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We consider absorption refrigerators consisting of simultaneously operating Carnot-type heat engine and
refrigerator. Their maximum efficiency at given power (MEGP) is given by the product of MEGPs for the internal
engine and refrigerator. The only subtlety of the derivation lies in the fact that the maximum cooling power of
the absorption refrigerator is not limited just by the maximum power of the internal refrigerator, but, due to the
first law, also by that of the internal engine. As a specific example, we consider the simultaneous absorption
refrigerators composed of low-dissipation (LD) heat engines and refrigerators, for which the expressions for
MEGPs are known. The derived expression for maximum efficiency implies bounds on the MEGP of LD
absorption refrigerators. It also implies that a slight decrease in power of the absorption refrigerator from
its maximum value results in a large nonlinear increase in efficiency, observed in heat engines, whenever the
ratio of maximum powers of the internal engine and the refrigerator does not diverge. Otherwise, the increase
in efficiency is linear as observed in LD refrigerators. Thus, in all practical situations, the efficiency of LD
absorption refrigerators significantly increases when their cooling power is slightly decreased from its maximum.
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I. INTRODUCTION

The performance of heat engines, transforming heat to
work, or refrigerators and heat pumps, displacing heat against
a temperature gradient, is determined by two main quantities:
output power and efficiency. Unfortunately, thermodynamic
laws imply that they cannot be optimized simultaneously
[1]. This is because the largest efficiencies correspond to
reversible and thus slow processes, leading to output powers
which are at best negligible fractions of the maximum power
[2].

The implication for engineers, whose natural task is to
develop designs that deliver a desired (fixed) power as cheaply
as possible, is that their devices in general do not operate
in the regimes of maximum efficiency [1,3] or maximum
power [4–21], which were both thoroughly investigated theo-
retically in the past, but rather in the regime with maximum
efficiency corresponding to the given power (MEGP). The
MEGP received the attention of the theory of finite-time
thermodynamic processes only recently [22–27], generalizing
results obtained previously for a variety of trade-off relations
between power and efficiency [28–37].

Unlike model-independent equilibrium results such that
the maximum efficiency of thermal devices is the Carnot effi-
ciency [1,3], all available results on the optimal performance
of thermal devices operating with finite cycle times are based
on specific model systems. Nevertheless, these models are
usually constructed in an idealized fashion so that real-world
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devices inevitably dissipate more and thus operate at smaller
efficiencies. The results for MEGP obtained in these models
thus represent (loose) upper bounds on real-world efficiencies.

Specifically, the idealized models just consider inevitable
energy losses imposed by the second law of thermodynamics.
In particular, losses connected to heat leakages and construc-
tion imperfections are neglected. Most of the idealized models
operate along a finite-time Carnot cycle composed of two adi-
abatic and two isothermal branches and assume that the total
entropy change in the universe during each of the isotherms
obeys the so-called low-dissipation (LD) assumption [7]

�Stot = �/t, (1)

where the irreversibility parameter � > 0 depends on de-
tails of the system construction, and t is the duration of the
isotherm. The low-dissipation assumption is not just a useful
approximation allowing to derive explicit analytical results.
This model exactly describes Brownian heat engines opti-
mized with respect to output power [15,24], which can now
be realized in experiments [38,39]. More generally, the LD
model describes the first finite-time correction to the qua-
sistatic dissipation, which was revealed not only in theoretical
studies [40–42], but also in experiments [39,43]. Further-
more, with respect to MEGP, the LD model was shown to
be equivalent to the minimally nonlinear irreversible model
[14,33,44], and, for small temperature gradients, also to the
linear irreversible model [26]. Regardless of the relatively
simple mathematical structure of the LD models, the exact
results on MEGP are so far known for LD heat engines [25]
and refrigerators [44] only. Other devices such as absorption
refrigerators [45] and heat pumps [46] are still investigated
numerically even when formulated within the LD setting.

2470-0045/2021/103(5)/052125(11) 052125-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7903-8372
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.052125&domain=pdf&date_stamp=2021-05-19
https://doi.org/10.1103/PhysRevE.103.052125


ZHUOLIN YE AND VIKTOR HOLUBEC PHYSICAL REVIEW E 103, 052125 (2021)

Tm

Th

Tc

Carnot

heat engine

Carnot

refrigerator

NeQh

NeQme

NrQc

NrQmr

W

NeWe

NrWr

FIG. 1. Sketch of the CAR composed of internal Carnot heat en-
gine and Carnot refrigerator. The overall CAR system communicates
with three heat reservoirs at temperatures Th > Tm > Tc. Both the in-
ternal engine and refrigerator use as their heat sink the reservoir at the
intermediate temperature Tm. The engine in addition communicates
with the hot bath at Th and the refrigerator with the cold bath at Tc.

In the present paper, we consider absorption refrigerators
consisting of simultaneously operating Carnot-type (internal)
heat engine and refrigerator. We show how the MEGP for
this general model follows from the MEGPs for the internal
heat engine and refrigerator. To derive explicit results, we
consider absorption refrigerators consisting of LD heat en-
gines and refrigerators, for which expressions for MEGPs are
known. The obtained MEGP represents a loose upper bound
for the efficiency of real-world absorption refrigerators, which
recently experienced a renewed interest of physicists due to
their potential to recycle waste heat in microscopic (quantum)
devices [47–52].

