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Topological persistence machine of phase transitions
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The study of phase transitions using data-driven approaches is challenging, especially when little prior
knowledge of the system is available. Topological data analysis is an emerging framework for characterizing the
shape of data and has recently achieved success in detecting structural transitions in material science, such as the
glass-liquid transition. However, data obtained from physical states may not have explicit shapes as structural
materials. We thus propose a general framework, termed “topological persistence machine,” to construct the
shape of data from correlations in states, so that we can subsequently decipher phase transitions via qualitative
changes in the shape. Our framework enables an effective and unified approach in phase transition analysis.
We demonstrate the efficacy of the approach in detecting the Berezinskii-Kosterlitz-Thouless phase transition
in the classical XY model and quantum phase transitions in the transverse Ising and Bose-Hubbard models.
Interestingly, while these phase transitions have proven to be notoriously difficult to analyze using traditional
methods, they can be characterized through our framework without requiring prior knowledge of the phases. Our
approach is thus expected to be widely applicable and will provide practical insights for exploring the phases of
experimental physical systems.
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I. INTRODUCTION

Identifying the phase of matter and its transition is key
to understanding many condensed-matter systems, such as
anisotropic superconductivity, graphene, and frustrated quan-
tum spin systems. In traditional methods, the relevant local
and global order parameters are evaluated to classify the dif-
ferent phases of matter. However, it is challenging to apply
this approach to systems where no conventional order param-
eter exists. Revolutionized machine learning approaches have
thus been developed to open new avenues for studying matter
phases. We can think of physical states matching a particular
choice of parameters as input data, which are obtained from
physical experiments, or from a stochastic sampling scheme
over the state space of the system. In this context, there are
two typical methods, the supervised learning method and the
unsupervised learning method. In the former, a learning ma-
chine is trained on samples associated with prior knowledge of
phases in well-known regimes. The learning machine predicts
an unknown label of a given sample, demonstrating that it
has learned by generalizing to samples it has not encountered
before. In contrast, unsupervised approaches do not require
prior labeling, but characterize the phases via dimensional
reduction methods such as principal component analysis, t-
distributed stochastic neighbor embedding [1], or diffusion
maps [2,3]. Both supervised and unsupervised approaches
have proven to be useful and have been successfully applied to
several well-known physical systems such as the Ising model
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[4–6], two-dimensional XY model [6–9], and the Hubbard
model [10–13]. Unsupervised approaches are more interesting
from a physical perspective when the properties of the phases
are not known a priori [6,11,12,14–20]. However, there is still
considerable ambiguity with regard to physical interpretations
and intuitive explanations in these methods [21].

Topological data analysis (TDA) [22] has recently emerged
as a valuable framework based on computational topology,
which can be used to characterize the shape of data. The fea-
sibility of TDA has already been demonstrated in recognizing
effective structures in material science [23–29], or in charac-
terizing the behavior of dynamical systems [30–39]. This has
encouraged us to consider using TDA as a radically different
but interpretable methodology for studying phase transitions.
In fact, TDA has also been applied to verify the glass-liquid
transition [40] and to evaluate the equilibrium phase transi-
tions of major topological changes in the configuration space
of physical systems [32]. However, for certain types of sys-
tems, such as quantum many-body systems, we do not have
much knowledge about the configuration space owing to its
exponential growth. In these systems, only raw data obtained
via experiments or simulations of physical states are available,
which are unlikely to be represented in an explicit shape to
which TDA can be directly applied. These limitations led us to
consider a general approach to constructing the shape of raw
data from physical states, which can provide a useful indicator
of phase transitions in physical systems.

We present a “topological persistence machine” based on
TDA to identify the phase of matter from raw data, such as
the bare configurations of spin states or the measurements
of quantum states. We first map data into a high-dimensional
space, with a distance function defined from the correlations
in states. We then focus on the topology of the mapped data to
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FIG. 1. Our topological persistence machine receives inputs as
raw data, such as bare spin configurations or measurements related
to the physical states. It then explores the description of the shape
of data at multiple resolutions when viewing the data. The data
are then transformed into a sequence of nested geometrical objects.
The topological structural changes throughout this sequence are then
tracked, which includes the merging of connected components and
the emergence and disappearance of any loop present in the space.

extract the topological features that describe the shape of the
data. These features are relevant to topological invariants and
can be used to study the phases of matter. We demonstrate that
our approach is generally applicable to identifying various
phases and their transitions. First, the topological features can
be used to qualitatively evaluate and interpret the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition in the classical
two-dimensional XY model. We construct an unsupervised
scheme that employs the kernel method in machine learning
to quantitatively detect this BKT phase transition. We also
summarize the topological features into measures that we
define as topological persistence complexity. We apply these
measures in well-known quantum many-body models, such as
the transverse Ising and Bose-Hubbard models, to character-
ize the quantum phases. Interestingly, by investigating these
measures in terms of small-sized systems, we can estimate the
quantum phase transitions of extremely large systems.

II. TOPOLOGICAL PERSISTENCE MACHINE

TDA is based on the idea that topology can indicate the
topological properties of a space that remain invariant under
stretching and shrinking, such as the number of holes and
that of connected components. Specifically, our topological
persistence machine is based on the most commonly used
method in TDA, persistent homology, which involves cap-
turing topological properties in the data at multiple scales
[22,41–43]. Here data are not studied directly but mapped into
a set X of points in a high-dimensional space associated with a
distance function. To model the shape of X , we place ε-radius
balls centered at each point in X to form an overlapped space
Tε(X ). Here Tε(X ) is defined as the set of all points in the
space within distance ε from a certain point in X . We can then
gradually increase ε to ascertain the evolution of Tε(X ). If we
consider ε as the spatial resolution to view the shape of X ,
then the representative topological structures should be those
that appear in Tε(X ) within the long-range of ε.

