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Structural characterization of many-particle systems on approach to hyperuniform states
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The study of hyperuniform states of matter is an emerging multidisciplinary field, impinging on topics in the
physical sciences, mathematics, and biology. The focus of this work is the exploration of quantitative descriptors
that herald when a many-particle system in d-dimensional Euclidean space Rd approaches a hyperuniform
state as a function of the relevant control parameter. We establish quantitative criteria to ascertain the extent
of hyperuniform and nonhyperuniform distance-scaling regimes as well as the crossover point between them in
terms of the “volume” coefficient A and “surface-area” coefficient B associated with the local number variance
σ 2(R) for a spherical window of radius R. The larger the ratio B/A, the larger the hyperuniform scaling regime,
which becomes of infinite extent in the limit B/A → ∞. To complement the known direct-space representa-
tion of the coefficient B in terms of the total correlation function h(r), we derive its corresponding Fourier
representation in terms of the structure factor S(k), which is especially useful when scattering information is
available experimentally or theoretically. We also demonstrate that the free-volume theory of the pressure of
equilibrium packings of identical hard spheres that approach a strictly jammed state either along the stable
crystal or metastable disordered branch dictates that such end states be exactly hyperuniform. Using the ratio
B/A, as well as other diagnostic measures of hyperuniformity, including the hyperuniformity index H and the
direct-correlation function length scale ξc, we study three different exactly solvable models as a function of
the relevant control parameter, either density or temperature, with end states that are perfectly hyperuniform.
Specifically, we analyze equilibrium systems of hard rods and “sticky” hard-sphere systems in arbitrary space
dimension d as a function of density. We also examine low-temperature excited states of many-particle systems
interacting with “stealthy” long-ranged pair interactions as the temperature tends to zero, where the ground
states are disordered, hyperuniform, and infinitely degenerate. We demonstrate that our various diagnostic
hyperuniformity measures are positively correlated with one another. The same diagnostic measures can be
used to detect the degree to which imperfections in nearly hyperuniform systems cause deviations from perfect
hyperuniformity. Moreover, the capacity to identify hyperuniform scaling regimes should be particularly useful
in analyzing experimentally or computationally generated samples that are necessarily of finite size.
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I. INTRODUCTION

A hyperuniform point configuration in d-dimensional
Euclidean space Rd is characterized by an anomalous sup-
pression of large-scale density fluctuations relative to those
in typical disordered systems, such as liquids and structural
glasses [1,2]. More precisely, a hyperuniform point pattern is
one in which the structure factor S(k) ≡ 1 + ρh̃(k) tends to
zero as the wave number k ≡ |k| tends to zero [1,2], i.e.,

lim
|k|→0

S(k) = 0, (1)

where h̃(k) is the Fourier transform of the total correlation
function h(r) ≡ g2(r) − 1 and g2(r) is the pair-correlation
function [3]. The hyperuniformity concept generalizes the tra-
ditional notion of long-range order in many-particle systems
to not only include all perfect crystals and perfect quasicrys-
tals, but also exotic amorphous states of matter. Disordered
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hyperuniform materials can have advantages over crystalline
ones, such as unique or nearly optimal, direction-independent
physical properties and robustness against defects [4–16].

An equivalent definition of hyperuniformity is based on
the local number variance σ 2(R) ≡ 〈N (R)2〉 − 〈N (R)〉2 asso-
ciated with the number N (R) of points within a d-dimensional
spherical observation window of radius R, where angular
brackets denote an ensemble average. A point pattern in Rd is
hyperuniform if its variance grows in the large-R limit slower
than Rd . This behavior is to be contrasted with those of typical
disordered systems, such as Poisson point patterns, gases, and
liquids, where the number variance scales like the volume
v1(R) of the observation window, which is given by

v1(R) = πd/2Rd

�(1 + d/2)
. (2)

Consider systems that are characterized by a structure fac-
tor with a radial power-law form in the vicinity of the origin,
i.e.,

S(k) ∼ |k|α for |k| → 0. (3)
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For hyperuniform systems, the exponent α is positive (α > 0)
and its value determines three different large-R scaling behav-
iors of the number variance [1,2,17]:

σ 2(R) ∼
⎧⎨
⎩

Rd−1, α > 1 (class I)
Rd−1 ln R, α = 1 (class II).
Rd−α, α < 1 (class III)

(4)

These scalings of σ 2(R) define three classes of hyperuni-
formity [2], with classes I and III describing the strongest
and weakest forms of hyperuniformity, respectively. States
of matter that belong to class I include all perfect crystals
[1,17], many perfect quasicrystals [17–19], and “randomly”
perturbed crystal structures [20–23], classical disordered
ground states of matter [1,24,25], as well as systems out of
equilibrium [26,27]. Class II hyperuniform systems include
some quasicrystals [19], the positions of the prime numbers
[28], and many disordered classical [26,29–32] and quantum
[33–35] states of matter. Examples of class III hyperuniform
systems include classical disordered ground states [36], ran-
dom organization models [37], and perfect glasses [26].

By contrast, for any nonhyperuniform system, it is shown
in Appendix A that the local variance has the following large-
R scaling behaviors:

σ 2(R) ∼
{

Rd , α = 0 (typical nonhyperuniform)
Rd−α, −d < α < 0 (antihyperuniform).

(5)

For a “typical” nonhyperuniform system, S(0) is bounded [2].
In antihyperuniform systems, S(0) is unbounded, i.e.,

lim
|k|→0

S(k) = +∞, (6)

and hence are diametrically opposite to hyperuniform sys-
tems. Antihyperuniform systems include fractals, systems at
thermal critical points (e.g., liquid-vapor and magnetic critical
points) [38–42], as well as certain substitution tilings [43].

Our main concern in this paper is the exploration of quan-
titative descriptors that herald when a many-particle system
is nearly hyperuniform or approaching a hyperuniform state,
whether ordered or not. Elucidating such questions about the
large-scale structure not only is expected to lead to a deeper
fundamental understanding of the nature and formation of
hyperuniform systems but has great practical value. For ex-
ample, since hyperuniformity can endow a system with novel
or optimal physical properties, it is essential to know how
close the system must be to perfect hyperuniformity without
significantly degrading its ideal performance. In practice, per-
fect hyperuniformity is never achieved due to defects that are
inevitably present in any real finite-sized system [44], whether
crystalline, quasicrystalline, or disordered [23].

We begin by recalling pertinent previous concepts and
results (Sec. II), including the fluctuation-compressibility
theorem, hyperuniformity as a critical phenomenon, a hy-
peruniformity length scale ξc, and a hyperuniformity index
H . The latter two quantities provide measures of nearness to
hyperuniformity.

In the remainder of the paper, we obtain a variety of theo-
retical results to study the problem at hand. First, for a general
system, we establish quantitative criteria to ascertain the ex-
tent of hyperuniform and nonhyperuniform distance-scaling
regimes as well as the crossover point between them in terms

of the “volume” coefficient A and “surface-area” coefficient B
associated with the variance σ 2(R) (Sec. III). Specifically, the
ratio B/A determines the crossover length scale Rc. The larger
the ratio B/A, the larger the hyperuniform scaling regime,
which becomes of infinite extent in the limit B/A → ∞. This
capacity to determine hyperuniform scaling regimes is ex-
pected to be particularly useful in analyzing experimentally
or computationally generated samples that are necessarily of
finite size.

Second, to complement the known direct-space represen-
tation of the coefficient B in terms of the total correlation
function h(r) [1], we derive here its corresponding Fourier
representation in terms of the structure factor S(k) (Sec. IV).
The latter representation is particularly useful when the scat-
tering intensity is available experimentally or if the structure
factor is known analytically. This Fourier representation of B
applies for any system, hyperuniform or not, and leads to a
new sum rule for hyposurficial systems.

Third, we show that the free-volume theory of the pres-
sure of equilibrium packings of identical hard spheres that
approach either a strictly jammed crystal or disordered state
dictates that such jammed states be perfectly hyperuniform
(Sec. V). We describe why this outcome implies that such
jammed states must be defect-free.

