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A concise operator form of the Fokker-Planck equation agreeing with that proposed by Weizenecker [Phys.
Med. Biol. 63, 035004 (2018)] for the joint orientational distribution of the coupled physical and magnetody-
namic rotational diffusion of a single-domain ferromagnetic nanoparticle suspended in a liquid is written from
the postulated Langevin equations for the stochastic dynamics. Series expansion of its solution in a complete
set yields, using the theory of angular momentum, differential-recurrence equations for statistical moments
for coupled motion with uniaxial symmetry of the internal anisotropy-Zeeman energy of a nanoparticle. The
numerical results via the matrix iteration method suggest that the susceptibility is adequately approximated by a
single Lorentzian with peak frequency given by the inverse integral relaxation time and are discussed in relation
to those of the well-known “egg model”.
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I. INTRODUCTION

Appropriate modeling of the stochastic dynamics of the
suspended nanoparticles is important in nanoparticle imag-
ing and other medical applications [1,2]. In such ferrofluids
(i.e., colloidal suspensions of single-domain ferromagnetic
nanoparticles) the overall change in magnetization of the
magnetic suspension following the alteration of an exter-
nally applied magnetic field stems from two distinct sources.
These are the physical or Debye-like Brownian rotation of the
nanoparticle (treated as a sphere) in space [3] and the rotation
of the magnetization inside it, i.e., the Néel magnetodynamic
mechanism [4], consisting of noise-assisted escape over the
anisotropy-Zeeman energy barrier inside the particle, i.e., re-
versal of its magnetic moment. A long-standing issue in the
magnetic relaxation of ferrofluids is how these two stochastic
rotations may be treated in a single model comprising both
relaxation processes. In modeling the phenomenon, the limit-
ing cases of frozen Néel or frozen Debye mechanisms may
individually be well described using either the appropriate
Langevin equation or its accompanying Fokker-Planck equa-
tion (FPE). Consequently, both limits have been thoroughly
examined [5,6] as far as their characteristic relaxation times
and susceptibilities are concerned leading to viable approxi-
mate formulas. However, the corresponding investigations for
coupled vector Langevin equations for both the Debye-like
physical rotation of a magnetic nanoparticle in the noninertial
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limit and for the rotational magnetodynamics of its internal
magnetization vector are relatively few.

From a mathematical point of view, the description of
the dynamics of the magnetization of a suspended particle
belongs to the class of problems pertaining to the dynamics
of two coupled entities (particle and magnetization). How-
ever various physical interpretations of such pair interactions
when coupled to a bath exist. The simplest models consider
only interactions between two entities embedded in a bath
via the deterministic (mutual) interaction potential so that
the stochastic interaction of the other with the bath does not
influence the former at all and vice versa. This condition is
reflected in the respective Langevin equation for each entity
and the accompanying FPE for the joint probability density
function. Another more complicated but more intuitive model
is termed the egg model, which, in addition to the determinis-
tic interaction cited above accounts for the mutual stochastic
interaction between them. For example, the internal frictional
torque acting on the eggshell is now proportional to the differ-
ence between yolk and shell angular velocities counteracted as
usual by the appropriate white noise torques. Thus, Shliomis
and Stepanov [7,8] successfully used the egg model (a form
of the itinerant oscillator model [9]) to simultaneously explain
the Brownian and Néel relaxation in ferrofluids [8]. The mo-
tion of the magnetic moment corresponds to the rotation of the
yolk and the hydrodynamic drag is due to the white. Using this
model, they showed that for uniaxial particles (for very weak
externally applied magnetic fields so that linear response the-
ory is valid) the equations of motion of the ferrofluid particle
incorporating both the internal and the Brownian relaxation
processes decouple from each other. Thus, the reciprocal of
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the greatest relaxation time is the sum of the reciprocals of the
Néel and Brownian relaxation times of both processes con-
sidered independently, and the joint probability distribution
of the orientations of the magnetic moment and the particle
in the fluid is the product of each individual one. Hence, the
internal and Debye processes are statistically independent for
linear response to the applied field. Such a decoupling of the
equations of motion is also possible for a massive particle,
which rotates almost independently of the internal dynamics
of the magnetization. If the applied field is sufficiently strong,
however, no such decoupling can take place for the egg model.

Scherer and Matuttis [10] have given yet another treatment
using a generalized Lagrangian formalism, however in apply-
ing their method they again limited themselves to a frozen
Néel and a frozen Brownian mechanism, respectively. The
egg model [11] was later revisited in Ref. [9], showing how
the ferrofluid magnetic relaxation in the noninertial or high
hydrodynamical friction limit is essentially similar to the Néel
relaxation in a uniform magnetic field applied at an oblique
angle to the easy axis of magnetization [12,13], which now
depends on time due to the physical rotation of the parti-
cle [7]. Hence a strong intrinsic dependence of the relaxation
time on the magnetic damping was predicted. Models very
similar to the egg model were used in [14,15] to simulate
magnetization hysteresis curves in oscillating external fields
and magnetization relaxation of suspended multicore parti-
cles, respectively. A critical analysis of the egg model and an
alternative consideration of the combined Brownian and Néel
relaxation dynamics of ferrofluids is available in Ref. [16].

The difference in the physical interpretation of the coupling
leads to different forms of the Langevin equations and the
corresponding FPEs. Thus, for the simplest model, where
the interaction of the two entities is considered only via the
mutual potential energy, the FPE separates into two sets of
differential operators that describe the particle rotation and
magnetization dynamics, respectively. The coupling manifests
itself through the mutual potential energy that is present in
both sets. This is not so for the egg model, where for linear
response the product of operators acting on the particle and
the magnetization variables is available.