We illustrate this idea in Fig. 1, where we consider X sam-
pled from a figure-of-eight shape in two-dimensional space.
First, we focus on the appearance and disappearance of loop-
like structures. We can obtain information on loops �1 and
�2 by recording the values of ε, where each loop first ap-
pears and then disappears. Similarly, the number of connected

components in Tε(X ) is equal to that of the points in X for
a sufficiently small ε, while all of them are merged into one
component for a sufficiently large ε. Generally, we can track
the emergence and disappearance of topological structures,
such as connected components, loops, and cavities over the
evolution of Tε(X ). To each structure, we assign a pair called
a persistence pair (b, d ), where the structure appears at ε = b
and disappears at ε = d . We then label b and d birth-scale
and death-scale of the structure with the lifetime denoted as
d − b. In the computational routine, the evolution of Tε(X ) is
modeled through a sequence of nested geometrical objects,
which is known as filtration [44] (see Appendix A). The
output of persistent homology, which we regard as the topo-
logical features that represent the shape of X , is a collection
of persistence pairs for all connected components, loops, and
generally, the holes in the constructed filtration. The topolog-
ical features are represented as a two-dimensional diagram of
multiset points, which is labeled a persistence diagram, where
each point denotes a persistence pair.

In principle, all topological features from topological struc-
tures can be combined for use in our framework, but their
usefulness in detecting the phase transition depends on the
specific problem. For example, in the two-dimensional XY
model, we focus on the topological features from loops
because loops relate to the concept of vortices formed by
spins to characterize the topological phases. This selection
also benefits the machine learning methods applied to the
features because the computational time is reduced if the
number of points in the persistence diagrams are reduced with
higher-dimensional holes. In the quantum phase transition of
the one-dimensional Ising model and Bose-Hubbard model,
topological features from connected components are useful
because these features can capture the disorder in the distances
and the mutual interactions between bodies in the system.

The general pipeline for applying the topological per-
sistence machine in studies of phase transitions from the
observables of physical systems is listed below.

(1) The filtration is constructed from correlations between
states in the system for each value of the parameter observing
the phase transition.

(2) The topological features (i.e., persistence diagram) are
extracted from the filtration via persistent homology theory.

(3) Topological features are mapped to a high dimensional
space called the kernel-mapped feature space via the kernel
technique or summarized with statistical information for each
value of the parameter.

(4) A phase transition is detected by studying the features
in the kernel-mapped feature space or variations of the sta-
tistical information along with values of the parameter. Here,
unsupervised learning methods such as nonlinear dimensional
reduction or spectral clustering can be used to distinguish
different phase regimes.

The first application of persistent homology for the detec-
tion of phase transitions appeared in the work presented in
Ref. [32]. This work studied the mean-field XY model and
classical �4 model, where steps (i)–(ii) are applied to compute
the persistent homology of a point cloud sampled from config-
uration space at different energies. The distribution of points
in persistence diagrams can be used to investigate the qual-
itative differences between different phases. This approach
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is rooted in the motivation that major topological changes in
configuration space are helpful indicators for phase transitions
in a wide class of physical systems. Our topological persis-
tence machine extends this work in a more general pipeline
by focusing on the topology of observables and combining
it with unsupervised machine learning methods. We also pro-
pose novel complexity measures for applying in both classical
and quantum phase transitions. We present these ideas in the
following subsections.

A. Unsupervised topological persistence scheme

Many statistical-learning algorithms require an inner prod-
uct between the data in vector form. However, the space
of persistence diagrams is not a vector space. To address
this problem, we use the kernel technique, which involves
mapping the topological features onto a space known as
kernel-mapped feature space, wherein we can define the inner
product. If we consider a collection D = {D1, D2, . . . , DM}
of persistence diagrams, a kernel function K : D × D → R
is defined such that the matrix G with size M × M and its
elements gi j = K (Di, Dj ) is a symmetric and positive definite
matrix, known as the Gram matrix. The Gram matrix can then
be fed into unsupervised learning methods, such as nonlinear
dimensional reduction or spectral clustering methods [45–47].

There are several approaches defining a kernel for persis-
tence diagrams. The approach first proposed in the literature
is the persistence scale-space kernel [48], which is derived
from the heat diffusion equation. The persistence weighted
Gaussian kernel [40], which emerges from kernel mean em-
bedding, is an extension that provides more flexible designs.
The geometry of the points distribution in diagrams leads
to the sliced Wasserstein kernel [49] (based on Wasserstein
geometry) and the persistence Fisher kernel [50] (based on
Fisher information geometry). The persistence Fisher kernel
exhibits many theoretical and practical advantages with a
better performance for various benchmarks [50]. We employ
the persistence Fisher kernel in our study and briefly review
this kernel in Appendix B, and the kernel spectral clustering
method in Appendix C.

B. Topological persistence complexity

The kernel method provides a useful way of determining
the differences in topological structure and can be easily
applied to machine learning contexts. However, to directly
quantify the complexity of states based on topological fea-
tures, we can work with more global forms of featurization,
namely, the point summaries of a given persistence diagram.
Here, we employ two types of point summaries and consider
them as complexity measures to study the phases of matter.