Fourth, motivated by a desire to rely on analytical rather
than numerical methods, we structurally characterize three
different disordered-system models as a function of the rele-
vant control parameter, either density or temperature, with end
states that are perfectly hyperuniform. These models are dis-
tinguished from most other models with hyperuniform states
in that their pair correlation functions and structure factors
are known exactly for all values of the control parameter
in the thermodynamic limit. We purposely avoid the use of
simulations of many-particle systems in finite boxes to draw
conclusions, since hyperuniformity in an infinite-wavelength
property. The first model that we characterize is an equilib-
rium system of hard rods (Sec. VI). Here the control parameter
is the number density ρ (or packing fraction) and its terminal
value corresponds to the jammed state that is the integer
lattice. The second model studied is a certain “sticky” hard-
sphere system in arbitrary space dimension d as a function
of the number density (or packing fraction) (Sec. VII). The
third model that we characterize is low-temperature excited
states of so-called stealthy long-ranged pair interactions in Rd

(Sec. VIII). Here, the control parameter is the temperature
T and the corresponding ground states at T = 0 are disor-
dered and degenerate. For all models considered in this study,
we show that the diagnostic measures B/A, ξc and H−1 are
positively correlated with one another. We make concluding
remarks in Sec. IX.

II. COMPRESSIBILITY, INVERTED CRITICAL POINT,
GROWING LENGTH SCALE, AND HYPERUNIFORMITY

INDEX

In this section, we briefly review pertinent background
material. This outline includes the implications of the
fluctuation-compressibility theorem, hyperuniformity as a
critical phenomenon, a length scale that grows on approach
to a hyperuniform state, and the hyperuniformity index.
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A. Fluctuation-compressibility theorem

Let us now recall the well-known fluctuation-
compressibility theorem that links the isothermal
compressibility κT of equilibrium single-component
many-particle ensembles at number density ρ and temperature
T to infinite-wavelength density fluctuations [3]. In particular,
for “open” systems in equilibrium, one has

ρkBT κT = 〈N2〉∗ − 〈N〉2
∗

〈N〉∗ = S(k = 0) = 1 + ρ

∫
Rd

h(r)dr,

(7)

where kB is Boltzmann’s constant and 〈·〉∗ denotes an average
in the grand canonical ensemble.

The fluctuation-compressibility relation (7) enables one to
draw useful conclusions about the hyperuniformity of equi-
librium systems. Any ground state (T = 0) in which the
isothermal compressibility κT is bounded and positive must
be hyperuniform because the structure factor S(k = 0) must
be zero according to relation (7) [2]. More generally, we infer
from (7) that if the product T κT tends to a non-negative con-
stant c in the limit T → 0, then the ground state of this system
in this zero-temperature limit must be nonhyperuniform if
c > 0 or hyperuniform if c = 0. By the same token, this means
that increasing the temperature by an arbitrarily small positive
amount when a system is initially at a hyperuniform ground
state will destroy perfect hyperuniformity, since S(k = 0)
must deviate from zero by some small amount determined by
the temperature dependence of the product κT T for small T
[2]. This indirectly implies that phonons or vibrational modes
for sufficiently small T generally destroy the hyperuniformity
of ground states [23,25]. Additionally, in order to have a
hyperuniform system that is in equilibrium at any positive T ,
the isothermal compressibility must be zero, i.e., the system
must be thermodynamically incompressible [2].

B. Inverted critical point and scaling laws

The direct-correlation function c(r) of a hyperuniform sys-
tem behaves in an unconventional manner compared to that
of typical liquids. This function is defined via the Ornstein-
Zernike integral equation [45]:

h(r) = c(r) + ρc(r) ⊗ h(r), (8)

where ⊗ denotes a convolution integral. Fourier transforming
(8) and solving for c̃(k), the Fourier transform of c(r), yields

c̃(k) = h̃(k)

S(k)
= h̃(k)

1 + ρh̃(k)
. (9)

By definition, a hyperuniform system is one in which
h̃(k = 0) = −1/ρ, i.e., the volume integral of h(r) exists,
implying that h(r) is sufficiently short-ranged in the sense that
it decays to zero faster than |r|−d . Interestingly, this means
that the denominator on the right side of (9) vanishes at k = 0
and therefore c̃(k = 0) diverges to −∞. This behavior implies
that the volume integral of c(r) does not exist and hence the
real-space direct-correlation function c(r) is long-ranged, i.e.,
decays slower than |r|−d . We see that this behavior stands in
diametric contrast to standard thermal critical-point systems
in which the total correlation function is long-ranged and

the direct-correlation function is short-ranged such that its
volume integral exists [38–41]. For this reason, it has been
said that hyperuniform systems are at an “inverted” critical
point [1]. As noted earlier, systems at thermal critical points
are antihyperuniform.

There is a class of disordered hyperuniform systems with
concomitant critical exponents [1,2]. For such hyperuniform
critical systems, the direct-correlation function has the fol-
lowing asymptotic behavior for large r ≡ |r| and sufficiently
large d:

c(r) ∼ − 1

rd−2+η
(r → ∞), (10)

where (2 − d ) < η � 2 is a “critical” exponent associated
with c(r) for hyperuniform systems that depends on the space
dimension. The Fourier transform of (10) yields

c̃(k) ∼ − 1

k2−η
(k → 0), (11)

which, when combined with (9), yields the asymptotic form
of the structure factor

S(k) ∼ k2−η (k → 0), (12)

where η = 2 − α and α is the exponent defined in relation (3).
In what follows, it is assumed for concreteness, that the

number density is the control parameter. We define the fol-
lowing dimensionless density:

φ = ρv1(D/2), (13)

where v1(R) is given by (2) and D is a characteristic “micro-
scopic” length scale. The direct correlation in the vicinity of
a hyperuniform critical state with dimensionless density φc,
i.e., for |φc − φ| 
 1, in sufficiently high dimensions has the
following large-r asymptotic form [1,2]:

c(r) ∼ exp(−r/ξ )

rd−2+η
, (14)

where ξ is the correlation length. If the system approaches
a hyperuniform state from below the critical density φc, the
correlation length and inverse of the structure factor at k = 0,
S−1(0), which is proportional to c̃(0), are described by the
following scaling laws:

ξ ∼
(

1 − φ

φc

)−ν

(φ → φ−
c ), (15)

S−1(0) ∼
(

1 − φ

φc

)−γ

, (φ → φ−
c ), (16)

where ν and γ are non-negative critical exponents. Observe
that the exponent γ is a measure of how quickly a system
approaches a critical point. Combination of the three previous
scaling laws leads to the following interrelation between the
exponents:

γ = (2 − η)ν. (17)

The specific values of the critical exponents determine
the universality class of the hyperuniform system. It is note-
worthy that all class III hyperuniform systems are at critical
points with the aforementioned scaling laws. Specific exam-
ples of such class III critical-point systems are nonequilibrium
absorbing-state models [37].
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C. Growing length scale

Another important length scale ξc that can be extracted
from the direct-correlation function and which grows as a
hyperuniform state is approached is defined by [46]

ξc = [−c̃(k = 0)]1/d . (18)

Thus, we see that ξc is the dth root of the volume integral of
the direct-correlation function c(r). At a hyperuniform critical
point, ξc diverges to +∞. It was shown that a precursor to
the hyperuniform maximally random jammed (MRJ) state of
sphere packings [47] under compression was evident for den-
sities far below the jamming density was reached, as reflected
by this static growing length scale [46]. The quantity ξc was
also used to identify length scales in supercooled atomic liquid
models that substantially grow as the temperature decreased
with a concomitant deviation from equilibrium, as measured
by the nonequilibrium index X = S(0)/(ρkBT κT ) [48].

D. Hyperuniformity index

The hyperuniformity index H provides a measure of the
nearness of a system to a hyperuniform state, which is defined
as

H ≡ S(0)

S(kp)
, (19)

where kp is the wave number k associated with the largest
peak height of the angularly averaged structure factor. One
may empirically deem a system to be nearly or effectively
hyperuniform if H is roughly less than about 10−4 [32]. The
H index has been profitably used to quantify the effective hy-
peruniformity of liquid and glassy polymer systems [49,50],
amorphous ices [51], states along the metastable extension of
the hard-sphere systems away from jamming [52], and low-
temperature amorphous states of “quantizer” systems [53,54].

