains a minimum and thus adheres to the criterion
Eq. (27).

C. Sharp restart

We also consider a strategy when restart events always take
place after a fixed number of steps. This is often known as
sharp or deterministic restart protocol (see Refs. [7,31,85] for
different properties of this strategy in the continuous setup).
Since the resetting takes place always after a fixed period, the
density can be written as

0, n#r
PR<n)=8n,,={1 "z

(29)
where &, , is the Kronecker 6. So, we will refer to this as
sharp distribution with restart step or period r. For sharp
restart, we have Pr(N < R) = Z;zo Py(n) = Pr(N < r). Fur-
thermore, we find (Appendix D)

1 . n
G = 5 < ; Py(n)z", (30)
Gro(2) = 7. 31)

Substituting Egs. (30) and (31) into Eq. (11) we get

2o Pu ()"

1 —Pr(N > r)z"’ (32)

Gy (2) =
Again, using Eq. (13) one can derive the full probability mass
function of the restarted process by taking the derivatives of
the PGF given in Eq. (32). The moments can be computed
using Eq. (12) e.g., the first and second moment take the
following forms:

Z;:O nPy(n)
Pr(N < r)

[1=Pr(N < n)lr

W) = Pr(N < 1)

, (33)

0.020 Simulation

—— Exact

Simulation
—— Exact

0.015
e
= 0.010

0.005

0.000 ®
10 100 1000 0 50 100 150 200

n n

FIG. 2. First-passage time densities Py (n) for the underlying pro-
cess. Analytical results are taken from Eqgs. (36) and (42) and plotted
against numerical simulations. (a) Symmetric RW with diffusivity
parameter ¢ = 0.7. (b) Biased RW with ¢ = 0.7 and bias g = 0.3.
Other parameters are kept fixed for both the simulations: left bound-
ary = 1, right boundary = 25, and initial position ny = 3.

and
[Pr(N > r)2r — 1)+ 1Y) _,nPy(n)
Pr(N < r)?
Pr(N < r)Y_o(n— DnPy(n)
Pr(N < r)?
Pr(N > r)[1 +Pr(N > r)]r?

Pr(N < r)? '
Intuitively, for small r, restart events are quite frequent and
thus the completion times can be large since the particle is
almost localized near the resetting coordinate. However, for

r > 1, restart rarely occurs and we reach to the limit of the
underlying process, e.g., (N,) — (N), etc.

)=

+

(34)

III. APPLICATIONS TO RANDOM WALKS

So far, we have built up a general framework for first
passage under restart in discrete space and time. We have
provided working formulas to compute the mean, higher
moments, and even the probability mass function for the com-
pletion time without specifying any details of the underlying
process. To see how they work in practice, we apply the for-
malism to a symmetric and biased random walk in a 1D lattice
in the presence of two absorbing boundaries. The dynamics is
further subjected to restart which after a random step brings
the walker back to its initial state. We start with the symmetric
unbiased random walk.

A. Symmetric random walk in 1D

Let us consider the so-called symmetric lazy random
walker [82,86], in 1D bounded domain. The dynamics of this
walker are governed by the following evolution equation for
the site occupation probability, P (m, n),

Pm,n+1) = (1 — q)P(m, n) + %]]P’(m —1Ln

+ g]P’(m +1.n), (35)

with m representing a lattice site on the line and n being time
step. The g parameter for this kind of random walk represents
the tendency of the walker to move, with ¢ = O representing
a walker that does not move, and ¢ = 1 a walker that moves
at each time step. The walk is symmetric since the probability
to go either to the left or to the right is ¢/2. The walker sets
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FIG. 3. Mean first-passage time (Ng) and fluctuations oy, (inset)
of a symmetric RW in confinement as a function of restart probability
p. Simulations are indicated by the markers while the continuous line
represents the exact result. For p — 0%, these statistical quantities
saturate to their underlying values. As can be seen, for a range
of restart probabilities, mean time could be significantly reduced.
Parameters set for the simulations: left boundary =1, right boundary
=25, initial position ny = 3, and diffusivity parameter ¢ = 0.7.