The first complexity measure is the p-norm Pp of the life-
times of topological features, which is a stable point summary
of a persistence diagram D [51], defined as

Pp(D) =
[ ∑

(b,d )∈D

|d − b|p

]1/p

. (1)

P∞(D) captures the topological feature with the maximum
lifetime, and P2(D) represents the Euclidean distance of
points in D to the diagonal. A general idea to utilize Pp(D) is

that significant topological features must have long lifetimes,
and topological features with short lifetimes are considered to
be noise. Therefore, Pp(D) enables a comparison between two
persistence diagrams based mostly on the significant topolog-
ical features.

The second complexity measure is the normalized entropy
from the lifetimes of topological features [38,52]:

E (D) = − 1

logS (D)

∑
(b,d )∈D

|d − b|
S (D)

log

[ |d − b|
S (D)

]
, (2)

where S (D) = ∑
(b,d )∈D |d − b| is the sum of lifetimes in

diagram D. Without the normalization term logS (D), Eq. (2)
resembles the Shannon entropy of the lifetimes. Intuitively,
this entropy measures the difference in the distribution of
lifetimes of the topological features. Since we normalize the
entropy with logS (D), the normalized value E (D) can be
used to compare different diagrams with different numbers of
points.

Here Pp(D) and E (D) can be used as meaningful measures
of complexity, such as the disorder in distances and the mutual
interactions between bodies in the system. We investigate
the possibility of using these measures to infer or discover
essential properties of the phases.

III. RESULTS

A. XY model

We demonstrate the usefulness of topological features
in detecting the topological phase transition in a two-
dimensional XY model. Topological phase transition is a
fundamental class of phase transitions that do not possess
the onset of a symmetry-breaking phase in the physical sys-
tem. We consider the classical two-dimensional XY model
described by the energy configuration

E{θi} = −J
∑
〈i, j〉

cos(θi − θ j ), (3)

where θi is the angle of the XY spin at site i on the square
lattice. The sum includes all nearest-neighbor pairs in the
lattice, where J is the exchange interaction between spins.

The two-dimensional XY model exhibits a topological
phase transition, the so-called BKT phase transition, which
has no discontinuities in the observed values of magnetization
or energy [53]. There is a quasi-long-range order phase at low
temperatures and a disordered phase at high temperatures. The
production rule for stable topological structures in the spin
configuration, such as vortices and antivortices, is different
depending on the phase. In the quasi-long-range order phase,
single vortices do not exist, but vortex-antivortex pairs are
tightly bound due to thermal fluctuations. In contrast, they
tend to be separated and proliferate at the disordered phase
due to the thermodynamical stability of single vortices. A
sharp change in the behavior of the quasi-long-range order
phase and the disordered phase occurs at the critical tem-
perature (T/J )BKT. This critical temperature is previously
estimated using finite-size scaling methods of large-scale nu-
merical Monte Carlo data as (T/J )BKT ≈ 0.8929 [54–56]
or (T/J )BKT ≈ 0.8935 [57]. While this phase transition has
been explored in both supervised [8,58] and unsupervised
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[6,7,14–16] machine learning methods, the interpretability of
the topological aspects of spin configurations is lacking.

To feed the data into our topological persistence machine,
we use spin configurations on a square lattice with L =
N × N sites, governed by the thermal distribution ρ({θi}) ∝
e−E{θi}/kBT , where kB is the Boltzmann constant. We set N =
32, kB = 1, J = 1 and initialize 10 initial configurations for
each temperature T . We use the Metropolis algorithm to bring
the initial configuration into a thermodynamic equilibrium
state. We explore the topological features of a point cloud of
points pi = (xi, yi, θi ), where xi, yi, and θi are the x coordinate,
y coordinate, and the angle of the XY spin at site i on the
square lattice, respectively. We then introduce the distance
between sites i and j as

d (i, j) = ξ

√
(xi − x j )2 + (yi − y j )2 + (1 − ξ )|θi − θ j |. (4)

Here ξ (0 < ξ < 1) is a positive rescaling coefficient intro-
duced to adjust the scale difference between the Euclidean
distance in the lattice and the distance induced by the angle
θi.

We demonstrate that our topological persistence machine
can provide qualitative insights that will help explain the
topological aspects prior to and after the transition. At low
temperatures, a single vortex is unlikely to exist alone in the
spin configuration, meaning vortices pair up with antivortices,
which largely cancels out their effect. As a result, the spins
align to a certain degree of topological order. The filtration
induced from the distance function in Eq. (4) will merge the
region of well-ordered spins earlier than the regions of spins
with varying phases. If there are vortices or antivortices in
the spin configuration, the lattice sites far from the center
of vortices and antivortices will be fully connected to form
loops around the vortices. Then, two major groups of loops
appear: a group of ordered spins with low birth-scales and a
group of spins that form vortices or antivortices with higher
birth-scales. At high temperatures, it is easier for vortices and
antivortices to appear in many places in the spin configuration.
We expect that the clustering behavior in diagrams of loops
will change from two clusters in the low-temperature regime
to one cluster in the high-temperature regime. Therefore, ξ

is selected such that there are two major clusters at low
temperature and one major cluster at high temperature. We
investigate this observation in the persistence diagrams of loop
structures with ξ = 0.1, 0.2, . . . , 0.9 and set ξ = 0.5 for the
above-mentioned reason. The topological phase transition can
be visualized clearly if we look at the persistence diagrams
of loop structures aggregated by the value of T/J [Fig. 2(a)].
As illustrated in Fig. 2(a), for relatively low values of T/J ,
the topological features are distributed in terms of two major
concentrated groups. At high values of T/J , the vortices and
antivortices are plentiful, and the spins are disordered. Here,
loops with various sizes are generated, and the distribution of
topological features becomes wider.