III. HYPERUNIFORM AND NONHYPERUNIFORM
SCALING REGIMES

For a large class of ordered and disordered systems, the
number variance σ 2(R) has the following large-R asymptotic
behavior [1,2]:

σ 2(R) = 2dφ

[
A
( R

D

)d

+ B
( R

D

)d−1

+ o
( R

D

)d−1]
, (20)

where φ is the dimensionless density given by (13) and
o(R/D)d−1 represents terms of lower order than (R/D)d−1.
Moreover, A and B are the “volume” and “surface-area” coef-
ficients, respectively, which can be expressed as the following
volume integrals involving the total correlation function h(r),
respectively:

A = lim
|k|→0

S(k) = 1 + ρ

∫
Rd

h(r)dr

= 1 + d2dφ

∫ ∞

0
xd−1h(x)dx, (21)

B = − d �(d/2)ρ

2π1/2D�[(d + 1)/2]

∫
Rd

|r|h(r)dr

= − d22d−1�(d/2)φ

π1/2�[(d + 1)/2]

∫ ∞

0
xd h(x)dx, (22)

and x = r/D is a dimensionless distance. Here h(r) is the
radial function that depends on the distance r ≡ |r|, which
results from averaging the vector-dependent quantity h(r),
i.e.,

h(r) = 1




∫



h(r)d
, (23)

where d
 is the differential solid angle and


 = dπd/2

�(1 + d/2)
(24)

is the total solid angle contained in a d-dimensional sphere. In
a perfectly hyperuniform system [1], the non-negative volume
coefficient vanishes, i.e., A = 0, implying the sum rule

ρ

∫
Rd

h(r)dr = −1, (25)

such that the surface-area coefficient B is non-negative. Thus,
such hyperuniform systems fall within class I, since the vari-
ance grows like the window surface area (Rd−1). On the other
hand, when A > 0 and B = 0, the system is hyposurficial,
implying the sum rule∫ ∞

0
xd h(x)dx = 0. (26)

Examples of hyposurficial systems include ideal gases, certain
hard-core systems in Rd [1], nonequilibrium phase transitions
in amorphous ices [51], and certain systems with bounded
pair interactions [55]. Appendix A provides a more general
asymptotic expansion of the local number variance, which is
used to derive nonhyperuniform scaling laws.

For a large class of nonhyperuniform disordered systems
that are sub-Poissonian [56], such as fluids and colloids with-
out particle clustering, the volume coefficient A is often larger
than the magnitude of the surface-area coefficient B. For
super-Poissonian configurations [56], such as those described
in Appendix B, the magnitude of B can be larger than A. When
A < 1 and A < B, B is often positive, and the smallness of the
ratio A/B measures the degree of hyperuniformity [51]. In a
disordered system that is nearly hyperuniform, the inverse of
this ratio, B/A, enables us to ascertain hyperuniform and non-
hyperuniform distance-scaling regimes of the variance σ 2(R)
as a function of R. The crossover value of Rc between these
two scaling regimes is determined by equating the first two
terms of the large-R asymptotic expansion of the local number
variance, Eq. (20), yielding the condition

Rc ≈ B

A
. (27)

For the range R0 < R < Rc, where R0 ≈ ρ−1/d (roughly, equal
to the mean nearest-neighbor distance), the system exhibits
hyperuniform scaling behavior, i.e., the variance is domi-
nated by the surface-area scaling, Rd−1. Clearly, the crossover
value Rc becomes infinite for perfectly hyperuniform systems
in which case B/A = +∞. On the other hand, for R > Rc

and finite B/A, the system begins to exhibit nonhyperuni-
form scaling behavior, i.e., the variance is dominated by
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the volumelike scaling, Rd . The determination of hyperuni-
form scaling regimes could be especially useful in analyzing
experimentally or computationally generated systems that are
necessarily of finite size L such that R < L/4 [56].

IV. FOURIER REPRESENTATION OF SURFACE-AREA
COEFFICIENT

Here we derive a Fourier representation of the surface-
area coefficient B for any homogeneous many-particle system,
whether hyperuniform or not, provided that the structure fac-
tor meets certain mild conditions. This representation will be
especially useful when the scattering intensity is available ex-
perimentally or if the structure factor is analytically available,
as it is when solving the Ornstein-Zernike integral equation
(8).

We define the Fourier transform of a function f (r) that
depends on the vector r in d-dimensional Euclidean space Rd

as follows:

f̃ (k) =
∫
Rd

f (r) exp [−i(k · r)]dr, (28)

where k is a wave vector and (k · r) = ∑d
i=1 kiri is the con-

ventional Euclidean inner product of two real-valued vectors.
The function f (r) can generally represent a tensor of arbi-
trary rank. When it is well-defined, the corresponding inverse
Fourier transform is given by

f (r) =
(

1

2π

)d ∫
Rd

f̃ (k) exp [i(k · r)]dk. (29)

If f is a radial function, i.e., f depends only on the modulus
r = |r| of the vector r, its Fourier transform is given by

f̃ (k) = (2π )d/2
∫ ∞

0
rd−1 f (r)

J(d/2)−1(kr)

(kr)(d/2)−1 dr, (30)

where k = |k| is the wave number or modulus of the wave
vector k and Jν (x) is the Bessel function of the first kind of
order ν. The inverse transform of f̃ (k) is given by

f (r) = 1

(2π )d/2

∫ ∞

0
kd−1 f̃ (k)

J(d/2)−1(kr)

(kr)(d/2)−1 dk. (31)

The Fourier representation of the local number variance
for statistically homogeneous media, which includes perfect
crystals (under uniform translations of the crystals over their
fundamental cells) [2], is given by

σ 2(R) = 2dφRd

[
1

(2π )d

∫
Rd

S(k)α̃(k; R)dk

]
, (32)

where

α̃(k; R) = 2dπd/2�(1 + d/2)
[Jd/2(kR)]2

kd
(33)

is the Fourier transform of the scaled intersection volume
function α(r; R), which depends only on the magnitude of the
wave vector k = |k|. Using the identity

1

(2π )d

∫
Rd

α̃(k; R)dk = 1, (34)

it follows from (32) that

σ 2(R) = 2dφS0 Rd + 2dφRd

[
1

(2π )d

∫
Rd

[S(k) − S0]α̃(k; R)dk

]
, (35)

where

S0 ≡ lim
|k|→0

S(k) = A = 1 + ρ

∫
Rd

h(r)dr, (36)

which implies

ρh̃(k = 0) = S0 − 1. (37)

Since α̃(k; R) is a radial function, depending only on the magnitude of the wave vector, we can carry out the angular integration
in the integral in (35), yielding

σ 2(R) = 2dφS0Rd + 2dφRd

[
dπd/2

(2π )d�(1 + d/2)

∫
Rd

kd−1[S(k) − S0]α̃(k; R)dk

]
, (38)

where the radial function S(k) is given by

S(k) = 1




∫



S(k)d
. (39)

For large R,

α̃(k; R) ∼ 2d+1πd/2−1�(1 + d/2)
cos2[kR − (d + 1)/4]

Rkd+1
. (40)

The combination of (38) and (40) yields the following large-R asymptotic expansion:

σ 2(R) ∼ 2dφS0Rd + 2dφRd−1

[
2d

π

∫ ∞

0

S(k) − S0

k2
cos2

(
kR − d + 1

4

)
dk

]
+ O(Rd−3). (41)
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Using the identity

lim
L→∞

1

L

∫ L

0
cos2

[
kR − d + 1

4

]
dR = 1

2
(42)

and (41), we obtain

σ 2(R) ∼ 2dφS0Rd + 2dφRd−1

[
d

π

∫ ∞

0

S(k) − S0

k2
dk

]

+ O(Rd−3). (43)

Comparing (43) to (20) yields the desired Fourier represen-
tation of the surface-area coefficient

B = d

π

∫ ∞

0

S(k) − S0

k2
dk. (44)

Thus, this Fourier representation of the coefficient B is
bounded provided that the difference [S(k) − S0] tends to
zero in the limit k → 0 faster than linear in k. Note that this
condition will always be met by any structure factor that is
analytic at the origin, since [S(k) − S0] must vanish at least as
fast as quadratically in k as k → 0. Finally, we observe that if
the system is hyposurficial (B = 0), relation (44) leads to the
integral condition ∫ ∞

0

S(k) − S0

k2
dk = 0, (45)

which is the Fourier-space sum rule for hyposurficiality that
corresponds to the direct-space sum rule (26).