It is our purpose here to examine the coupled physical
and magnetodynamic rotational diffusion of a single domain
ferromagnetic nanoparticle suspended in a liquid and give
an exact numerical solution for relevant quantities such as
the complex magnetic susceptibility and the relaxation time.
First, we commence with coordinate systems designed so as
to simplify the Euler-Langevin and Landau-Lifshitz-Gilbert
equations underlying the calculations. Next, we show how a
FPE can be written from these coupled Langevin equations
and corresponds to that given in Ref. [17]. An alternative
equation for the joint distribution function of the orientations
of the anisotropy axes and magnetic moments of the parti-
cles was examined in Refs. [18,19]. We proceed by rewriting
the FPE using a Fourier series expansion (in a manner long
familiar for coupled spin systems in quantum mechanics)
of the joint distribution function of the orientations of the
magnetization and easy axis vectors as a hierarchy of linear
differential-recurrence equations. These ultimately yield the
statistical moments and are solved via the computationally
efficient method of matrix iteration [5,6]. Hence the average

FIG. 1. Geometry of the task: spherical particle, its internal
uniaxial magneto crystalline potential with easy axis N = Nn and
magnetization vector M. The external field H0 = HeZ is directed
along the Z axis of the laboratory coordinate system.

(observed) magnetization of a suspension of noninteracting
ferromagnetic nanoparticles and its magnetic susceptibility
can be determined. The various limiting cases (Néel, pure
Brownian rotation) are discussed. The exact solution of the
FPE even for the simplest possible coupling of the Debye
and magnetic processes is a significant difference between this
work and numerous considerations of suspensions via numer-
ical simulations. Moreover, the method based on the use of
compact matrix iterations for solving differential-recurrence
relations vastly simplifies the analysis of the dynamics of
magnetization of complex systems in comparison with the re-
sults of Refs. [17,18]. The calculations may also be extended
in an obvious way to cover both the nonlinear ac and step
responses for the model.

II. SYSTEM OF LANGEVIN EQUATIONS FOR COMBINED
ROTATIONAL DIFFUSION

We consider a single domain ferromagnetic nanoparticle
with a magnetization M suspended in a fluid carrier. Suppose
that the particle possesses internal uniaxial anisotropy. The
direction of the easy axis n of the internal magnetocrystalline
anisotropy potential is fixed in the body of the particle, which
can also physically rotate relative to the surrounding fluid
matrix (see Fig. 1). In a spatially uniform external magnetic
field H0, the normalized magnetic energy density E of the
nanoparticle is defined by [5,6,17,18]:

E = −σ (u · n)2 − ξ (u · eZ ), (1)

where u, n and eZ are unit vectors specifying the mag-
netization M = MSu (MS is the saturation magnetization),
easy axis N = Nn, and the externally applied magnetic field
H0 = H0eZ orientations (see Fig. 1), σ = vK/(kT ) and ξ =
vμ0MSH0/(kT ) are the dimensionless anisotropy and applied
field parameters, respectively, K is the anisotropy constant,
v is the volume of the particle, μ0 = 4π × 10−7JA−2m−1

is the permeability of free space in SI units, and kT is the
thermal energy. We suppose that H0 is directed along the Z
axis of the laboratory coordinate system and that the dynamics
of the magnetization vector u = M/MS inside the particle

052128-2



COUPLED PHYSICAL AND MAGNETODYNAMIC … PHYSICAL REVIEW E 103, 052128 (2021)

(a) (b)

FIG. 2. The coordinate systems used: (a) Eulerian angles; (b) polar angles.

obey the magnetic Langevin equation. This is the Landau-
Lifshitz-Gilbert equation augmented by a random field term,
namely [5,6],

u̇ = γ

1 + α2
[(H + h) × u] + γα

1 + α2
[u × [(H + h) × u]],

(2)

where γ is the gyromagnetic ratio for electrons, α is the
phenomenological damping parameter representing the dissi-
pation to the surroundings and the total deterministic field H
is defined via

H = − kT

vμ0MS

∂E

∂u
, (3)

and h is a random spatially uniform isotropic Gaussian
white noise magnetic field imposed by the thermal bath. The
Euler-Langevin equation for the physical (Debye) rotational
Brownian motion of the suspended nanoparticle regarded as a
sphere is [5]

d

dt
Îωn(t ) = −ςωn(t ) + K(t ) + λ(t ). (4)

Here Î is the tensor of inertia of the particle, ωn(t ) is the
angular velocity of the sphere, K(t ) is the deterministic torque
acting on it, −ςωn(t ) and λ(t ) are the hydrodynamic damping
and random white noise torques imposed by the thermal bath.
The random field h(t ) and torque λ(t ) have zero averages
λi(t ) = hi(t ) = 0 and correlation functions

hi(t1)h j (t2) = 2αkT

vγμ0MS
δi jδ(t1 − t2),

λi(t1)λ j (t2) = 2kT ςδi jδ(t1 − t2). (5)

Here the overbars mean the statistical averaging, δ ji is Kro-
necker’s delta and i, j = X,Y, Z represent the Cartesian axes
of the laboratory coordinate system.