Next, we introduce the unsupervised method to detect the
BKT phase transition. Here, we compute the Gram matrix of
persistence diagrams of the loops corresponding to T/J =
0.30, 0.31, . . . , 1.50. We use uniform manifold approxima-
tion and projection (UMAP) [47], a nonlinear dimensionality
reduction technique, for visualizing the projection of the

FIG. 2. (a) Persistence diagrams calculated from bare XY spin
configurations at T/J = 0.3, 0.7, 0.9, 1.1, 1.5. The blue and red
parts correspond with the high and low densities of the points.
(b) Nonlinear projection from the kernel-mapped feature space of the
topological features to a two-dimensional display using the uniform
manifold approximation and projection (UMAP) [47]. (c) Detection
of the topological phase transition using kernel spectral clustering
[46]. The number of diagrams grouped into each cluster versus T/J
is displayed.

kernel-mapped feature space of the diagrams into a two-
dimensional display [Fig. 2(b)]. UMAP learns the manifold
structure of kernel-mapped features and embeds these fea-
tures into a low dimensional representation that preserves
the essential topological structure of the manifold. The ma-
jor hyper parameters of UMAP used in our implementation
are n_neighbors = 100, min_dist = 0.9, and the metric is in-
duced from the Gram matrix. Here, n_neighbors controls the
local neighborhood for estimating the structure of the mani-
fold, and min_dist is the minimum distance apart that points
are allowed to be in the low dimensional representation. We
note that certain points appear to be distinguished in low-
and high-temperature regimes with the transition region at
T/J = 0.8–1.0. Based on the Gram matrix of the diagrams,
we use the kernel spectral clustering method [46] to cluster
diagrams into two clusters to separate the low- and high-
temperature regimes (see Appendix C). In Fig. 2(c), the blue
and red points represent the number of diagrams belong to
each cluster with each value of T/J . The clustering clearly
exhibits low- and high-temperature regimes, except at a tem-
perature of around T/J = 0.9 ± 0.1. The transition (yellow
points) in the proportion of diagrams belonging to each cluster
emerges at T/J 	 0.89, which is in line with the well-known
phase transition point (T/J )BKT in Refs. [54–57].

We further study the transition as the system size increases.
We consider T/J = 0.700, 0.705, . . . , 1.100 to evaluate more
precise values of T/J in the transition region. We initialize
10 initial spin configurations at each value of T/J and calcu-
late persistence diagrams of loops corresponding with these
configurations. The transition region is defined as the region
where the clustering method fails to detect the major regime of
10 samples for the same value of T/J . Figure 3 now describes
the number M of samples belonging to the low-temperature
regime for each value of T/J . We define the transition region
as when 3 � M � 7, which means the clustering method fails
to group at least three samples into a major regime. This
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FIG. 3. The number M of diagrams grouped into the cluster
of the low-temperature regime at each value of T/J and N . The
color bar indicates the values of M, which vary from 10 (for the
low-temperature regime) to 0 (for the high-temperature regime).
The transition region is roughly estimated when 3 � M � 7, which
means the clustering method fails to group at least three samples into
a major regime. The transition region is not observable for small N
but can be observed as T/J = 0.90 ± 0.01 when N > 40.

transition region is not observable for small N (N < 20) but
can be estimated as T/J = 0.90 ± 0.01 (the shaded region)
when N > 40. The proposed method allows us to detect this
transition without prior labeling of the topological phases.

B. Quantum phase transition

We demonstrate that the topological complexity measures
can be used to estimate quantum phase transitions, which
are often characterized by quantum averages over physical
observables such as two-point correlators. We consider two
standard mainstays of quantum many-body lattice physics,
that is, the transverse Ising model and the Bose-Hubbard
model, in a one-dimensional lattice.

The one-dimensional transverse Ising model comprises a
chain of qubits (effective spin-1/2 particles) with the Hamil-
tonian parameterized as

ĤI = −Jn

L−1∑
j=1

σ̂ z
j σ̂

z
j+1 − Jng

L∑
j=1

σ̂ x
j . (5)

Here σ̂
γ
j (γ ∈ {x, y, z}) is the Pauli operator used to measure

the spin along the γ direction of the Bloch sphere, while
Jn is the nearest-neighbor coupling parameter and g is the
transverse field parameter. For g 
 1, the nearest-neighbor
coupling term dominates, meaning that all spins tend to be
completely aligned in the up or down direction in the ground
state. For g � 1, the external field dominates, and all spins in
the ground state are aligned with the external field. The quan-
tum phase transition at the critical point gc = 1 is evidenced
by a change in the long-range behavior of the two-points
correlator.