V. TOWARD JAMMED STATES IN EQUILIBRIUM
HARD-SPHERE SYSTEMS

We recall some well-known results for the equilibrium
phase behavior of identical hard spheres of diameter D. The
pressure of an equilibrium hard-sphere system in any space
dimension can be expressed in terms of the contact values of
the direct-correlation function from the right and left sides via
the Ornstein-Zernike equation [57]:

p

ρkBT
= 1 + 2d−1φ[c(D+) − c(D−)]. (46)

Here the dimensionless density φ is to be interpreted as the
packing fraction, i.e., the fraction of space covered by the
spheres. Figure 1 schematically shows the three-dimensional
(3D) phase behavior in the φ-p plane. Three different isother-
mal densification paths by which a hard-sphere liquid may
jam are shown. At sufficiently low densities, an infinitesimally
slow compression of the system at constant temperature de-
fines a thermodynamically stable liquid branch for packing
fractions up to the “freezing” point (φ ≈ 0.494). Increasing
the density beyond the freezing point putatively results in an
entropy-driven first-order phase transition [58,59] to a crys-
tal branch that begins at the melting point (φ ≈ 0.55). Slow
compression of the system along the crystal branch ends at
the jammed state corresponding to the fcc lattice packing [60]
with φ = π/

√
18 = 0.740 48 . . . . Rapid compressions of the

liquid while suppressing some degree of local order can avoid
crystal nucleation (on short timescales) and produce a range of
amorphous metastable extensions of the liquid branch that jam
only at their density maxima. The faster the compression rate,

FIG. 1. The isothermal phase behavior of the 3D hard-sphere
model in the pressure-packing fraction plane, as adapted from
Ref. [61]. An infinitesimal compression rate of the liquid traces
out the thermodynamic equilibrium path (shown in red), including
a discontinuity resulting from the first-order freezing transition to
a crystal branch (shown in green) that ends at a maximally dense,
infinite-pressure jammed state. Rapid compressions of the liquid
(blue curves) generate a range of amorphous metastable extensions
of the liquid branch that jam only at their density maxima, which we
show here must be perfectly hyperuniform states.

the lower is the jammed density. Presumably, the metastable
branch produced by the most rapid compression rate with a
terminal density consistent with strict jamming corresponds
to the MRJ state with φ ≈ 0.64 [47,61]. The MRJ state under
the strict-jamming constraint [62,63] is a prototypical glass
[64] in that it is maximally disordered (according to a variety
of order metrics) without any long-range order (Bragg peaks)
and perfectly rigid, i.e., the elastic moduli are unbounded
[61,65].

In the immediate vicinity of a jammed state in Rd with
packing fraction φJ , the set of particle displacements that are
accessible to the packing approaches a convex-limiting poly-
tope (because the impenetrability constraints become linear)
and free-volume theory [66–68] predicts that the pressure p
has the following exact asymptotic form:

p

ρkBT
∼ d

1 − φ/φJ
(φ → φJ ). (47)

So far as the limiting polytope picture is concerned, the ex-
tremely narrow connecting filaments that in principle connect
the jamming neighborhoods have so little measure that they
do not overturn the free-volume leading behavior of the pres-
sure, even in the infinite-system limit [61]. Although there is
no rigorous proof yet for this claim, all numerical evidence
strongly suggests that it is correct as the jamming state is ap-
proached either along the crystal [66,67] or metastable branch
[68]. Assuming that the system dynamics remain ergodic in
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the vicinity of a jammed state, we can apply the fluctuation-
compressibility relation (7) along with the free-volume form
(47) to yield the corresponding asymptotic relation for S−1(0):

S−1(0) ∼ d

(1 − φ/φJ )2
(φ → φJ ). (48)

Thus, we see that in the limit φ → φJ , the system becomes
perfectly hyperuniform, which appears to validate a more gen-
eral conjecture of Torquato and Stillinger [1], as elaborated
below.

It is important to note that the ergodicity condition required
to obtain (48) implies that the system must be defect-free.
To stress this point further, consider an fcc packing in R3

at the jammed state with packing fraction φ = π/
√

18 =
0.740 48 . . .. Next, shrink each sphere by an infinitesimal
uniform amount (such that the impenetrability constraints are
linearizable) and randomly remove a small but statistically
significant fraction of spheres so that the resulting vacancies
are well-separated from one another. This vacancy-riddled
packing remains in its jamming basin. Now, slowly com-
press it until it jams, whereby the system pressure diverges.
It is known that the structure factor S(k) at the origin of a
nearly hyperuniform system with vacancies is proportional
to the concentration of vacancies [23] and hence cannot be
hyperuniform, as predicted by (48). Thus, the free-volume
form for the pressure (47) cannot apply to this nonequilibrium
vacancy-riddled but strictly jammed state.

More generally, Torquato and Stillinger [1] suggested
that certain defect-free strictly jammed packings of identical
spheres are hyperuniform. Specifically, they conjectured that
any strictly jammed saturated infinite packing of identical
spheres is hyperuniform. A saturated packing of hard spheres
is one in which there is no space available to add another
sphere. What is the rationale for such a conjecture? First,
it recognizes that mechanical rigidity is a necessary but not
sufficient condition for hyperuniformity. Indeed, requiring the
saturation property in the conjecture eliminates the class of
strictly jammed crystal states that are riddled with vacancies,
as per the aforementioned example. Moreover, the conjecture
excludes packings that may have a rigid backbone but possess
“rattlers (particles that are not locally jammed but are free
to move about a confining cage) because a strictly jammed
packing, by definition, cannot contain rattlers [61,68]. Typi-
cal packing protocols that have generated disordered jammed
packings tend to contain a small concentration of rattlers
[61,69], and hence the entire (saturated) packing cannot be
deemed to be jammed. Therefore, the conjecture cannot apply
to current numerically generated disordered packings, even
if the structure factor at the origin is very small, e.g., an H
index of the order of 10−4 for 3D MRJ-like sphere packing
[29]. Thus, rattler-free disordered jammed sphere packings
are expected to be perfectly hyperuniform. Indeed, if the
free-volume theory applies along the metastable extension
(due to a type of constrained ergodicity on timescales much
less than relaxation times) ending at the MRJ state, rattlers
cannot be present and hence the MRJ state should be perfectly
hyperuniform. It has been suggested that the ideal MRJ state
is rattler-free, implying that the packing is more disordered
without the presence of rattlers [32].

The consequences of the free-volume theory require a
modification of the Torquato-Stillinger conjecture because the
former eliminates defects of any type in the jamming limit and
the saturation condition may not prohibit all defect types. For
example, the saturation property may not exclude dislocations
in strictly jammed crystal states. A more refined variant of
the conjecture is the following statement: Any strictly jammed
infinite packing of identical spheres that is defect-free is hy-
peruniform.

In Appendix C, we obtain exact sum rules and the exact
large-k asymptotic behaviors of the structure factors of cer-
tain general packings of identical spheres in Rd , whether in
equilibrium or not.

VI. EQUILIBRIUM HARD RODS

We first structurally characterize one-dimensional systems
of identical hard rods of length D in equilibrium as a function
of the packing fraction φ up to the jammed, hyperuniform
state (φ = 1). This hyperuniform state is the integer lattice
Z and hence cannot be regarded to be a critical hyperuniform
state, as described in Sec. II B.