In the noninertial limit, i.e., where the components of the
inertia tensor Î all vanish, Eq. (4) becomes

ςωn(t ) = K(t ) + λ(t ). (6)

Here we suppose that for a spherical particle the friction tensor
ς has similar components (ςx = ςy = ςz = ς ) in principal
body axes. Expressions for the deterministic torque K(t ) in
Eq. (6) differ from author to author, e.g., in Ref. [17] the
following expression for K(t ) has been used:

K = kT

[
∂E

∂n
× n

]
, (7)

while yet another expression was employed in Ref. [18],
namely,

K = kT

([
∂E

∂n
× n

]
+

[
∂E

∂u
× u

])
. (8)

Following the simplest model of interaction, we use K in the
form of Eq. (7). Next, observe that the physical rotation of
a particle about the easy axis of magnetization n should not
affect the orientation of M at all. In this sense M behaves
exactly as a compass needle, namely, spatial, i.e., physical
rotation of the compass frame itself cannot alter the orienta-
tion of the needle, which may interact only with an external
magnetic field. On the contrary, any physical rotation of a
particle, altering the orientation of n relative to that of M,
will assuredly affect the orientation of M itself. Hence the
angular velocity of rotation of the vector u = M/MS relative
to the laboratory coordinate system cannot be written as the
sum of its angular velocity in coordinates fixed in the particle
and the angular velocity ωn(t ) of rotation of the particle as a
whole.

Considering the physical rotation, recall that the evolution
equations for the Eulerian angles θ , φ, ψ [see Fig. 2(a)] are
expressed in terms of the components of the angular velocity
ωx, ωy, and ωz presented in Cartesian axes x, y, z fixed in
the nanoparticle (notation follows Landau and Lifshitz [20]),
viz.

θ̇ = ωx cos ψ − ωy sin ψ, (9)

sin θφ̇ = ωx sin ψ + ωy cos ψ, (10)

ψ̇ = ωz − ωx sin ψ cot θ − ωy cos ψ cot θ. (11)
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Equation (11) is superfluous and can be omitted because alter-
ing ψ does not affect the orientation of u. Hence, with n(t ) =
{1, 0, 0} and ṅ(t ) = {0, θ̇ , sin θφ̇} in the spherical coordinate
system shown in Fig. 2, both Eqs. (9) and (10) represent a
Langevin equation for the physical rotation of the easy axis
vector n(t ) itself

ṅ(t ) = [ωn(t ) × n(t )]

= 1

ς

[(
kT

[
∂E

∂n
× n(t )

]
+ λ(t )

)
× n(t )

]
. (12)

Thus, in the noninertial limit the rotation in space of the mag-
netic nanoparticle reduces to the rotation of its easy axis. Since
the gradient operator on the unit sphere is defined as [21]

∂E

∂n
=

(
0,

∂E

∂θ
,

1

sin θ

∂E

∂φ

)
, (13)

we have Eq. (12) rendered as

θ̇ = − 1

2τB

∂E

∂θ
+ �φ√

2τB
, (14)

φ̇ = − 1

2τBsin2θ

∂E

∂φ
− �θ√

2τB sin θ
. (15)

Hence, the coupling to the magnetic system is manifested
solely through E. Here �i = λi/

√
kT ς and

τB = ς

2kT
(16)

is the free diffusion (Debye) time of the Brownian rotation of
the easy axis n.

Likewise, the same is true for the magnetic Langevin
Eq. (2) specifying the evolution of M inside the particle.
Noticing that

∂E

∂u
=

(
0,

∂E

∂ϑ
,

1

sin ϑ

∂E

∂ϕ

)
, (17)

we may also rewrite the magnetic Eq. (2) as [5,6]

2τNϑ̇ = − 1

α sin ϑ

∂E

∂ϕ
− ∂E

∂ϑ
+ 2τNγ

1 + α2
hϕ + 2τNγ

α−1 + α
hϑ ,

(18)

2τN sin ϑϕ̇ = 1

α

∂E

∂ϑ
− 1

sin ϑ

∂E

∂ϕ
− 2τNγ

1 + α2
hϑ + 2τNγ

α−1 + α
hϕ.

(19)

Thus, the coupling to the physical system is again achieved
solely through E. Here

τN = vμ0MS

2kT γ
(α−1 + α) (20)

is the free diffusion relaxation time. The system of coupled
Langevin Eqs. (14), (15), (18), and (19) was proposed in [17]
along with a very lengthy treatment of the FPE corresponding
to them, most of which may be circumvented via the theory of
angular momentum as described in the next section.

III. FOKKER-PLANCK EQUATION FOR COMBINED
ROTATIONAL DIFFUSION

First observe that (as far as Langevin equations are con-
cerned) the spatial rotation of two vectors in a potential is
like that of rotation of coupled spins [22] or dipoles [23].
Such problems can always be reduced to solving differential-
recurrence equations for the observables, which may then
be accomplished via matrix continued fraction or by matrix
iteration methods. The observation that coupling occurs only
via E allows one to simplify the task by separately considering
only the Brownian (Debye) rotation of n in E and the Néel
rotation of u also in E. Hence the FPE for the distribution
function W (θ, φ, ϑ, ϕ, t ) may be written as

∂W

∂t
= (

Ln
FP + Lu

FP

)
W. (21)

Here Ln
FP and Lu

FP are the sets of differential operators gener-
ated by physical rotation of the body fixed vector n [Eqs. (14)
and (15)] and magnetodynamic rotation of the magnetization
vector u [Eqs. (18) and (19)] separately. However, we already
have (see Eq. (1.15.9) of Ref. [5])

Ln
FPW = 1

2τB

{
�θφW + 1

sin θ

[
∂

∂θ

(
sin θW

∂E

∂θ

)

+ 1

sin θ

∂

∂φ

(
W

∂E

∂φ

)]}
(22)

and (see Eq. (1.17.15) of Ref. [5])

Lu
FPW

= 1

2τN

{
�ϑϕW + 1

α sin ϑ

[
∂

∂ϑ

(
W

∂E

∂ϕ

)
− ∂

∂ϕ

(
W

∂E

∂ϑ

)]