off from m = ng and stays inside the bounded interval (1, N),
with absorbing boundaries located at m = 1 and m = N so
that P(1,n) = P(N,n) =0 for all n > 0. The first-passage
time probability density i.e., the time for the walker to reach
either of the two boundaries, Py (n), is given by [82]

kX_: 1— (=14 sm[A‘;:llnk}

in( TR\ 1y m \]" (36)
X sm{ —— — COS
N=1 4Ta\ N :

also see Fig. 2(a) for a numerical verification. The generating
function of the first-passage time density can be obtained
by noting Gy(z) = > o, Z"Py(n), where Py(n) is given by
Eq. (36). Substituting the resulting expression for Gy(z) into
Eq. (20) with z — 1 — p yields the mean first-passage time

Py(n) =

3.5
3.0f
2.5¢
— Exact: 1-1/(N)
2.0f
Exact: CV2

1.5¢
1.0 , . . . ¢ Simulation: 1-1/(N)
05 Simulation: CV2

(@)
0.0~ !

2 4 6 8 10

I

under geometric restart. This is demonstrated in Fig. 3. More-
over, from the generating function Eq. (20) we obtain the
second moment using Eq. (25), and then plot the fluctuations
oy, of first-passage time as a function of p as shown in the
inset of Fig. 3. It is clear from Fig. 3 that restart aids in the
favour of completion. In other words, this must satisfy the
restart criterion given in Eq. (27). The criterion is illustrated in
Fig. 4(a) where we have plotted the left-hand side (LHS) and
right-hand side (RHS) of the inequality Eq. (27) keeping no,
the initial position/restart location, as the controlling param-
eter. We pick ny = 3 for which CVZi>1-— N and thus the
criterion is naturally satisfied (also see Appendix E for counter
cases). Note from Fig. 3 and the inset of Fig. 4(b) that (Ng)
has a minimum at the optimal probability p*. This value can
furthermore be conferred from the root Eq. (28). Finally, the
probability mass function of the first-passage time, namely,
Py, (n) is obtained analytically from Egs. (13) and (23) by
using Gy (z) and plotted in Fig. 4(b) against the data obtained
from the numerical simulations. The inset of Fig. 4(b) corrob-
orates with the parameter ny = 3 [taken from Fig. 4(a)], which
guarantees a reduction in (Ng) in the presence of restart. Here,
we comment on the asymptotic large n-form of Py, (n). It is
intuitive to understand that a successful first-passage event
would occur after a few restart events that brings back the
walker to its initial position. Thus, if ¥ denotes the number
of restart events until a first passage then it simply conforms
to a geometric distribution. Moreover, if ¥ is the time until
the first passage under Y, then the average of this random
time is given by (Ng). It is then trivial to show that Prob(¥ >
t) — e /R as t — oo [84], which essentially implies that
Py, (n) is asymptotically exponential in n. We demonstrate this
asymptotic form in Fig. 5.

It is only imperative to revisit the simple random walker
(with ¢ =1 and starting at the origin) in the presence of
only one absorbing boundary located at x. In this case, the
generating function for the underlying process can be easily
obtained following steps from Ref. [76] and this reads

_ — |x]
1=vi=2 11) . x#£0. 37)

Z

Gn(2) = <

0.08
3
0.07 235
0.06} £ 30
£ 0057\ 25
$ ‘ L] — Exact
004 N 0001 001 p 1 xac
0.03F peg - p Simulation
002 gy e
0.01 :

FIG. 4. (a) Demonstration of the restart criterion Eq. (27) for the symmetric RW in confinement. We plotted the LHS and RHS of the
criterion as a function of the initial position ng. (b) We choose ny = 3 from panel (a) for which restart is beneficial, and then plot the probability
mass function Py, (n) for this given parameter value. In the inset, we plot (Ng) to demonstrate that indeed restart is able to reduce the mean

completion time. The optimal probability p* = 0.1610...