Percus [70] obtained the following exact expression for the
direct-correlation function for an equilibrium hard-rod system
at packing fraction φ:

c(r) = −�(D − r)
1 − φr/D

(1 − φ)2
, (49)

where �(x) is the Heaviside step function. The combination
of this relation with (46) yields the well-known expression for
the pressure of the hard-rod system [71]:

p

ρkBT
= 1

1 − φ
, (50)

which we see takes the free-volume form (47) for the entire
range of packing fractions, not just near the jammed state
φJ = 1, which must be hyperuniform. The Fourier transform
of c(r) is given by

c̃(k) = 2{φ[cos(kD) − 1] + kD sin(kD)(φ − 1)}
(1 − φ)2(kD)2

. (51)

Using (9), the corresponding structure factor is given by

S(k) = 1

1 − 2φ{φ[cos(kD)−1]+kD sin(kD)(φ−1)}
(1−φ)2(kD)2

. (52)

It is seen that the asymptotic large-k behavior of S(k) is
consistent with the general expression (C6) for d = 1, where
the contact value g2(D+) = (1 − φ)−1 is bounded for all φ,
except at its maximal value φ = 1.

The structure factor S(k) is plotted in Fig. 2 for the hard-rod
system near the jammed state with φ = 0.98. At such high
densities, its peak values occur at wave numbers that are
approximately integer multiples of 2π/D, which is exactly
the case for the integer lattice (jammed state) with lattice
constant D. The envelope of the largest peak values decays
with wave number approximately as the power law 1/k3/2. It
immediately follows from (52) that the volume coefficient A,
defined by (21), is exactly given by

A = S(0) = (1 − φ)2. (53)
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FIG. 2. The structure factor S(k) versus the dimensionless wave
number kD for an equilibrium hard-rod system near the jammed state
(φ = 0.98), where D is a rod length. The envelope of the largest peak
values (shown as a red line) decays with wave number approximately
as the power law 1/k3/2.

The surface-area coefficient B is easily obtained for all φ from
its Fourier representation (44) and use of the exact structure
factor formula (52) by high-precision numerical integration.
These results for B are in excellent agreement with previous
results using the direct-space representation of B [1]. A simple
and highly accurate formula for B is given by

B = φ

12
(6 − 8φ + 3φ2). (54)

This formula is obtained by using exact results at low and
high packing fractions and assuming that B is a cubic poly-
nomial in φ (without a constant term). Specifically, the linear
and quadratic terms are determined by the exact expansion
of S(k) − S0 in powers of φ through second order in φ, as
determined from the exact formula (52). The remaining cubic
term is found by using the fact that B is exactly equal to 1/12
for the integer lattice at φ = 1 [1]. Thus, combination of the
aforementioned formulas for A and B, yields the following
excellent approximation for the ratio:

B

A
= φ(6 − 8φ + 3φ2)

12(1 − φ)2
. (55)

The ratio B/A is plotted in Fig. 3 as a function of φ. It
is seen that B is about ten times larger than A at φ = 0.9
and the ratio dramatically diverges to infinity as φ tends to
unity. For example, at φ = 0.99, B is about 842 times larger
than A. Referring to Sec. III, the magnitude of the ratio B/A
determines the hyperuniformity scaling regime for the local
number variance σ 2(R) to be those window radii in the range
O(ρ−1/d ) < R < Rc = B/A. For R beyond O(B/A), the vari-
ance should display nonhyperuniform scaling of the number
variance. These scaling regimes are verified in the plot of the
variance at φ = 0.99 shown in Fig. 4. The actual variance, as
determined from the exact relations (32) and (52), at such a
high packing fraction is characterized by small-scale fluctua-
tions around some average values, and because such variations
visually obscure the scaling regimes, we considered employ-
ing the cumulative running average, defined in Ref. [72], to

0 0.2 0.4 0.6 0.8 1
φ

1e-06

0.0001

0.01

1

100

10000

1e+06

1e+08

B
/A

Equilibrium Hard Rods

FIG. 3. The ratio of the surface-area coefficient to volume coef-
ficient, B/A, as a function of the packing fraction φ for equilibrium
hard-rod systems.

smooth out the small-scale oscillations around the global val-
ues. Because the cumulative average plot on the scales shown
in Fig. 4 is very similar that obtained from the asymptotic
expansion (20), we employ the latter, for simplicity, to show
the scaling regimes.

It easily follows from formula (52) that the largest peak
value of the structure factor S(kp) through first order in the
packing fraction is exactly given by

S(kp) = 1 − sin(kpD)

kpD
φ + O(φ2)

= 1 + (0.434 464 192 . . .)φ + O(φ2), (56)

where

kpD = 3

4
π + 1

4

√
9π2 − 16 = 4.489 654 702 . . . . (57)

1 10 100 1000 10000 1e+05
R/D
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σ
2 (R

)/
R
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φ = 0.99
nonhyperuniform

φ = 1
hyperuniform

~ R
-2

~ R
-1

Equilibrium Hard Rods

FIG. 4. The scaled variance σ 2(R)/R2 versus R/D, as computed
from relation (20), for the jammed hyperuniform state with φ = 1 (as
found in Ref. [1]) and for a nonhyperuniform state near jamming with
φ = 0.99, where Rc = B/A = 841.747 499 6. Because the variance is
bounded for the hyperuniform state [1], σ 2(R)/R2 decreases with R
for large R like 1/R2.
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FIG. 5. The largest peak value of the structure factor S(kp) versus
the packing fraction φ for equilibrium hard-rod systems.

It is highly nontrivial to derive an analytical expression for
S(kp) for arbitrary φ. Of course, we know that S(kp) must
increase as φ increases and diverges in the limit that the
jamming density is approached from below, i.e., φ → 1−,
which should be distinguished from the case when φ = 1 in
which S(k) consists of Dirac delta functions located at wave
numbers that are multiples of 2π/D. The first peak value of
the structure factor, which is also the largest value, is plotted
in Fig. 5 as a function of φ, which of course must diverge at
the hyperuniform jammed state φ = 1. The following rational
function provides an excellent fit to the data for all φ up to the
jamming density:

S(kp) = 1 + a1φ + a2φ
2 + a3φ

3

(1 − φ)2
, (58)

where a1 = −1.565 536, a2 = 0.470 399, and a3 =
0.196 196. This fit uses the exact small-φ expansion (56)
to ascertain the coefficient a1. The accurate approximation
(58) for S(kp) when combined with exact formula (53) for
S(0) yields the following expression for the hyperuniformity
index:

H = (1 − φ)4

1 + a1φ + a2φ2 + a3φ3
, (59)

which is plotted in Fig. 6 as a function of φ.
Using (51), it immediately follows that the length scale ξc,

defined by (18), for equilibrium hard rods is given by

ξc = −c̃(k = 0) = (2 − φ)D

(1 − φ)2
. (60)

Figure 7 clearly shows that this length scale grows appreciably
with increasing packing fraction. It is already about an order
of magnitude greater than the length of a rod D at φ = 0.6
and rapidly takes on even larger values as φ increases further,
eventually diverging to infinity in the limit φ → 1.

It is useful to compare and contrast the growth rate of the
three descriptors B/A, ξc, and H−1 as the packing fraction
φ increases and approaches the jammed hyperuniform state.
Observe that the numerators of the formulas (55) and (60) for
moderate to high values of φ are of order unity, and hence B/A
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1e-08
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1
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Equilibrium Hard Rods

FIG. 6. The hyperuniform index H versus the packing fraction
φ for equilibrium hard-rod systems. The rapid growth of ξc with
increasing packing fraction is readily apparent.

and ξc have the same scaling behavior as the hyperuniform
state of the hard-rod system is approached, namely,

B

A
∼ ξc

D
∼ 1

(1 − φ)2
. (61)

This is to be contrasted with the inverse of the hyperunifor-
mity index H−1, which grows substantially faster, i.e., we
see from (59) that it grows like the square of the other two
quantities:

H−1 ∼
(B

A

)2

∼
(

ξc

D

)2

∼ 1

(1 − φ)4
. (62)

VII. STICKY HARD SPHERES

We utilize a particular g2-invariant process to analytically
study the approach of another disordered system to a hype-
runiform but unjammed state as a function of the relevant
control parameter, the number density. A g2-invariant process
is one in which a chosen non-negative form for the pair
correlation function g2 remains invariant over a nonvanishing
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φ
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FIG. 7. The dimensionless length scale ξ/D versus the packing
fraction φ for equilibrium hard-rod systems.
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density range while keeping all other relevant macroscopic
variables fixed [1,73]. The upper limiting “terminal” density
is the point above which the non-negativity condition on the
structure factor, i.e., S(k) � 0 for all k, would be violated.
Thus, at the terminal or critical density, the system is hyper-
uniform if the minimum in S(k) occurs at the origin and it is
realizable. This optimization problem has deep connections
to the sphere-packing problem. Specifically, it is the linear
program (LP) lower bound on the maximal packing density
that is dual to the Elkies-Cohn LP upper bound formula-
tion [74]. A certain g2-invariant test function was employed
to conjecture that the densest sphere packings in very high
space dimensions are disordered, rather than ordered as in low
dimensions [75].