+ v

sin ϑ

[
∂

∂ϑ

(
sin ϑW

∂E

∂ϑ

)
+ 1

sin ϑ

∂

∂ϕ

(
W

∂E

∂ϕ

)]}
,

(23)

where

�βγ = 1

sin β

∂

∂β

(
sin β

∂

∂β

)
+ 1

sin2β

∂2

∂γ 2
(24)

is the angular part of the Laplacian. The resulting FPE (21)
with Ln

FP and Lu
FP given by Eqs. (22) and (23) coincides with

that of Weizenecker [17]. Next by introducing the infinitesi-
mal rotation operators [5,18]

Ĵn =
[

n × ∂

∂n

]
= ∇θφ, Ĵu =

[
u × ∂

∂u

]
= ∇ϑϕ (25)

and

Ĵ2
n = �θφ, Ĵ2

u = �ϑϕ, (26)

we may rewrite Eq. (21) in operator form as

∂W

∂t
= 1

2τB

{
Ĵ2

nW + Ĵn · (W ĴnE )
}

+ 1

2τN

{
Ĵ2

uW + Ĵu · (W ĴuE ) + 1

α
([ĴuW × ĴuE ] · u)

}
(27)

052128-4



COUPLED PHYSICAL AND MAGNETODYNAMIC … PHYSICAL REVIEW E 103, 052128 (2021)

facilitating transformation of the FPE into differential-
recurrence relations [5,6], because only products of spherical
harmonics will be involved in the alignment term. Observe
that Eq. (27) differs from the analogous Eq. (42) of [18] (see
also Ref. [19]) due to the last (precessional) term which has
been neglected in Ref. [18] because only frequencies well
below the GHz regime are considered there. Moreover, we
have taken K as Eq. (7) instead of Eq. (8), so the operator
Ĵ2

n must be replaced in the treatment of Refs. [18,19] by the
operator Ĵ2 = Ĵ2

n + Ĵ2
u.

Now for a frozen particle the (Debye) time of the Brownian
rotation τB → ∞. Hence n is then fixed in space, say along
axis Z of the laboratory coordinate system (θ, φ = const = 0).
Thus, only the Néel, i.e., the magnetic relaxation over a barrier
mechanism, remains and so

∂

∂t
W (ϑ, ϕ, t ) = Lu

FPW (ϑ, ϕ, t ) (28)

with normalized energy [5,6]

E (ϑ ) = −σcos2ϑ − ξ cos ϑ. (29)

Vice versa, if the magnetization is frozen inside the particle,
say along the easy axes (ϑ = θ, ϕ = φ), the diffusion time
of the Néel rotation τN → ∞. Hence only the physical (De-
bye) rotation with permanent dipole moment M (|M| = MS)
subjected to an external field now remains and so

∂

∂t
W (θ, φ, t ) = Ln

FPW (θ, φ, t ) (30)

with the energy of the particle E given as [5]

E (θ ) = −ξ cos θ. (31)

Both limiting cases have been exhaustively treated [5].
Next consider the relaxation of the magnetization after

switching off the external field H0. The normalized energy
of the free (i.e., without an external field) rotation of the two
coupled vectors n and u is then

E = −σ (u · n)2, (32)

which is now symmetrical under the interchange u ↔ n
(or {ϑ, ϕ} ↔ {θ, φ}). Moreover, one can by considering low
frequencies only entirely neglect the precessional term in
Eq. (27). Hence both operators Ln

FP and Lu
FP are now similar

in form, viz.

Ln,u
FPW = 1

2τB,N

{
Ĵ2

n,uW + Ĵn,u · (W Ĵn,uE )
}
. (33)

However, with differing characteristic times τB,N. Yet another
specific case is switching between arbitrary values of the
external field H0 with the potential given by the general
Eq. (1). Thus, the action of the operators Ln

FP and Lu
FP on E

now differs. Accurate numerical determination of the overall
relaxation time τr (τB, τN) comprising the combined relaxation
processes is the prime object of the following section.

IV. DIFFERENTIAL RECURRENCE RELATION
FOR STATISTICAL MOMENTS

The solution of the FPE (21) rests on a series expan-
sion of the joint distribution function W (θ, φ, ϑ, ϕ, t ) via

a complete set of functions reducing that task to solving a
system of ordinary differential-recurrence equations for the
(observables) coefficients of the series (i.e., the statistical
moments). First recall the quantum mechanical treatment of
coupled spins [20], viz., if individual uncoupled spins I and
II say, separately have wave functions ψI and ψII, the wave
function of the system of two coupled spins may be sought
as a linear combination of the products ψIψII. Now recall
that in pure Néel relaxation (immobile n) the distribution
function WN(ϑ, ϕ, t ) is expanded in a complete set (Fourier-
Laplace series) of the spherical harmonics Ylm(ϑ, ϕ) [5,6],
while in pure Brownian (or Debye) relaxation (immobile
u) the distribution function WB(θ, φ, t ) is also expanded in
spherical harmonics Ylm(θ, φ) [5]. Hence for coupled rota-
tional diffusion the joint distribution function W (θ, φ, ϑ, ϕ, t )
may be expanded as a linear combination of products of the
form Yl1m1 (θ, φ)Yl2m2 (ϑ, ϕ) (the method of separation of the
variables is used). However, the potential E from Eq. (1) in
the coordinates chosen has the separable into products form,
viz.,

E = −σ (sin θ sin ϑ cos(φ − ϕ) + cos θ cos ϑ )2 − ξ cos ϑ

= −σ
8π

15

2∑
k=−2

(−1)kY2−k (θ, φ)Y2k (ϑ, ϕ)

− 2ξ

√
π

3
Y10(ϑ, ϕ) − σ

3
, (34)

which only depends on the three angles θ, ϑ and the differ-
ence of azimuths φ−ϕ, suggesting that we may then expand
the joint distribution W (θ, ϑ, φ−ϕ, t ) as the simplified series,
namely,

W (θ, ϑ, φ − ϕ, t ) =
∑

l1,l2,m

fl1l2m(t )Yl1−m(θ, φ)Yl2m(ϑ, ϕ).