is found to match exactly with the theoretical prediction. Parameters fixed for the

simulations: left boundary = 1, right boundary = 11, and ¢ = 0.5. The probability mass function in panel (b) is obtained using the property

of the PGF, given in Eq. (13), by taking the first n-derivatives of Gy, (2).
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0.05 :‘.;\kw

0.01 Tgseg,
G \\*.‘.."" @ Symmetric random walk
X 0.001 SR S Y
o “\\ Biased random walk

0.0001 e
e e -7 Exponential asymptotics
0.00001
0 20 40 60 80 100

FIG. 5. Comparison between Py,(n) and numerical data. The
asymptotic forms of Py,(n) ~ ¢™/™&) are taken along with their
respective (Ng) for the symmetric and biased RW in confinement.
Parameters fixed for the symmetric RW: left boundary =1, right
boundary =11, initial position ny =3, ¢ = 0.5 and p = 0.1610...
Parameters fixed for the biased RW: left boundary =1, right bound-
ary =11, initial positionny = 9,9 = 0.5, g = 0.3, and p = 0.0813...

In fact, it is known that for large n, the first-passage time
density has a power law tail n~3/2 [72-75], which is similar
to the Lévy-Smirnov distribution for the first-passage time
of a Brownian walker in one dimension. This power law
trivially leads to a diverging mean first-passage time for a
RW. Naturally, it is only expected that restart will always
expedite the first-passage time as was shown in the classic
diffusion problem with stochastic resetting [1]. For com-
pleteness, in this case, we compute the mean (Ng) and the
fluctuations oy, as a function of the restart probability p from
the generating function using Egs. (20) and (25). The theo-
retical results are in excellent agreement with the numerical
simulations of the walker in the semi-infinite geometry (see
Fig. 6). We note that the result for the mean first-passage
time of a random walker on this geometry, namely, (Ng) =

x|
[(”—Vlfff"z ) — 1122 [which can be obtained by substitut-
ing Eq. (37) into Eq. (20)] was previously obtained by Riascos
et al. in Ref. [68]. Thus, our results are consistent with theirs.
We end this discussion by referring the readers to Fig. 7
where we have plotted mean first-passage time under sharp
restart ({(N,)) as a function of the restart period r. Clearly, the
limit » > 1 describes the scenario when there is hardly any
resetting event (i.e., convergence to the original process itself)

500

500
200 < %gg\ — Exact
S e p=0.
_. 100 gg \\j p = 0.005
S 0 10 p=0.0183
\.\ 0.01 0.1 1
p= 0.0671

o p=0.292893

0.01 0.1 1 °p=08

D

FIG. 6. Mean and standard deviation for the simple RW on the
semi-infinite line with resetting. Parameters: left boundary = —2,
initial position ny =0, and ¢ = 1. The right boundary is set to
infinity.

Simulation

— Exact

0 20 40 60 80 100
r
FIG. 7. Mean first-passage time (N,) for symmetric RW as a

function of the restart step r. Parameters: left boundary =1, right
boundary =11, and np = 3, ¢ = 0.5.

and thus the mean times saturate to their underlying values as
can be seen from the figure.

B. Biased random walks in 1D

We now consider a biased random walker in the presence of
restart. The underlying problem was recently studied by Sar-
vaharman and Giuggioli [83] generalizing the results obtained
in Ref. [82]. Biased lattice RWs are quite important since
their applications include cell migration due to concentration
gradients in biology (chemotaxis) [87,88], drifting bacteria by
light modulation (phototaxis) [89], or upwards movement of
single-celled algae in response to gravity (gravitaxis) [90].
Moreover, the model has been employed to study wireless
sensor networks [91] and model-driven tracer particles [92].
Although seemingly there is a lot of interests, an attempt to
derive exact expressions for first-passage statistics for biased
lattice RW in confined space has been extremely limited. The
work by Sarvaharman and Giuggioli [83] develops a general
framework that allows to derive analytically various transport
quantities in arbitrary dimensions and arbitrary boundary con-
ditions for biased lattice random walk. Since the problem with
restart can be elegantly mapped to the problem without restart,
we use some of the results obtained in Ref. [83]. We first recall
the model for brevity.