The one-dimensional Bose Hubbard model takes the fol-
lowing form:

ĤB = −t
L−1∑
i=1

(b̂†
i b̂i+1 + b̂†

i+1b̂i )

+ U

2

L∑
i=1

n̂i(n̂i − 1) − μ

L∑
i=1

n̂i, (6)

where [b̂i, b̂†
j] = δi j . Here b̂i and b̂†

i are bosonic annihilation

and creation operators, n̂i = b̂†
i b̂i is the number of particles on

site i, and t is the tunneling parameter that is suppressed by on-
site particle interaction U . The filling factor n̄ = 1

L

∑L
i=1〈n̂i〉

is controlled by the chemical potential μ. For commensurate
filling, such as unit filling n̄ = 1, the model exhibits BKT
transition within the limit of L → ∞, while, for a small L, the
effective critical point can occur at a ratio of (t/U )BKT ≈ 0.2
[59].

We use the matrix product state [60] method implemented
in OpenMPS library [61–63] to simulate these models. Here,
we employ the same setting as those for the convergence
parameters used in Ref. [64]. Given the ground state |ψ〉 ob-
tained from the simulation, the density matrix ρ is calculated
as ρ = |ψ〉 〈ψ |. To obtain the persistence diagrams, we need
to define the distance between two sites on the lattice. In the
investigation of quantum phase transitions, the quantum aver-
ages over physical observables such as two-point correlators
are often studied. However, in general situations, we do not
know a priori how to set up an appropriate correlator. Since
the mutual information is bounded below by any possible
two-point correlator [65], mutual information can be a good
candidate for identifying quantum phase transitions in the
general case. We rely on this observation to define the distance
function derived from quantum mutual information.

With reference to Ref. [64], we first define the quantum
mutual information matrix M, with elements Mi j = 1

2 (Si +
S j − Si j ) for i �= j and Mii = 0. Here, Si = −Tr(ρ̂i log ρ̂i )
and Si j = −Tr(ρ̂i j log ρ̂i j ) are the one- and two-point von
Neumann entropies constructed from the reduced density op-
erators ρ̂i = Trk �=iρ̂ and ρ̂i j = Trk �=i, j ρ̂. Next, we define the
distance between two sites i, j in the lattice as d (i, j) =√

1 − r2
i j [66], where ri j is the Pearson correlation coefficient

constructed from M as

ri j =
∑L

k=1(Mik − 〈Mi〉)(M jk − 〈M j〉)√∑L
k=1(Mik − 〈Mi〉)2

√∑L
k=1(M jk − 〈M j〉)2

. (7)

Here 〈Mi〉 is the average of Mi j over j. We can consider the
sites on the lattice placed in a high-dimensional space associ-
ated with this distance function. From here, we can calculate
the persistence diagrams for topological structures, such as
the connected components and loops appearing in the space.
We demonstrate that quantifying complexity measures such
as Pp and E , allow us to highlight different physical aspects
of quantum phases and to provide estimations for quantum
critical points.

Figure 4 shows a finite-size scaling study of the complexity
measures P2 and E in the transverse Ising model for the per-
sistence diagrams of connected components. We use min-max
normalization as P2 → P̃2 [Fig. 4(a)] and E → Ẽ [Fig. 4(b)]
to normalize to unity for display on a single plot. These
measures clearly enable us to identify the phase transitions in
the transverse Ising model. The quantum critical point is sharp
at gc ≈ 1 when L → ∞. Note that P2 is low in the ferromag-
netic phase, where the distance di j approximates to zero since
the sites are strongly mutated and the sequences of quantum
mutual information {Mik}k=1,...,L and {M jk}k=1,...,L display
a strong linear relation. Figure 4(c) shows the probability
density curves for the lifetimes of connected components
at g = 0.2, 0.8, 1.0, 1.2, 1.8. In the ferromagnetic phase
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FIG. 4. Complexity measures based on persistent diagrams of
the connected components for the transverse Ising model. (a) The
2-norm P2 identifies the short-range correlations of the paramagnetic
ground state. (b) The normalized entropy E serves as an order param-
eter for the ferromagnetic phase. All these measures are min-max
normalized for display on a single plot as P2 → P̃2, E → Ẽ . (c) The
probability density curves for the lifetimes of connected components
at g = 0.2, 0.8, 1.0, 1.2, 1.8.

(g 
 1), the lifetimes of connected components are concen-
trated at low values for high values of L. Therefore, the
normalized entropy is high for high L. In the paramagnetic
phase (g � 1), due to the exponential decay of the cor-
relations, the sites are more tightly bound to their nearest
neighbors than to other sites. The sites are considered to be
divided into clusters in a high-dimensional space with differ-
ent scales of distances, meaning the lifetimes of connected
components are high. Therefore, P2 is high and E is low in the
paramagnetic phase without much difference in L. Figure 4(c)
also shows the sharp transformation in the gap between the
distribution of lifetimes of connected components for different
lattice sizes L near the critical point gc ≈ 1.

Figure 5(a) shows that we can observe clear transi-
tions of P2 of the loops constructed from the Bose-
Hubbard model with different sizes as L = 30–80 (red lines)
and L = 200–700 (blue lines). Here, we consider t/U =
0.01, 0.02, . . . , 0.40. For small sized systems, we consider
these transition points as effective critical points. Figure 5(c)
shows the probability density curves for the lifetimes of
connected components at t/U = 0.20, 0.28, 0.30, 0.32, 0.40.
The lifetimes are concentrated at high values when t/U is
small but spread in a wide range with increasing t/U . For
the features from connected components, at small values of
t/U , P2 is high and E is low, while at large values of t/U ,
P2 is low and E is high. Since P2 displays the scale of spatial
quantum correlation and E serves as an order parameter, we
can define another complexity measure to evaluate the balance
of P2 and E as V = |Ẽ − P̃2|. We define an effective criti-
cal point at parameter (t/U )e to achieve the intriguing point
V = 0. Figure 5(b) shows the value of V calculated from the
persistence diagrams of the connected components, and the
effective critical points in systems.