Here we specifically consider the g2-invariant process de-
fined by a pair-correlation function that imposes a hard-core
constraint via a unit step function plus a delta function contri-
bution that acts at contact r = D:

g2(r) = �(r − D) + Z

ρs1(D)
δ(r − D), (63)

where Z is the non-negative average contact coordination
number and

s1(r) = dπd/2rd−1

�(1 + d/2)
(64)

is the surface area of a sphere of radius r. It was previously
shown that this “sticky-sphere” pair-correlation function is
numerically realizable, to an excellent approximation, up to
the hyperuniform terminal packing fraction for d = 2 (see
Fig. 8), implying that such pair-correlation functions are also
realizable in all higher dimensions, as dictated by the decor-
relation principle [75].

Here we collect previously established key results for this
g2-invariant process [1,73] in order to characterize how such
systems for any d approach a hyperuniform state as the pack-
ing fraction increases up to the critical terminal value φc. It
was shown that

Z = 2d d

d + 2
φ (65)

is obeyed in order to constrain the location of the minimum of
the structure factor to be at k = 0, where the packing φ lies in
the range 0 � φ � φc, and

φc = d + 2

2d+1
(66)

is the terminal or critical packing fraction, which has the
same asymptotic form as a lower bound on the maximal
packing density for lattice packings derived by Ball [77]. At
the hyperuniform critical point, the contact number Zc = d/2,
indicating that such sticky-sphere systems are never jammed
in any dimension.

The structure factor corresponding to (63) for any d and φ

in the range 0 � φ � φc is given by

S(k) = 1 + 2d/2�(2 + d/2)

(kD)(d/2)−1

(
φ

φc

)

×
[

J(d/2)−1(kD)

d + 2
− Jd/2(kD)

kD

]
. (67)

FIG. 8. A numerically generated two-dimensional configuration
of 500 “sticky” hard disks that realizes the step plus delta function
pair-correlation function at the terminal packing fraction φc = 1/2,
as adapted from Ref. [76]. This critical hyperuniform state consists
only of dimers, i.e., Z = 1, and hence is unjammed, in contrast to
hyperuniform states in the phase diagram of hard spheres, as shown
in Fig. 1.

An important mathematical property of the structure factor for
such sticky hard spheres is that its extrema for a fixed d are
independent of the packing fraction. For example, for d = 2
and d = 5, kpD = 6.380 15 . . . and kpD = 8.182 55 . . ., re-
spectively. It is seen that the asymptotic large-k behavior of
S(k) is consistent with the general expression (C10) for any
d , where Z is given by (65). Relation (67) leads to the power
law

S−1(0) =
(

1 − φ

φc

)−1

, φ → φ−
c , (68)

which upon comparison to (16) yields the critical exponent
γ = 1. Figure 9 shows the structure factor S(k) versus kD for
sticky hard spheres for d = 2 and d = 5 at their respective
hyperuniform states. Note that the structure factor reflects
strong decorrelation in going from two to five dimensions,
which is consistent with the decorrelation principle [75].

In any space dimension d , the volume and surface-area
coefficients for 0 � φ � φc are respectively given by [1]

A = S(k = 0) = 1 − φ

φc
(69)

and

B = d2�(d/2)

8
√

π �((d + 3)/2)

φ

φc
. (70)

Thus, ratio B/A is given by

B

A
= d2�(d/2)

8
√

π �[(d + 3)/2]

φ/φc

(1 − φ/φc)
. (71)
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FIG. 9. The structure factor S(k) versus the dimensionless wave
number kD for sticky hard spheres of diameter D in two and five di-
mensions at their respective hyperuniform states, i.e., φ = φc, where
φc is given by (66).

Observe that apart from d-dimensional constants, the behavior
of the ratio B/A is exactly the same across dimensions when
the packing fraction φ is scaled by the terminal packing frac-
tion φc. The ratio B/A versus φ is plotted in Fig. 10 for d = 2
and d = 5 for all φ up to their respective critical points.

We see from Fig. 9 that the peak value of the structure
factor is not strongly dependent on the space dimension and is
of order unity. Thus, the hyperuniformity index H is primarily
determined by the behavior of A [cf. (69)] and so

H ∼ 1 − φ/φc. (72)

The actual values of H are plotted in Fig. 11 as a function of
φ for d = 2 and d = 5 up to their respective critical points.

The combination of (9) and (67) yields the following ex-
pression for the Fourier transform of the direct correlation for
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FIG. 10. The ratio of the surface-area coefficient to volume co-
efficient, B/A, as a function of the packing fraction φ for sticky hard
spheres in two and five dimensions.
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FIG. 11. The hyperuniformity index H as a function of the pack-
ing fraction φ for sticky hard spheres in two and five dimensions.

sticky spheres:

c̃(k) =
(2π )d/2Dd

(kD)(d/2)−1

[ J(d/2)−1(kD)
d+2 − Jd/2(kD)

kD

]
1 + 2d/2�(2+d/2)

(kD)(d/2)−1

(
φ

φc

)[ J(d/2)−1(kD)
d+2 − Jd/2(kD)

kD

] . (73)

It immediately follows that at zero wave number, we have

c̃(0) = −2v1(D)

(
1 − φ

φc

)−1

, (74)

and, hence, the length scale defined by (18) yields

ξc = [2v1(D)]1/d

(
1 − φ

φc

)−1/d

, (75)

indicating that it grows more slowly as the space dimension
increases. Figure 12 shows how the length scale ξc grows with
φ for d = 2 and d = 5.

The length scale ξc should be contrasted with the correla-
tion length ξ , defined by (15), which, when combined with
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FIG. 12. The dimensionless length scale ξc/D versus the packing
fraction φ for sticky hard spheres in two and five dimensions.
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relation (74), yields

ξ = D

[8(d + 2)(d + 4)φc]1/4

(
1 − φ

φc

)−1/4

, φ → φ−
c .

(76)

A comparison of (76) to the power law (15) yields the
exponent ν = 1/4. It should not go unnoticed that since the
exponents γ , η, and ν are either integers or a simple fraction,
independent of dimension, these systems always behave in a
mean-field manner at their critical points.