We start by considering the dynamics of a random walker
with bias on a 1D confined lattice with two absorbing points
at the end. Here, the strength and direction of the bias is
described by the parameter g. Thus, we assume that the proba-
bility of jumping to the neighboring site on the left is given by
2(1 — g), and the probability of jumping to right is then given
by (1 4 g), where recall that ¢ is the diffusivity parameter.
Thus, probability of staying in the same site is given by
1 — g. When g = 0, the movement is diffusive, whereas the
cases g = 1 and g = —1 are, respectively, the ballistic limit
to the right and left sites. For this RW, the dynamics is gov-
erned by the following evolution equation for the occupation
probability

P(m,n+1) = (1 — ¢)P(m, n) + g(l —P(m—1,n)

+ 3+ gP(n+1.m). (38)
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FIG. 8. Comparison between exact and simulation results for
mean and standard deviation for a biased RW in confinement subject
to restart conducted at a probability p. Parameters for the current
setup: left boundary =1, right boundary =25, initial position ny = 3,
diffusive parameter ¢ = 0.7, and bias g = 0.3.

For a walker performing the RW described in Eq. (38), in a
bounded interval (1, N) and starting at 1 < nyg < N, where
m = 1 and m = N are absorbing boundaries (with P(1, n) =
P (N, n) = 0), the propagator is given by [83]

N—2
P(m,n) =Y h(m,no)[1 + si]", (39)
k=1
where s; and Ay, are given by [83]
q km
Sk = — COS —q,
k " N_1 q
2777 sin [(2=L) k| sin [ (22=1)
oy = 2 sl sin (]
N—1
and
1+¢ 1+ f
f="2 p=—"2. @1)
1-¢ 2JF

Again, here we need only the generating function Gy(z) for
the underlying first-passage time density Py(n) to make use
of our renewal formulas. To compute this, we note that, by

definition,
Py(n) = Spy(n — 1) — Sy (n), (42)

where S,,(n) is the survival probability i.e., the probability
that the walker survives upto the time step n starting from

3.5
3.0
25 Exact: CV2
j(s) — Exact: 1-1/(N)
10} $o—o—o—o—e—gle | * S
0.5 @ ¢ Simulation: 1-1/ (N)
00 2 4 6 8 1‘0
m

no (without restart) and is given by S,,,(n) = ZZZI P(m, n),
where PP(m, n) is given by Eq. (39) [72]. Replacing S,,(n) in
Eq. (42) gives an exact expression for Py (n) [also see Fig. 2(b)
for a numerical verification]. Next, to obtain the generating
function Gy(z), we multiply z" on the both sides of Eq. (42)
and sum over n. From the resulting expression for Gy(z),
the mean (Ng) and the fluctuations oy, are computed using
Egs. (20) and (25) simply by replacing z — 1 — p. We have
plotted these expressions as a function of restart probability p
in Fig. 8. Similar to the symmetric RW, we now investigate
the criterion Eq. (27) in Fig. 9(a). We plot CV? and 1 — Wl>
as a function of the initial position ny. We choose an ng for
which restart is beneficial and corroborate with Fig. 9(b) to
plot the probability mass function for the completion time of
the restarted process. From the inset, it is clear that restart
lowered the completion time and thus implying the existence
of an optimal restart probability p*. We compare this value
with that obtained from the theory [Eq. (28)] to get an exact
match. The large n asymptotic form of Py, (n) for the biased
RW case has also been verified in Fig. 5. Finally, we refer to
Fig. 10 for the results in the presence of sharp restart.