The BKT transition of the Bose-Hubbard model in one-
dimensional lattice occurs for a very large L, with recent
estimations using the density-matrix renormalization group

FIG. 5. Complexity measures based on persistent diagrams for
the Bose-Hubbard model. (a) Normalized 2-norm of the loops.
(b) Difference V = |Ẽ − P̃2| between the normalized entropy Ẽ and
the normalized 2-norm P̃2 of the connected components. The ef-
fective critical points are defined as parameters t/U for achieving
V = 0. (c) The probability density curves for the lifetimes of con-
nected components at t/U = 0.20, 0.28, 0.30, 0.32, 0.40.

as (t/U )BKT = 0.29 ± 0.01 [67] and (t/U )BKT = 0.305
[68,69], or using network measures from quantum mu-
tual information [64]. Interestingly, the BKT transition can
also be quantitatively obtained via our method by fit-
ting power laws of the curve (t/U )e(L) = (t/U )BKT +
αL−β for effective critical points. Using the data in three
regimes with L = 10, 12, . . . , 20, L = 30, 40, . . . , 100, and
L = 200, 300, . . . , 700, we can obtain (t/U )BKT = 0.289 ±
0.001, α = −0.234 ± 0.001, β = 0.300 ± 0.008. Note that
this transition is estimated without investigating an extremely
large system and without having prior knowledge of the decay
correlation.

IV. CONCLUDING REMARKS AND DISCUSSIONS

Our approach allowed us to produce quantitative topolog-
ical features for the raw data of physical states, which can be
used to identify the phases of matter with appropriate inter-
pretations. This study adds new possibilities for exploring the
phase transitions in physical systems without requiring prior
knowledge. This includes applying the approach to unravel
complex phase diagrams of general experimental systems,
where the Hamiltonian may be unknown and where traditional
physical measures are barely applicable.

There are approaches to investigate other interesting prop-
erties of distance matrices between states of a system for
identifying phase transitions. For example, Ref. [70] studies
the intrinsic and extrinsic geometry of the ground state of
a correlated system by its distance matrix in the spectral
parameter space. In this approach, the intrinsic curvature is
used to identify the difference between the metallic and insu-
lating regimes of interacting fermions in a finite-size system.
In Refs. [64,71], weighted adjacency matrices of nodes in
correlated many-body systems are constructed from distance
matrices, and then measures such as the clustering coefficient
and the density of complex networks are used to detect or
visualize the phase transitions. An intriguing approach to
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studying topological phase transitions focuses on the Euler
characteristic, which is an intrinsic topological property of
a given object. In Ref. [72], the authors demonstrate that a
singularity in the Euler entropy of the Euler characteristic
can lead to a topological phase transition, which exhibits the
emergence of multidimensional topological holes in the brain
network. While this approach is mainly developed for brain
networks, it has the same perspective as our approach, allow-
ing for significant progress in detecting the phase transitions
of complex systems where the Hamiltonian is unknown or
inaccessible.

It has been demonstrated that artificial neural networks
with modern deep-learning techniques can map a given state
to the already known topological invariants of physical sys-
tems such as winding numbers and Chern numbers [17,73,74].
Neural networks can be helpful in simple idealized models in
classifying families of noninteracting topological Hamiltoni-
ans. However, this is much more difficult and challenging in
more complicated models such as strongly correlated topolog-
ical matters. Moreover, it has been shown that typical phase
classifiers based on deep neural networks are not robust, es-
pecially in adversarial examples [75], where a tiny amount of
carefully crafted noise is added to the data [76]. In this aspect,
some unsupervised manifold learning approaches for clus-
tering topological classes with distinct topological invariants
are expected to be more robust, especially for noisy random,
non-Hermitian, and out-of-equilibrium open systems [6,18–
20]. These approaches consider each sample obtained from
the physical system as a data point in the unknown manifold,
then introduce a kernel to define the similarity between points
in this manifold. Of these, the diffusion map, which is based
on a probabilistic transition process [3], reduces the estimated
dimension of the manifold representing the samples. In this
way, the clusters of samples with similar topological invari-
ants can be characterized by fewer principal components.

While the above-mentioned unsupervised approaches are
considered useful for distinguishing the associated topologi-
cal properties such as topological invariants and topological
bands of the systems, they are fundamentally different from
our method. These approaches do not focus on the features of
each observation of individual configurations, but merely pay
attention to the setup of a suitable similarity metric between
observations. Therefore, they are difficult to use if the amount
of data is insufficient to learn a projection map to a lower
dimensional space. In contrast, our method extracts the topo-
logical features from each sample of the system and uses them
to distinguish different samples. We construct the shape of the
data via the correlations between states in the physical system,
which has not been considered in the existing literature. In this
way, from the visualization of persistence diagrams, we can
observe how topological structures such as holes transform in
the space of the observables. Therefore, the proposed topo-
logical features can provide more detailed information that
may relevant to the major topological changes in the physical
states. Interestingly, in addition to detecting topological phase
transitions in the XY model and the Bose–Hubbard model,
our method can also quantitatively characterize other phase
transitions such as the symmetry-breaking transition in the
Ising model. This is because the topological features can cap-
ture disorder in distances and the mutual interactions between

bodies in the system, and represent a good physical indicator
to identify the phase in these models.