All three descriptors B/A, H−1, and ξc are increasing func-
tions of the packing fraction φ, but how do they correlate with
one another? From formulas (71) and (72), we see B/A and
H−1 have the same scaling behavior as the critical hyperuni-
form state of the sticky hard system is approached, namely,

B

A
∼ H−1 ∼ 1

(1 − φ/φc)
. (77)

According to (75), the length scale ξc for d � 2 grows more
slowly than the other two quantities as the critical state is
approached, i.e., (

ξc

D

)d

∼ B

A
∼ H−1. (78)

VIII. STEALTHY DISORDERED GROUND STATES

We are also interested in theoretically understanding how
vibrational modes in excited low-temperature states of matter
impact the approach to ground states, which are necessarily
hyperuniform (see Sec. II A), as the temperature T tends to
zero. For this purpose, we consider stealthy hyperuniform
many-particle systems [24,78], which are a subclass of class
I hyperuniform systems [25] in which the structure factor is
zero for a range of wave vectors around the origin, i.e.,

S(k) = 0, 0 � |k| � K, (79)

where K is some positive constant. Such systems are called
“stealthy” because they completely suppress single scattering
of incident radiation for the wave vectors within an exclusion
sphere of radius K centered at the origin in Fourier space. It
has been shown that certain bounded (soft) long-ranged pair
interactions have classical ground states that are stealthy and
hyperuniform [25]. The nature of the ground-state configura-
tion manifold (e.g., the degree of order) associated with such
stealthy pair potentials depends on the number of constrained
wave vectors. The dimensionless parameter χ measures the
relative fraction of constrained degrees of freedom compared
to the total number of degrees of freedom and, counterintu-
itively, is inversely proportional to the number density [25];
specifically, it is explicitly given by the formula

ρ χ = v1(K )

2d (2π )d
, (80)

where v1(K ) is the volume of a d-dimensional sphere of radius
K [cf. Eq. (2)]. For d = 2 and d = 3, the ground states are
disordered for 0 � χ < 1/2. At χ = 1/2, there is a phase
transition to a crystal phase. The “collective-coordinate”
optimization procedure represents a powerful approach to

generate numerically disordered stealthy hyperuniform many-
particle systems [24,25,78].

A statistical-mechanical theory for disordered stealthy
ground states has been formulated in the canonical ensemble
in the zero-temperature limit. By exploiting an ansatz that the
entropically favored (most probable) stealthy ground states
in the canonical ensemble behave like “pseudo” equilibrium
hard-sphere systems in Fourier space with an “effective pack-
ing fraction” φ that is proportional to χ , one can employ
well-established integral-equation formulations for the pair-
correlation function of hard spheres in direct space [3,57]
to obtain accurate theoretical predictions for g2(r; φ) and
S(k; χ ) for a moderate range of χ about χ = 0 [25], i.e.,

S(k; χ ) = gHS
2 (r = k; φ). (81)

For example, the total correlation function h(r; χ ) in the limit
χ → 0 for any d , which is exactly given by

ρh(r; χ ) = −
( K

2πr

)d/2

Jd/2(Kr) (χ → 0), (82)

corresponds to the following unit-step function for the struc-
ture factor:

S(k) = �(k − K ) (χ → 0). (83)

Our interest in this paper is the excited states associated
with the long-ranged stealthy potentials [25] close to the
ground states, i.e., when the absolute temperature T is small.
It was shown that the structure factor at the origin S(0) varies
linearly with T for excited states. Importantly, this positive
value of S(0) is the uniform value of S(k) for 0 � |k| � K
for the special case of the step-function power-law potential
for small χ , which was verified by simulation results in vari-
ous dimensions [25]. Because we are interested in qualitative
trends as the disordered ground state is approached as the tem-
perature is decreased, it suffices for our purposes to consider
the following simple form for the structure factor at positive
but small temperatures and sufficiently small χ :

S(k) = T ∗�(K − k) + �(k − K ), (84)

where T ∗ is a dimensionless temperature [25] that is much
smaller than unity. The form (84) is obtained by combining
the aforementioned uniform value for 0 � |k| � K with the
ground-state structure factor as χ tends to zero, i.e., Eq. (83).

It trivially follows from (21) and (84) that the volume
coefficient is given by

A = T ∗. (85)

Moreover, substitution of (84) into the Fourier representation
of the surface-area coefficient (44) yields

B = d

πK
(1 − T ∗). (86)

Thus, ratio B/A is given by

B

A
= d

πK

(1 − T ∗)

T ∗ , (87)

which is plotted in Fig. 13 as a function of the inverse of T ∗
for selected space dimensions. Notice that at fixed tempera-
ture, the ratio B/A increases with the space dimension. From
relation (84), we see that the peak value of the structure factor
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FIG. 13. The ratio of the surface-area coefficient to volume co-
efficient, B/A, as a function of the inverse of the dimensionless
temperature 1/T ∗ for excited states associated with the long-ranged
stealthy pair potential for dimensions d = 1, 3, and 6.

is trivially unity [S(kp) = 1], and hence the hyperuniformity
index is simply linear in T ∗, i.e.,

H = T ∗. (88)

The combination of (9) and (84) yields the following ex-
pression for the Fourier transform of the direct-correlation
function for the excited states:

ρc̃(k) = (1 − T ∗)�(K − k). (89)

Thus, evaluating this relation at zero wave number and use of
(9) yields the length scale

ξc = (2π )

[
2d χ

v1(K )

]1/d( 1

T ∗ − 1

)1/d

. (90)

This length scale is plotted in Fig. 14 as a function of the
inverse temperature for selected space dimensions.
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FIG. 14. The dimensionless length scale ξcK versus the inverse
of the dimensionless temperature 1/T ∗ for excited states associated
with the long-ranged stealthy pair potential for dimensions d = 1, 3,
and 6. Here K is the exclusion sphere radius defined in Eq. (79).

The three descriptors B/A, H−1, and ξc are increasing func-
tions of the inverse temperature. From formulas (87) and (88),
we observe that B/A and H−1 have the same scaling behavior
as the inverse temperature tends to infinity, i.e., the disordered
hyperuniform ground state is approached, namely,

B

A
∼ H−1 ∼ 1

T ∗ . (91)

This is to be contrasted with the generally slower growth rate
of ξc with T ∗ for d � 2, i.e.,

(ξcK )d ∼ B

A
∼ H−1, (92)

where we have used relation (90).

IX. CONCLUSIONS AND DISCUSSION

We have derived a Fourier representation of the surface-
area coefficient B in terms of the structure factor S(k), which
is especially useful when scattering information is available
experimentally or theoretically. In a disordered system that is
nearly hyperuniform, we showed that the ratio of surface-area
to volume coefficients, B/A, enables one to ascertain hyper-
uniform and nonhyperuniform distance-scaling regimes of the
variance σ 2(R) as a function of R as well as the corresponding
crossover distance between these regimes. While the analy-
sis of the ratio B/A was applied to systems that ultimately
approached a class I hyperuniform state, the corresponding
extensions to other hyperuniformity classes is very straight-
forward.

Using the ratio B/A, as well as other diagnostic measures of
hyperuniformity, including the hyperuniformity index H and
the direct-correlation function length scale ξc, we character-
ized the structure of three different exactly solvable models as
a function of the relevant control parameter, either density or
temperature, with end states that are perfectly hyperuniform.
In the case of the sticky hard-sphere and stealthy models, we
studied the effect of dimensionality. For all three models, we
showed that the hyperuniformity measures B/A, ξc, and H−1

are positively correlated with one another. Thus, in addition to
the ratio B/A, the quantities H and ξc can also be employed to
infer the hyperuniform and nonhyperuniform distance-scaling
regimes. This capacity to determine hyperuniform scaling
regimes is expected to be of great utility in analyzing ex-
perimentally or computationally generated samples that are
necessarily of finite size.

In the same way that there is no perfect crystal, due to
the inevitable presence of imperfections, such as vacancies
and dislocations, there is no “perfect” hyperuniform system
in laboratory practice, whether it is ordered or not [23]. It
is clear that the same diagnostic measures explored in the
present work can be used to detect the degree to which such
“imperfect” nearly hyperuniform systems deviate from per-
fect hyperuniformity.

We showed that the free-volume theory of the pres-
sure of equilibrium packings of identical hard spheres that
approach a strictly jammed state, either along the stable crys-
tal or metastable disordered branch, dictates that such end
states be exactly hyperuniform. This implies that the pack-
ing on approach to the jammed state must be ergodic in a
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generalized sense and hence free of any defects, e.g., vacan-
cies or dislocations along the crystal branch or rattlers along
the metastable fluid branch. It is an outstanding problem for
future research to place these implications of free-volume
theory for the hyperuniformity of strictly jammed packings
on a firmer rigorous theoretical foundation.
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APPENDIX A: NUMBER VARIANCE SCALINGS FOR
NONHYPERUNIFORM SYSTEMS

The local number variance σ 2
N (R) is generally a function

that can be decomposed into a global part that grows with
the window radius R and a local part that oscillates on small
length scales (e.g., mean nearest-neighbor distance) about the
global contribution. The more general large-R asymptotic for-
mula for the variance is given by [2]

σ 2(R) = 2dφ

[
AN (R)

( R

D

)d

+ BN (R)
( R

D

)d−1

+ o
( R

D

)d−1]
,

(A1)

where the R-dependent volume and surface-area coefficients
are respectively given by

AN (R) = 1 + φ

v1(D/2)

∫
|r|�2R

h(r)dr (A2)

and

BN (R) = − φ d�(d/2)

2 π1/2Dv1(D/2)�[(d + 1)/2]

∫
|r|�2R

h(r)|r|dr.