IV. CONCLUSIONS

In summary, we have studied first passage under restart
when both underlying and restart processes are spatially and
temporally discrete. Although there exists a plethora of works
dedicated on Brownian walkers subject to restart, results on
a discrete time and space random walker are only limited.
Taking advantage of the renewal properties, we have derived
working formulas for the mean and higher-order moments
of the completion time under restart. Importantly, the for-
mulation is quite general and can be used as a platform to
extend our findings to a wide range of other discrete stochas-
tic motions and restart time distributions. In particular, we
have shown that when restart is geometrically distributed,
there is a sufficient criterion which determines when restart
is beneficial. We apply the theory in two paradigmatic setups,
namely, the canonical 1D lattice random walker (symmet-
ric and biased) in the presence of absorbing boundaries at
two given end points. Using them as underlying first-passage
time processes, we analyze the effect of restart in full de-
tails. We stress the fact that it is also possible to compute
the density function of the first-passage time under restart at
any time unlike the continuous cases where only large time

0.10f — 18
\ ~ 16
oo\, S
G N\
< 0.06 : —
S N 005 05 Exact
Y N
0.04 ~ - p Simulation
(b) T~
0.02 ~
2 4 6 8 10 12 14 16

n

FIG. 9. (a) Demonstration of the restart criterion Eq. (27) for the biased RW in confinement. We plotted the LHS and RHS of the criterion
as a function of the initial position ny. (b) We choose ny = 9 from panel (a) and then plot Py, (n) for this given parameter value. In the inset,
we plot (Ng) to demonstrate that indeed restart is able to reduce the mean completion time. The optimal probability p* = 0.0813.. is found to
match exactly with the theoretical prediction. Parameters fixed for the setup: left boundary =1, right boundary =11, and ¢ = 0.5, g = 0.3.
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18
__ 16}
3 Simulation
14+
— Exact
12
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r
FIG. 10. Mean first-passage time (N,) under sharp restart for
the biased RW as a function of the restart step r. Parameters: left

boundary =1, right boundary =11, and np =3, ¢ = 0.5, g = —0.3.
For r > 1, the mean saturates to its original value.

asymptotics are tractable. Our analytical results provide an
excellent agreement with all the simulation results. There
are many extensions possible within this current setup. Our
method can be employed directly to understand the effects
of restart on the search or first-passage time dynamics of
confined lattice RWs in arbitrary dimensions. It will be in-
teresting to study the effects of sticky or mixed boundaries
for RW models in the presence of restart with an overhead
time [24,93-95] or a refractory period [96]. Random walks
in a spatially nonhomogeneous condition under restart is also
another challenging direction. Consider a simple RW on a
lattice and start diluting the lattice. By this we mean that
some fraction of the lattice sites is removed, i.e., is declared
inaccessible for the walker. This is often known as random
walks on a percolation structure [76]. It would be interesting
to study how the probability of finding a finite cluster among
all finite clusters scales in the presence of restart.
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APPENDIX A: DERIVATION FOR THE GENERATING
FUNCTION EQ. (11)

In this section, we present the derivation of the PGF of the
first-passage process under generic restart. To do so, we note
that

G, (z) = Pr(N < R)(Z"*|N < R)

+ Pr(N > R)(ZNklN > R), (Al)
which gives
G, (z) = Pr(N < R)(ZWNeIN<RYy
+Pr(N > R)(ZMMH), (A2)

Recall the random variables defined in the main text

Nmin = {N|N = min(N, R)} = {N|N < R}, (A3)

Ruin = {RIR = min(N, R)} = {RIN > R},  (A4)

where min(R, N) is the minimum of N and R. Thus
{NrIN < R} = {NIN < R} = Nijn and

{NRIN > R} = {R + N,IN > R}
= {R|R = min(R, N)} +N1/3 = Ruin ‘I’N},a’
(AS)

where in the second transition in Eq. (A5) we have further
used the fact that Ny is an independent and identically dis-
tributed copy of Ni and hence independent of both R and N.
We thus have

R)(ZNwiny 4 Pr(N > R)(ZFmntTr)
R)Gy,,,(z) + Pr(N > R)Gg,,,(2)Gn, (2),
(A6)

Gy, (2) =Pr(N <
=Pr(N <

where in the last step we have again used the fact that Ny, is an
independent and identically distributed copy of Ng. Rearrang-
ing Eq. (A6) we have

Pr(N < R)Gy,,,(2)
1 —Pr(N > R)Gg,, (2)

_ (1—Pr(N > R))Gy,, (2)
1 —=Pr(N > R)Gg,, (2)

Gy, (2) =

(A7)
which is Eq. (11) in the main text.