The results for phase transitions obtained using our method
coincide with well-known results in both classical and quan-
tum cases, thereby demonstrating the effectiveness in these
cases. While our method provides a useful data-driven indi-
cator for the identification of phase transitions, this indicator
only represents a necessary but not sufficient condition [77].
For example, some phase transitions in systems with long-
range interactions may not correspond with topological and
geometrical changes in the configuration space [78]. At the
current stage of our study, we cannot conclude a one-to-one
correspondence between the transformation of persistence di-
agrams with a phase transition. We instead emphasize that the
availability of topological features from persistent homology
can provide a novel “model interpretability,” which allows
the interpretation of previously known phase transitions via
the concept of the shape of the data in some situations. As
a novel data analysis direction, it would be interesting for
future work to use our method for “model explainability,”
i.e., generating new concepts and ideas about the physical
phenomena underlying the data set.
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APPENDIX A: FILTRATION OF COMPLEX AND HOLES

We describe the basic concepts in the persistent homology
method. Details of the mathematical background and prelimi-
naries can be found in Ref. [43].

We consider a dataset X of discrete points sampled from an
unknown subspace of the metric space (X, d ), with d denoting
the distance defined in X × X. A filtration presents a sequence
of nested geometrical objects, known as simplicial complexes.
Here, the simplicial complexes are complexes of geometric
structures, known as simplices. An n-simplex is the convex
hull of its n + 1 affinely independent positioned vertices in
the space. For example, a 0-simplex is a point, a 1-simplex
is a line segment with two end points as its faces, and a 2-
simplex is a triangle together with its enclosed area with three
edges and three vertices as its faces. Similarly, a 3-simplex
is a filled tetrahedron with triangles, edges, and vertices as
its faces, while a 4-simplex is beyond visualization but is a
filled shape with tetrahedrons, triangles, edges, and vertices
as its faces. A simplicial complex is a collection of simplices,
roughly formed when we “glue” together different simplices
under the condition that the common parts of the simplices
in the simplicial complex must be the faces of both simplices
(Fig. 6). We label a simplicial complex an n-complex if n is
the maximum number, such that there is at least one n-simplex
in the complex.

We focus on the Vietoris-Rips complex since it is the most
practical and most commonly used model from a computa-
tional perspective [44]. Given ε � 0, the ε-scale Vietoris–Rips
complex VR(X , ε) is a set of simplices where each collection
of n + 1 affinely independent points in X forms an n-simplex
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FIG. 6. The illustration here depicts (a) a 1-complex, (b) a 2-
complex, (c) a 3-complex, and (d) not a simplicial complex.

in VR(X , ε) if the pairwise distance between the points is less
than or equal to 2ε. The complex VR(X , ε) provides infor-
mation on the topological structure of X associated with ε.
Starting with ε = 0, the complex contains only 0-simplices,
i.e., the discrete points. As ε increases, connections exist
between the points, which enables us to obtain a filtration,
with edges (1-simplices) and filled triangles (2-simplices) are
included in the complexes (Fig. 7). In our implementation, 2ε

takes values in the set of pairwise distances of points in X .

The nonzero smallest and largest ε are
1

2
minx,y∈X ,x �=yd (x, y)

and
1

2
maxx,y∈X ,x �=yd (x, y), respectively.

We refer to the topological structures, i.e., holes, as con-
nected components, tunnels, or loops (e.g., a circle of torus),
and cavities or voids (e.g., the space enclosed by a sphere).
We reuse the explanation in Ref. [37] to define holes. Here a
hole is identified via the cycle that surrounds it. In a given
manifold, a cycle is a closed submanifold, and a boundary
is a cycle that is also the boundary of a submanifold. Holes
correspond to cycles that are not boundaries themselves. For
example, a disk is a two-dimensional surface with a one-
dimensional boundary (i.e., a circle). If we puncture the disk,
we obtain a one-dimensional hole that is enclosed by the
circle, which is no longer a boundary. Similarly, a filled ball is
a three-dimensional object with a two-dimensional boundary
(i.e., a surface sphere). If we empty the inside of the ball,
we obtain a two-dimensional hole that is enclosed by the

surface sphere, which is no longer a boundary. Figure 8(a)
shows sample manifolds with the number of zero-, one-, and
two-dimensional holes listed underneath.

We can describe and classify the holes in the simplicial
complex according to the cycles that enclose the holes. An
n-chain is defined as a collection of n-simplices in the com-
plex. An n-cycle is a closed n-chain and an n-boundary is an
n-cycle, which is also the boundary of an (n + 1)-chain. For
example, in Fig. 8(b), loops ABDA, BCDB, and ABCDA are
1-cycles because they are closed collections of 1-simplices.
The loop ABDA is a 1-boundary because it bounds a trian-
gular face (2-simplex). An n-dimensional hole corresponds
to an n-cycle that is not a boundary of any (n + 1)-chain in
the simplicial complex. Hence, the loops BCDB and ABCDA
characterize one-dimensional holes because these loops are
1-cycles but not 1-boundaries themselves. If the difference
of two n-cycles is an n-boundary then they characterize the
same hole. Intuitively, the connected components can be clas-
sified as zero-dimensional holes, the loops and tunnels as
one-dimensional holes, and the cavities and voids as two-
dimensional holes.