(35)
The expansion coefficients in Eq. (35), namely, the statistical
moments,

fl1l2m(t ) =
∫

�n

∫
�u

Yl1m(θ, φ)Yl2−m(ϑ, ϕ)

× W (θ, ϑ, φ − ϕ, t )d�nd�u (36)

represent the moment system (i.e., ensemble averages of
the functions Yl1m(θ, φ)Yl2−m(ϑ, ϕ) over W). Here d�n =
sin θdθdφ and d�u = sin ϑdϑdϕ are surface elements on
the unit sphere for n and u. Clearly the particular expansion,
i.e., Eq. (35) incorporates the dependence of W on φ−ϕ be-
cause Yl1−m(θ, φ)Yl2m(ϑ, ϕ) ∼ e−im(φ−ϕ). The calculation of
the moments posed as Eq. (36) was used in Refs. [22,23]
dealing with the interacting two spin problem. An analo-
gous expansion was also presented in Ref. [17], however, in
the much more complicated (four indices instead of three)
form of products Yl1m1 (θ, φ)Yl2m2 (ϑ, ϕ), so that the ensuing
recurrence equations have also four indexes and are much
harder to solve. Our expansion (35) also differs from those
of Ref. [18], where the transformation to Ĵ2

u representation
was used. This procedure involves additional nonessential and
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nontrivial recalculations, nevertheless finally leading to three-
index differential-recurrence equations just as expansion (35)
does.

We can neglect the precessional term in Eq. (27), be-
cause the condition for noninertial motion of the magnetic
nanoparticle used throughout is always fulfilled at low fre-

quencies, lying well below the GHz regime, so that the
precessional term is also negligible (typical frequencies of
precessional motion correspond to GHz and higher). By
substituting Eq. (35) into the FPE (21) we then have the
differential-recurrence equations for the fl1l2m(t ) rendered in
three recurring index (l1l2m) form:

τD
d

dt
fl1l2m = −1

2
(η1l1(l1 + 1) + η2l2(l2 + 1)) fl1l2m

+ ξη2

(
l2 + 1

2

√
(l2 − m)(l2 + m)

(2l2 − 1)(2l2 + 1)
fl1l2−1m − l2

2

√
(l2 − m + 1)(l2 + m + 1)

(2l2 + 1)(2l2 + 3)
fl1l2+1m

)

+
2∑

l ′1=−2
�l ′1=2

2∑
l ′2=−2
�l ′2=2

2∑
j=−2

dl1,l2,m
l1+l ′1,l2+l ′2,m+ j fl1+l ′1l2+l ′2m+ j, (37)

where we have introduced the overall characteristic free diffusion time τD defined via τ−1
D = τ−1

B + τ−1
N , and associated ratios

η1 = τD/τB and η2 = τD/τN and

dl1,l2,m
l1+l ′1,l2+l ′2,m+ j = σ (−1) j

√
(2l1 + 2l ′

1 + 1)(2l2 + 2l ′
2 + 1)

(2l1 + 1)(2l2 + 1)
Cl10

l1+l ′1020C
l1m
l1+l ′1−m− j2 jC

l20
l2+l ′2020C

l2−m
l2+l ′2m+ j2− j

× 1

6
{η1[6 + l1(l1 + 1) − (l1 + l ′

1)(l1 + l ′
1 + 1)] + η2 [6 + l2(l2 + 1) − (l2 + l ′

2)(l2 + l ′
2 + 1)]}. (38)

The coefficients in Eq. (37) are obtained via the theory of
angular momentum (see Refs. [5,6,21]) following lengthy
manipulations, allowing one to express them [cf. third line
of Eq. (37)] in terms of the Clebsch-Gordan coefficients
CLM

lml ′m′ , Eq. (38). These coefficients are readily available
(e.g., in Mathematica ®) and vastly simplify the presentation
(e.g., compare Eq. (37) with the very lengthy equations of
Ref. [17]).

To determine the magnetization response MZ (t ) following
an arbitrary steplike alteration of the external dc magnetic
field from say HI(t ) to HII(t ) we introduce the relaxation
functions cl1l2m(t ) = fl1l2m(t ) − f II

l1l2m of the combined two (n
and u) vector system with cl1l2m(0) = f I

l1l2m − f II
l1l2m. Here I

and II correspond to the equilibrium states of the suspended
particles before and after alteration of the external field. Now
the cl1l2m(t ) must also satisfy the differential-recurrence re-
lation (37) because the equilibrium averages f I

l1l2m and f II
l1l2m

satisfy the homogeneous recurrence relation (37), namely

d

dt
f I,II
l1l2m(0) = 0. (39)

The equilibrium states are described by Boltzmann distribu-
tions (i.e., corresponding to the stationary solutions of the
homogeneous equation Ln,u

FPW = 0), viz.,

WI,II(θ, ϑ, φ − ϕ) = Z−1
I,II exp[σ (sin θ sin ϑ cos(φ − ϕ)

+ cos θ cos ϑ )2 + ξI,II cos ϑ], (40)

where ZI,II are the partition functions (normalization con-
stants). Hence the initial f I

l1l2m and final f II
l1l2m values can be

calculated as

f I,II
l1l2m =

∫
�n

∫
�u

Yl1m(θ, φ)Yl2−m(ϑ, ϕ)

× WI,II(θ, ϑ, φ − ϕ)d�nd�u. (41)