APPENDIX B: DERIVATIONS FOR FIRST-PASSAGE STEP
UNDER GEOMETRIC RESTART

In this section, we present the derivations for Egs. (20) and
(23). We start the derivation by noting that under geometri-
cally distributed resetting, Pr(N < R) is given by

Pr(N <R) =) Py(n) ) Pr(m)
n=0 m=n
=> Pv(m)Y (1=p)"p
n=0 m=n

=Y Pv(n)(1 = p)"

n=0
= Gn(1 = p), (B1)
where in the last step we utilized the definition of the PGF

of random variable X, given in Eq. (5). Using Eq. (3), one
can also compute (min(¥N, R)) for the case of geometrically
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distributed restart

(min(N, R)) = Y ( > PN<k)>< > PR(m)>
n=0 \k=n+1 m=n+1

= ( > P~(k>> > A=p)p
n=0 \k=n+1 m=n+1

> Pyk)(1 — py!

=n+1

oo k—
=ZZ w(k)(1 = p)t!

I
Mg

=
O

= > Py(k)

oo k—1
=Y Py(k)Y (1 —py"!
k=1 n=0
0 _ _ N
:ZPN(k)<1 p, p=bd-p )
1 p p
(5

p_(1-pda —p)")

k=0 p
1_ oo
= _P(l - P —p)")
p k=0
l—p
= T[l — Gy(1 = p)l, (B2)

where in the second to last step we once again utilize the
definition of PGF. Equation (20) is obtained by substituting
Egs. (B1) and (B2) into Eq. (2).

We now turn to the derivation of the PGF of the restarted
first-passage process Ng. We start by deriving Gy, (z) and

Gy, (z). We substitute the PMF of the geometric distribution
into Egs. (8) and (9) to find

m=n R(m)

ZPN(”) PrN < R) -

—ZPN( R ara——

GNmin (Z )

Yoo (L=p)"p

Gy —p) |

(Ng) = 720

1 —p)y -
= P;
,12;’ NG T

= W ZPN(mu - p)'e"

_ Gylz(1 = p)] ©3)
Gv(I=p)

and

m n+1 PN(m)

Gr,., (2) = Pr(N = R)

ZPR< )=l
m n+l PN(m)

- Z(l PP py (N R)
1 o0
= — 1 — n nP
I—Gn(1-p) ano mZ:nH( Pyt m

1 oo m—1

= m Z Z(l — p)'pz"Py(m)

m=1 n=0

= 1—GN<1 — ZPNomZ(l - p)'p"

_ pild — p)z]" — 1}
_I—GN(I— ZPN( )< —pz—1 >

P el vl = p)a]” = 3 Py(m))
(1 = p)z—1][1 = Gy(1 — p)]
P Xlo N1 = p)z]” = 3 Py(m))
[(1 = p)z— 1I[1 = Gy(1 — p)]
_ p{Gylz(1 — p)] -1}
[(1 = pz—1[1 -Gy = p)]’
Equation (23) is obtained by substituting Egs. (B1), (B3), and
(B4) into Eq. (11).
Taking the derivative of Eq. (23), z — 17, one can recover
the mean first-passage time under geometric restart given in
Eq. (20),

(B4)

(I = p)(d = p)z— D1 = p)z = DGy (1 — p)z))

0z z=1- -

(1= p)z—1) = pGy((1 = p)2))? =1

(1 = p(=pGn((1 = p)2)* + pGn((1 = p)2))

+z

(1 = p)z—1) — pGn((1 — p)2))? =1

_1-pl-Gy(l-p)
P Gy(-p)

El

which is identical to the result obtained in Eq. (20).