(A3)

Observe that when the volume coefficient AN (R) and surface-
area coefficient BN (R) converge in the limit R → ∞, they are
equal to the constants A and B, defined by (21) and (22),
respectively. For this reason, A and B are called the global
volume and surface-area coefficients, respectively [2].

An antihyperuniform system is one in which the exponent
α [cf. (3)] is negative α < 0, resulting in a structure factor that
diverges in the zero-wave-number limit. The corresponding
total correlation function h(r) decays like 1/rd+α for large r ≡
|r|. This power-law tail controls the growth rate of AN (R) with
R; specifically, carrying out the integration in (A2) yields

AN (R) ∼ R−α. (A4)

Substitution of this scaling behavior in the leading-order term
of (A1) gives that the local number variance for an antihype-
runiform system scales like σ 2(R) ∼ Rd−α , which proves the
antihyperuniform scaling given in (5). Since α is negative, the
number variance grows faster than the window volume, i.e.,
faster than Rd . Up to a trivial constant in the leading-order
term in the asymptotic expansion of the number variance
given by (A1), one can view a “typical” nonhyperuniform

system in which S(0) is bounded as one in which α = 0+
(approaches zero from above), even if S(k) is not described by
a power-law form in the zero-wave-number limit. This enables
one to conclude that AN (R) converges to a constant in the
limit R → ∞, thus yielding the Rd scaling behavior for σ 2(R)
in (5).

APPENDIX B: EVALUATION OF THE COEFFICIENTS
A AND B FOR A SUPER-POISSONIAN MODEL

Any nonhyperuniform point process for which S(0) > 1
has a large-R asymptotic number variance σ 2(R) that is larger
than that for a Poisson point process [S(0) = 1] with the
same mean 〈N (R)〉 is called super-Poissonian [56]. We eval-
uate the volume and surface-area coefficients A and B for a
specific model of a super-Poissonian point process, namely,
the Poisson cluster process, which is characterized by strong
clustering of the points with a large but finite value of S(0),
and hence is far from being hyperuniform. The higher-order
moments of the number fluctuations as well as the corre-
sponding probability distribution for this model were recently
studied [56]. The construction of the cluster process starts
from a homogeneous Poisson point process of intensity ρp

[79]. Each point of the Poisson point process is the center
of a cluster of points. The number of points in each cluster
is independent and follows a Poisson distribution with mean
value c. Following Ref. [56], we consider here the special case
in which the positions of the points relative to the center of the
cluster follow an isotropic Gaussian distribution with standard
deviation r0, which can be regarded to be the characteristic
length scale of a single cluster. In the infinite-volume limit,
the structure factor for any d is exactly given by [56]

S(k) = 1 + ce−k2r2
0 . (B1)

It immediately follows from this formula and (21) that S(0) =
A = 1 + c. Using the Fourier representation of the surface-
area coefficient (44) and relation (B1), we find that B, for any
d , is exactly given by

B = −cr0d√
π

. (B2)

Remarkably, this model provides an example of a surface-area
coefficient that is negative (when c is positive), which hereto-
fore has not been identified. Since the surface-area coefficient
B is derived from the large-R asymptotic expansion (20) of the
number variance σ 2(R), which must be positive, the length
scale r0 in (B2), as any characteristic length scale, must be
much smaller than the window radius R.

APPENDIX C: SUM RULES AND LARGE-k ASYMPTOTIC
BEHAVIORS OF S(k) FOR d-DIMENSIONAL SPHERE

PACKINGS

Here we present sum rules as well as the exact large-k
asymptotic behaviors of the structure factors of certain general
packings of identical spheres that apply in any space dimen-
sion d .
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A. Sum rules

For a large class of packings of identical spheres of diam-
eter D, the following sum rule applies inside the hard core:

r

(2πr)d/2

∫ ∞

0
kd/2h̃(k)J(d/2)−1(kr)dk = −1 for r < D.

(C1)
This sum rule follows from the fact that h(r) = −1 for r < D
and use of (29). It is valid provided that the volume integral of
h̃(k) over all reciprocal space is bounded. In the special case
of r = 0, (C1) yields

d

2dπd/2�(1 + d/2)

∫ ∞

0
kd−1h̃(k) dk = −1. (C2)

Such exact sum rules can be utilized to check the accuracy of
the determination of S(k) of sphere packings via experimental
or numerical methods.

B. Large-k behavior of S(k) for bounded contact values

The Fourier transform of the indicator function m(r; a) =
�(a − r) for a d-dimensional sphere of radius a is given by

m̃(k; a) = (2π )d/2

k(d/2)−1

∫ a

0
rd/2J(d/2)−1(kr)dr

=
(

2π

ka

)d/2

ad Jd/2(ka). (C3)

For large k, this Fourier transform is given by

m̃(k; a) ∼ Rd (2π )d/2
√

2/π
cos[ka − (d + 1)/4]

(ka)(d+1)/2
+ O

(
1

(ka)(d+3)/2

)
(ka → ∞). (C4)

For any packing of spheres of diameter D, h(r) = −m(r; D) for r < D. Let us assume that the contact-value of the pair
correlation function, denoted by g2(D+), is bounded, i.e., the jump discontinuity at contact is finite. Using the result (C4) for
such a packing, we can relate the large-k behavior of the structure factor in terms of g2(D+):

S(k) ∼ 1 − φ g2(D+) 23d/2�(1 + d/2)
√

2/π
cos[kD − (d + 1)/4]

(kD)(d+1)/2
+ O

(
1

(kD)(d+3)/2

)
(kD → ∞). (C5)

For d = 1, 2, and 3, the corresponding asymptotic behaviors are explicitly given respectively by

S(k) ∼ 1 − 2φ g2(D+)
sin(kD)

kD
+ O

(
1

(kD)2

)
(d = 1), (C6)

S(k) ∼ 1 − 8
√

2/πφg2(D+)
cos(kD + π/4)

(kD)3/2
+ O

(
1

(kD)5/2

)
(d = 2), (C7)

and

S(k) ∼ 1 + 24φg2(D+)
cos(kD)

(kD)2
+ O

(
1

(kD)3

)
(d = 3). (C8)

We see that the rate of decay of S(k) increases as d increases.

C. Large-k behavior of S(k) for Dirac-delta contacts

By contrast, if the sphere packing is disordered at a jammed state with average contact number per particle of Z , then the
jamming-contact condition is described by

g2(r) ∼ Z

ρs1(1)Dd−1
δ(r − D), (C9)

where s1(1) = dv1(1) is the d-dimensional surface area of a sphere of unit radius. Thus, we see for such jammed packings, the
large-k behavior of the structure factor is given by

S(k) ∼ 1 + 2d/2�(1 + d/2)Z

d

Jd/2−1(kD)

(kD)d/2−1
+ O

(
1

(kD)(d+1)/2

)
(kD → ∞). (C10)

For d = 1, 2, and 3, the corresponding asymptotic behaviors are explicitly given respectively by

S(k) ∼ 1 + Z cos(kD) + O

(
1

(kD)

)
(d = 1), (C11)

S(k) ∼ 1 + ZJ0(kD) + O

(
1

(kD)3/2

)
(d = 2), (C12)

S(k) ∼ 1 + Z
sin(kD)

kD
+ O

(
1

(kD)2

)
(d = 3). (C13)

Again, we see that the rate of decay of S(k) increases as d increases, but less rapidly than in unjammed packings at the same
dimension in which the jump discontinuity in g2(r) at contact is finite.
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