In general, the response of the magnetization MZ (t ) fol-
lowing a steplike alteration of the field is represented via the
normalized relaxation function

f (t ) = 〈MZ〉(t ) − 〈MZ〉II

〈MZ〉I − 〈MZ〉II
= c010(t )

c010(0)
. (42)

Therefore, with cl1l2m(t ) as obtained from the solution of
Eq. (37), we also have the integral relaxation time τint [5],
namely the area under the decay curve f (t ) [5,6]

τint =
∫ ∞

0
f (t )dt . (43)

In general, f (t ) characterizes nonlinear response. Never-
theless as a special case it contains the linear response to
infinitesimally small steplike changes in the magnitude of the
(arbitrarily) strong applied dc field HI

Z , i.e., for HII
Z = HI

Z − κ

as κ → 0, where κ is regarded as a small external perturbation.
Hence f (t ) then coincides with the normalized longitudinal
dipole equilibrium correlation function C‖(t ), that is

lim
κ→0

f (t ) = C‖(t ) = 〈MZ (0)MZ (t )〉II − 〈MZ (0)〉2
II〈

M2
Z (0)

〉
II − 〈MZ (0)〉2

II

. (44)

Thus according to linear response theory (see, e.g., Ref. [6]),
via the one-sided Fourier transform C̃‖(iω) of C‖(t ),
we have the correlation time τ = C̃‖(0), and also the
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normalized dynamic susceptibility χ (ω) = χ ′(ω) −
iχ ′′(ω) [5] since

χ (ω)

χ
= 1 − iωC̃‖(iω). (45)

Here χ is the static susceptibility. Furthermore, the asymptotic
behavior of χ (ω) in the extrema of very low and very high
frequencies is explicitly given by [5,6]

χ (ω)

χ
∼

{
1 − iωτint + ..., ω → 0,

−i
(
ωτ

e f
‖

)−1 + ..., ω → ∞,
(46)

which serves as a check on the accuracy of the numerical
calculation. In Eq. (46)

τef = −1/Ċ‖(0) (47)

is the effective relaxation time governing the initial decay of
C‖(t ). Here τint and τef [5,6] characterize the global and the
short-time behavior of C‖(t ), respectively.

V. SYMBOLIC SOLUTION OF THE FPE

To determine the statistical moments cl1l2m(t ) from
Eq. (37), we first introduce the column vectors composed of
them, viz.,

Cn(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2n−1 0(t )

c2n−2 1(t )
...

c0 2n−1(t )

c2n 0(t )

c2n−1 1(t )
...

c0 2n(t )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, cn n′ (t ) =

⎛
⎜⎜⎜⎜⎝

cn n′ −r (t )

cn n′ −r+1(t )
...

cn n′ r (t )

⎞
⎟⎟⎟⎟⎠, (48)

(r = min[n, n′]). Thus Eq. (37) obviously becomes the five-
term vector recurrence relation, viz.,

τD
d

dt
Cn(t ) = Q−−

n Cn−2(t ) + Q−
n Cn−1(t ) + QnCn(t )

+ Q+
n Cn+1(t ) + Q++

n Cn+2(t ), (49)

with C0(t ) = 0. The supermatrix coefficients Qn, Q±
n , Q±±

n
are explicitly given in the Appendix. Equation (49), then
yields via the matrix iterative method described in Ref. [6]
the formal solution for the Laplace transform C̃1(s), namely

C̃1(s) =
∫ ∞

0
C1(t )e−st dt = τDR1. (50)

In this equation the vector Rn is defined as

Rn = [sτDI − Qn − Q++
n Tn+2 − (Q+

n + Q++
n Sn+2)Sn+1]−1

× [Cn(0) + (Q+
n + Q++

n Sn+2)Rn+1 + Q++
n Rn+2]

(51)

and the matrices Sn and Tn are defined [6] by the inhomoge-
neous algebraic recurrence equations

Sn = [sτDI − Qn − Q++
n Tn+2 − (Q+

n + Q++
n Sn+2)Sn+1]−1

× [Q−
n + (Q+

n + Q++
n Sn+2)Tn+1], (52)

FIG. 3. Real and imaginary parts of complex susceptibility χ (ω)
vs ωτD for ξ2 = 0, ξ1 = ξ2 + 0.0001 (linear response), η1 = η2 =
0.5 and various barrier heights σ . Solid lines: exact numerical solu-
tion from Eqs. (42), (44), and (45). Circles: approximate Eq. (54).

Tn = [sτDI − Qn − Q++
n Tn+2

− (Q+
n + Q++

n Sn+2)Sn+1]−1Q−−
n . (53)

The initial value column vector Cn(0) in Eq. (51) can also
be calculated via the homogeneous form of the algebraic
recurrence equation [6] (see Appendix). In calculating C̃1(s)
via Eq. (50) the iterative procedure is implemented starting
by arbitrarily selecting a number nmax large enough for con-
vergence. For the parameters used nmax = 15 is sufficient to
arrive at an accuracy of not less than five significant digits in
the majority of cases.

VI. RESULTS AND DISCUSSIONS

We now describe the results of the calculation of the sus-
ceptibility of the suspension. The role played by the barrier
height σ (inverse temperature) in the behavior of the real
χ ′(ω) and imaginary χ ′′(ω) parts of the dynamic suscepti-
bility χ (ω) is illustrated in Fig. 3, while the effect of the
external magnetic field on χ (ω) is illustrated in Fig. 4. For
nanoparticles fixed in space [frozen n(t)] one would expect
that two distinct peaks would appear in the spectra of the mag-
netic loss χ ′′(ω) [5,6]. The high-frequency peak is due to the
fast near-degenerate intrawell modes, while the low-frequency
one is due to the slow interwell mode. However, in Figs. 3
and 4 only one peak is clearly visible. This can be attributed
to reorientation of the magnetic moments of the nanoparticles
after switching the field.