APPENDIX C: DERIVATION OF Eq. (24)
IN THE MAIN TEXT

In this section, we present the derivation of Eq. (24).
We start with the definition of the survival function for the

(BS)

(

underlying process

> Py, (C1)

k=n+1

On(n) =Pr[N > n] =

where Py(n) is the probability mass function of N. We
now calculate the PGF of the survival function in the
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following:
o 00
Goy(2) = ZZ”QN(H) = Zz"Pr[N > n]

n=0 n=0

=32 Pvk)
n=0 k=n+1
[e.9] oo

=3 > Z"Pyk)
n=0 k=n+1
oo k-1

=3 "Py(k)
k=1 n=0

00 k—1
=) P
k=1 n=0

"
=T D P — ) Pv
o 1-z k=1

_ 1=PyO0)  Gn@)—AvO)

T 1—¢ 11—z

=w7 (C2)
-z

where recall again Gy(z) is the PGF of the first-passage time
density Py(n). Similarly, with restarts, we have

GNR (2)

Go,, (2) = Z 2" Oy () = : (C3)

where Gy, (z) is given by Eq. (5). Thus, the relations Egs. (C2)
and (C3) connect the survival function and the first-passage
time density in z-space. We now write Gy,(z) in terms of
Gn(z) using Eq. (23). Next, we replace Gy (z) by Gy, (z) using

Eq. (C2). Finally, we substitute this resulting expression into
Eq. (C3) to arrive at the desired relation

(1 = p)Gg,[(1 — p)z]
1 — pGo,[(1 —p)]’

which is Eq. (24) in the main text.

Goy, (2) = (C4)

APPENDIX D: DERIVATIONS FOR FIRST-PASSAGE STEP
UNDER SHARP RESTART

In this section, we sketch the steps to derive Eq. (32). As
for the geometric resetting case, we start the derivation by
obtaining Gy, (z) and Gy, (z) using Egs. (8) and (9):

min

D n R(m)

GNmiu(Z) ZPN( BN <R) Pr(N <R)

ZPN(m

(D1)

- ZPN(")P (";v e = Pr(N

100 10000

80| £ 1000
. 100
< 60

0.001 0.01 p0.1 1

0.01 0.1 1
P

FIG. 11. Mean first-passage time under geometric restart for the
case when restart is detrimental. We refer to Figs. 4(a) and 9(a) for
the simple and biased RWs, respectively. In particular, we choose
those values of ny for which the criterion Eq. (27) is violated. It can
be seen that adding restart only increases (Ng). Parameters set for the
biased RW: left boundary =1, right boundary =11, and ny = 3, ¢ =
0.5, g = 0.3 and for the symmetric RW (inset): left boundary = 1,
right boundary = 11, and np = 6, ¢ = 0.5.

0.001

Moreover, a similar exercise gives

m= n+l PN(m)

Gr,,(2) = ZPR() N = R

_ i Zm =n+1 PN(m)Zn
O Pr(N > r)

_ Zm r+1 PN(m)
~ Pr(N >r)
_ Pr(N > r)
" Pr(N > r)Z
Equation (32) is then obtained by substituting Eqs. (D1) and
(D2) into Eq. (11), i.e.,
Pr(N < R)Gy_. (2)

G — min
@) = TTpe N = R)Gr ()

PV <Dz Yo Py
- 1 —Pr(N > r)z"

Do Py
T 1—Pr(N > )z’

s (D2)

(D3)

APPENDIX E: CASES WHEN RESTART IS DETRIMENTAL

In Sec. II B, we derived a sufficient criterion for restart to
be beneficial [see Eq. (27)]. We presented examples of RW
with restart to demonstrate the criterion. Here, we present the
same examples, but show that restart can be detrimental on
the violation of the criterion Eq. (27). Recall that for a biased
RW, Fig. 9(a) pictorially depicts the criterion as a function of
ng. Thus, we take a value of ny (say nyg = 3) for which the
criterion is not satisfied. Restart is expected only to prolong
the completion in such case. This is depicted in Fig. 11. A
similar analysis is also made for the symmetric RW following
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Fig. 4(a) and the resulting plot for the mean completion time
as a function of restart probability p is shown in the inset

of Fig. 11. As expected, mean time increases as p varies
showcasing another example of restart being detrimental.
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