In our study, we calculate the persistence diagrams of
zero-dimensional and one-dimensional holes. In principle, we
can compute the features from higher dimensional holes with
the pipeline dealing with a large number of simplices. For
instance, to consider l-dimensional holes, the Vietoris-Rips
filtration used in our study has O(Nl+2) simplices with N
being the number of nodes in the system. We can replace
the Vietoris-Rips filtration with the Witness filtration [79] or
an approximation of the Vietoris-Rips filtration [80] for more
efficient computations of higher-dimensional holes. However,
it is sufficient to use l-dimensional holes with l = 0, 1 in our
study. We employ the core implementation from the Ripser li-
brary [81] with recent algorithmic improvements to efficiently
compute the persistence diagrams.

APPENDIX B: PERSISTENCE FISHER KERNEL

The persistence Fisher kernel considers each persistence
diagram as the sum of normal distributions and measures the
similarity between the distributions via the Fisher information
metric. A persistence diagram D is considered, corresponding

to ρD = 1

Z

∑
p∈D N (p, νI), where N (p, νI) is a Gaussian

function centered at p with a bandwidth ν, I is an identity

FIG. 7. Dataset X sampled from an unknown space X is transformed into a filtration of a Vietoris-Rips complex VR(X , ε).
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FIG. 8. (a) Sample manifolds with the number of zero-, one-, and two-dimensional holes listed underneath. (b) Example of a simplicial
complex containing 19 points (0-simplices), 24 edges (1-simplices), 8 triangular faces (2-simplices), and 1 filled tetrahedron (3-simplices).
There are two one-dimensional holes �1 and �2 in this complex.

matrix, and Z = ∫
�

∑
p∈D N (x; p, νI)dx is the normalization

constant with the integral calculated on a domain �.
We regard each ρD as a point in the probability simplex

P = {ρ | ∫
�

ρ(x) = 1, ρ(x) � 0}. To define the Fisher infor-
mation metric between two points ρDi and ρD j , we transform
P into the positive orthant S+ = {χ | ∫

�
χ2(x) = 1, χ (x) � 0}

via the Hellinger mapping h(·) = √·, where the square root
is an element-wise function. The Fisher information metric
between ρDi and ρD j in P can then be defined as the geodesic
distance in S+ between h(ρi ) and h(ρ j ):

dF (ρDi , ρD j ) = arccos(〈h(ρDi ), h(ρD j )〉), (B1)

= arccos(
∫

�

√
ρDi (x)ρD j (x)dx), (B2)

where 〈·, ·〉 is a dot product. We consider the kernel
κ̃F (Di, D j ) = exp(−αdF (ρDi , ρD j )), where α is a given posi-
tive scalar (α = 1.0 in our numerical experiments).

The kernel κ̃F (Di, D j ) takes a value in (0, 1] and is equal
to 1 if two diagrams Di and D j are the same. However, the
definition needs to be modified if one diagram is empty. For
example, when D j is empty and Di contains only one element
p = (b1, d1), the kernel κ̃F is ill-defined. In fact, the kernel
should take a value approximate to 1 if d1 − b1 approxi-
mates to zero. We therefore consider D′

j as the collection of

p′ = ( b1+d1
2 , b1+d1

2 ), which are the projected points of p ∈ D j

on the diagonal line W = {(a, a) | a ∈ R}. Generally, we let
Di� and D j� be the point sets obtained by projecting two
persistence diagrams Di and D j on W . The kernel compares
two extended persistence diagrams, D′

i = Di ∪ D j� and D′
j =

D j ∪ Di�, which have the same number of points. Therefore
we can consider � = Di ∪ Di� ∪ D j ∪ D j�, and the kernel

between Di and D j becomes

κF(Di, D j ) = exp(−αdF (ρD′
i
, ρD′

j
)). (B3)

Under this kernel, persistence diagrams are considered to
be close if points that are far from the diagonal line in the
two diagrams belong to very near regions in space. Otherwise,
these diagrams can be considered to be significantly different
if these points exhibit two significantly different distributions
in the two diagrams.

APPENDIX C: KERNEL SPECTRAL CLUSTERING

Here we explain the spectral clustering method to cluster
M persistence diagrams D1, D2, . . . , DM . The goal of spectral
clustering is to cluster data that is connected but not nec-
essarily compact or clustered within convex boundaries. In
spectral clustering, the problem is transformed into a graph
partitioning problem, where nodes represent data points. First,
we define an affinity matrix A using the similarity between
data. Consider a graph of M nodes where the persistence
diagram Di is treated as the ith node in the graph. Since the
similarity between the diagrams is modeled by the kernel, the
spectral clustering becomes kernel spectral clustering [46].
Here, the affinity matrix A = (Ai j ) of the graph is created from
the kernel Gram matrix, where Ai j = κF(Di, D j ). Therefore,
Ai j ≈ 1 if the two diagrams Di, D j are close and Ai j ≈ 0 if
these diagrams are far apart. We construct the graph Laplacian
L = E − A, where E is the degree matrix of the graph. Here,
E is a diagonal matrix with its iith element Eii = ∑

j Ai j . If we
need to cluster nodes into k groups, the nodes are then mapped
to a k-dimensional subspace created by the components of k
eigenvectors corresponding to the k smallest eigenvalues of
the graph Laplacian. The mapped points in this space can
be easily segregated to form k clusters using a traditional
clustering method such as k means.
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