Regarding numerical comparison of the results of the egg
model and that of Ref. [17] as treated here this is possible if
a correspondence is established between the respective time
scales. For example, consider the case τu = 2kT/κu = τN and
τn = 2kT/κn = τB, where κu and κn are the respective hy-
drodynamic drag coefficients of the egg and its yolk in the
egg model [19]. Qualitatively speaking susceptibility for both
models can be closely approximated by the single Lorentzian

052128-7



TITOV, COFFEY, KALMYKOV, ZARIFAKIS, AND TITOV PHYSICAL REVIEW E 103, 052128 (2021)

FIG. 4. Real and imaginary parts of complex susceptibility χ (ω)
vs ωτD for σ = 10, ξ1 = ξ2 + 0.0001, η1 = η2 = 0.5 and various
values ξ2. Solid lines: exact numerical solution from Eqs. (42), (44),
and (45). Circles: approximate Eq. (54).

(Debye-like formula) (see Figs. 3–5 and results of Ref. [18])

χ (ω)

χ
= 1

1 + iω/ωmax
. (54)

Here ωmax is the frequency of the peak of the magnetic loss
χ ′′(ω). However, ωmax in Eq. (54) is estimated in different
ways in each model. In the model of a suspended nanopar-
ticle considered [Eqs. (14), (15), (18), and (19)], the fast
intrawell modes still manifest themselves at relatively high
frequencies, in so far as the single Lorentzian behavior of the
susceptibility is slightly violated (see Figs. 3 and 4). How-
ever, even this behavior can be explained because in marked

FIG. 5. Real and imaginary parts of complex susceptibility χ (ω)
vs ωτD for barrier height (inverse temperature) σ = 2, ξ2 = 0, ξ1 =
ξ2 + 0.0001 (linear response), η1 = 1 − η2 and various values of
η2. The maxima of χ ′′(ω) are determined by the Neél relaxation
time, namely ωmax ∼ 1/τN, in this low barrier instance. Solid lines:
exact numerical solution from Eqs. (42), (44), and (45). Circles:
approximate Eq. (54).

FIG. 6. Normalized integral relaxation time τint/τD (solid lines)
and the inverse frequency of the maximum of the imaginary part
of the susceptibility (τDωmax)−1 (circles) vs the anisotropy (or in-
verse temperature) parameter σ for ξ1 = ξ2 + 0.0001, ξ2 = 0 and
various values η2 (η1 = 1 − η2). Solid lines: numerical solution from
Eqs. (42), (44), and (45).

contrast to completely fixed nanoparticles, nanoparticles in
suspensions can rotate relatively freely and thus have an ar-
bitrary orientation in space. Consequently, the applied field
does not directly affect the nanoparticles (only via its action
on the magnetic moment, which is coupled to the particle).
Moreover, in such a model, there is no coupling between the
precessional motion of the magnetization and the rotation of
the particle. Nevertheless, increase of the inverse temperature
parameter σ leads to a decrease of ωmax, while in contrast
increase in the external magnetic field leads to an increase
of ωmax.

The role of the ratio of free diffusion times τB/τN = η2/η1

in the behavior of the dynamic susceptibility is shown in
Fig. 5. Clearly for relatively low barriers (σ = 2) the position

FIG. 7. Normalized integral relaxation time τint/τD (solid lines)
and the inverse frequency of the maximum of the imaginary part
of the susceptibility (τDωmax)−1 (circles) vs the anisotropy (or in-
verse temperature) parameter σ for ξ1 = ξ2 + 0.0001, η1 = η2 =
0.5 and various values ξ2. Solid lines: numerical solution from
Eqs. (42), (44), and (45).
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of ωmax is mainly determined by ωmax ∼ τ−1
N . This approxi-

mation is violated for high barriers, where ωmax deviates from
the value τ−1

N (see Fig. 3). Returning to the comparison of
the models in the egg one ωmax ∼ τ−1

D [18], while in that
of Ref. [17] both ωmax and the coupling of Brown and Néel
rotations cannot be, in general, described by the effective
relaxation time τ−1

D = τ−1
B + τ−1

N (see Fig. 5). This conclusion
is consistent with the results of Ref. [17]. The difference
with the egg model stems from the neglect of the internal
stochastic torques as described in the Introduction (see also
the difference in the formulas for K(t ) [Eqs. (7) and (8)].

Figure 6 shows the integral relaxation time τint and the
inverse frequency of the maximum of the imaginary part of
susceptibility τ = 1/ωmax vs the anisotropy (or inverse tem-

perature) parameter σ . Obviously if the Brownian diffusion
is fast, i.e., η2 � η1, the spatial reorientation of the particle
itself determines the relaxation of the magnetization and the
over barrier transition barely influences this process, so that
the dependence of τint on σ is negligible. In contrast if η2 > η1

we see a significant increase in τint which increases with σ .
However this dependence is not as pronounced as that for
a completely fixed particle [6], because reorientations of the
particle can still contribute. The integral relaxation time τint is
again closly approximated by the maximum of the imaginary
part of susceptibility τ = 1/ωmax.

Figure 7 shows the effect of the external field parameter ξ

on τint. Obviously τint decreases as the external field increases,
while τint and τ = 1/ωmax again almost coincide.

APPENDIX: MATRICES Qn AND Q±
n AND INITIAL VALUE VECTOR Cn(0)

The various matrices Qn, Q+
n , Q−

n in the five-term recurrence Eq. (49) have the general form (representing a generalization
of a method of treating pentadiagonal recurrence relations due to Risken (see Ref. [24], p. 200))

Q−
n =

(
V2n−1 R2n−1

0 V2n

)
, Qn =

(
P2n−1 S2n−1

R2n P2n

)
, Q+

n =
(

U2n−1 0
S2n U2n

)

Q−−
n =

(
Z2n−1 0

0 Z2n

)
, Q++

n =
(

W2n−1 0
0 W2n

)
.

The elements of these subsidiary matrices are themselves matrices with the following forms:

Pn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn0 0 ¯̄pn0
. . . 0

0 pn−11 0 . . .
. . .

p̄n−22 0 . . .
. . . ¯̄p2n−2

. . .
. . .

. . .
. . . 0

0 . . . p̄0n 0 p0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Rn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

rn−11 0 . . .
. . .

0 rn−22
. . . 0

. . .
. . .

. . . 0

0 . . . 0 r0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Sn =

⎛
⎜⎜⎜⎜⎜⎝

0 sn0 0 . . . 0

0 0 sn−11
. . .

. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 0 s0n

⎞
⎟⎟⎟⎟⎟⎠, Vn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vn0 0 . . . 0

0 vn−11
. . .

. . .

v̄n−22 0 . . . 0

0 v̄n−33
. . . v2 n−2

. . .
. . .

. . . 0

0 . . . 0 v̄0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Un =

⎛
⎜⎜⎜⎜⎜⎝

ūn0 0 un0 0 . . . 0

0 ūn−11 0 un−11
. . .

. . .

. . .
. . .

. . .
. . .

. . . 0

0 . . . 0 ū0n 0 u0n

⎞
⎟⎟⎟⎟⎟⎠, Zn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . . 0 0

0 . . .
. . . 0

zn−22 0 . . .
. . .

0 zn−33
. . .

. . .

. . . 0 . . . 0

. . .
. . .

. . . z2n−2

0 . . .
. . . 0

0 0 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Wn =

⎛
⎜⎜⎜⎜⎜⎝

. . . 0 wn0 0 . . .
. . . 0 0

. . .
. . . 0 wn−11 0 . . .

. . . 0

0 . . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 . . .
. . . 0 w0n 0 . . .

⎞
⎟⎟⎟⎟⎟⎠.

Two particular matrices rnn′ , snn′ occurring above are single-diagonal ones, namely, [rnn′]mk = rnn′mδmk and [snn′]mk = snn′mδmk .
These have the following matrix elements:

sl1l2m = −ξη2
l2
2

√
(l2 − m + 1)(l2 + m + 1)

(2l2 + 1)(2l2 + 3)
, rl1l2m = ξη2

l2 + 1

2

√
(l2 − m)(l2 + m)

(2l2 − 1)(2l2 + 1)
.

All the remaining matrices x = p, p̄, ¯̄p, v, v̄, u, ū, z, w are five-diagonal, namely, of the general form [xnn′ ]mk =∑2
j=−2 x j

nn′mδmk+ j . In these the matrix elements x j
nn′m are of the following explicit form:

pj
l1l2m = − 1

2 (η1l1(l1 + 1) + η2l2(l2 + 1))δ j0 + dl1l2m
l1l2m+ j, p̄ j

l1l2m = dl1l2m
l1+2 l2−2 m+ j,

¯̄pj
l1l2m = dl1l2m

l1−2 l2+2 m+ j,

v
j
l1l2m = dl1l2m

l1−2 l2 m+ j, v̄
j
l1l2m = dl1l2m

l1 l2−2 m+ j, u j
l1l2m = dl1l2m

l1 l2+2 m+ j, ū j
l1l2m = dl1l2m

l1+2 l2 m+ j,

z j
l1l2m = dl1l2m

l1−2 l2−2 m+ j, w
j
l1l2m = dl1l2m

l1+2 l2+2 m+ j .

Now all the matrices have the same number of rows, namely, 2 min[n, n′] + 1, however, each one has its own particular number
of columns which can be determined as 2rx + 1, where rx takes on specific values as follows:

rp = min[n, n′], rp̄ = min[n + 2, n′ − 2], r ¯̄p = min[n − 2, n′ + 2],

rs = min[n, n′ + 1], rr = min[n, n′ − 1], rz = min[n − 2, n′ − 2], rw = min[n + 2, n′ + 2],

rv = min[n − 2, n′], rv̄ = min[n, n′ − 2], ru = min[n, n′ + 2], rū = min[n + 2, n′].

The details of the formation of these matrices for the analogous two interacting spin problem are discussed in Refs. [22,23].
Finally, the initial value vectors Cn(0) are calculated as

Cn(0) = FI
n − FII

n ,

where the column vectors FI,II
n are

FI,II
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f I,II
2n−1 0

f I,II
2n−2 1

...

f I,II
0 2n−1

f I,II
2n 0

f I,II
2n−1 1

...

f I,II
0 2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4n2+2n+1

, f I,II
nn′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

f I,II
nn′−r

f I,II
nn′−r+1

...

f I,II
nn′r

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and r = min[n, n′]. The column vector elements f I
l1l2m and f II

l1l2m are determined from Eq. (41). An alternative method of
calculation of the initial value vectors Cn(0) yielding exactly the same result is to find the vectors FI,II

n from the homogeneous
matrix recursion formula (the time-independent version of Eq. (49) Ċn = 0)]

Q−−
n FI,II

n−2 + Q−
n FI,II

n−1 + QnFI,II
n + Q+

n FI,II
n+1 + Q++

n FI,II
n+1 = 0

(see the matrix iteration method of [6]). Here the dependence of the elements of the matrices Qn, Q±
n , Q±±

n on ξI (for FI
n) and ξII

(for FI,II
n ) must be accounted for.
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