The rest of the paper is organized as follows. In Sec. II, we
introduce the general model and derive the general results. In
Sec. III, we derive the MEGP for LD absorption refrigerators
and discuss its properties. We conclude in Sec. IV.

II. CARNOT ABSORPTION REFRIGERATORS

We consider absorption refrigerators consisting of a finite-
time Carnot heat engine and refrigerator, which we call as
Carnot absorption refrigerators (CARs). As shown in Fig. 1,
the internal engine utilizes the temperature gradient Th −
Tm > 0 between a hot thermal reservoir and a thermal reser-
voir at a medium temperature to generate work. This work is
then used to propel the internal refrigerator, which pumps heat
from the cold thermal reservoir at temperature Tc < Tm into
the intermediate bath. As a result, the CAR utilizes heat from
the hot body to further cool the cold one. In practice, such
refrigerators are often used in cases where there is no reliable
source of electricity, for example, in caravans. While de-
scribed already in 1858 by Carré, absorption refrigerators now
acquired renewed attention in the field of quantum thermody-
namics [47–53]. This is because they seem to be promising

building blocks of quantum devices, where they should help to
keep the quantum parts at very low temperatures by utilizing
the junk heat produced by classical chips inevitably present in
these setups.

In this work, we aim to provide an upper bound for
MEGP for CARs and thus we assume that the internal engine
and refrigerator work simultaneously [54]. Another possibil-
ity would be that they alternate [45]. Such CARs, however,
involve during their operation idle periods of the internal
devices and thus provide smaller MEGPs than the simulta-
neously operating setup. As we show below, the MEGP for
simultaneous setups follows from MEGPs for the internal
devices. In Appendix A, we discuss that for the alternating
setup the optimization is actually more complicated and the
knowledge of MEGPs of the internal engine and refrigerator
is not sufficient for the derivation of MEGP.

A. Working cycle of simultaneous CAR

Below, we will optimize the efficiency of the CAR with
respect to durations te and tr of the engine and refrigeration
cycles and thus we assume that they are different. The duration
of one cycle of the CAR, ts, is defined as a period after which
both the internal devices attain their initial states. It is thus
given by the least common multiple of te and tr . We assume
that such a common multiple exists and denote it as

Ne = ts/te, (2)

(Nr = ts/tr) the number of engine (refrigeration) cycles per-
formed per one full CAR cycle.

Now we are ready to define the thermodynamic quantities
of interest, sketched in Fig. 1. Per CAR cycle, the engine
produces work W = NeWe, which is used by the refrigerator
to pump heat NrQc from the cold bath. The output power of
the engine W/ts and the input power of the refrigerator thus
reads

P ≡ We/te = Wr/tr, (3)

where Wr = W/Nr denotes the work used by the refrigerator
per refrigeration cycle.

According to the first law, we have We = Qh − Qme and
Qc = Qmr − Wr . Here, Qh and Qme are the heats taken from
the hot bath and delivered to the intermediate bath by the en-
gine per period te, respectively. Similarly, Qmr is heat pumped
into the intermediate bath by the refrigerator per period tr . The
amount of heat extracted by the internal refrigerator from the
cold bath per CAR cycle is given by NrQc. The cooling powers
of the simultaneous CAR Rs and the internal refrigerator R are
thus the same and read

Rs = R = NrQc/ts = Qc/tr . (4)

The energy input of the CAR is NeQh and thus its efficiency,
referred to as the coefficient of performance (COP), is given
by

ψ = NrQc

NeQh
= Qc/tr

Qh/te
= εη. (5)

Here, η = We/Qh and ε = Qc/Wr = R/P denote the effi-
ciency of the internal heat engine and refrigerator, respec-
tively.
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B. Maximum cooling power

Before we turn our attention to the MEGP for CARs, we
determine the interval of allowed values of the cooling power
(4). Its minimum value 0 is achieved for infinitely slow cycles.
The maximum cooling power R∗

s turns out to be limited by
maximum powers of both constituting devices.

The power source of the refrigerator inside the CAR is the
internal heat engine and thus the maximum cooling power of
the CAR cannot be larger than the maximum cooling power
of the internal refrigerator without restrictions to input power
R∗, i.e., R∗

s � R∗. Furthermore, the cooling power is related to
output power of the engine by

P = R/ε(R). (6)

We denote as R̄ the maximum value of cooling power solving
the equation

P∗ = R̄/ε(R̄), (7)

where P∗ is the maximum power of the engine. If R̄ < R∗, the
engine is not powerful enough to utilize the whole potential
of the refrigerator and R∗

s = R̄. Similarly, R̄ > R∗ means that
the refrigerator is not powerful enough to use the enitre power
provided by the engine and R∗

s = R∗. Altogether, we found
that the maximum power of the CAR is given by

R∗
s = min(R̄, R∗). (8)

In the next section, we finally discuss the MEGP for the
simultaneous CARs.

C. MEGP for simultaneous CARs

Inserting Eq. (6) for engine output power as function of
power of the refrigerator in Eq. (5), we obtain the COP of the
CAR as function of R:

ψ (R) = ε(R)η

[
R

ε(R)

]
. (9)

To get the MEGP for CAR, we need to optimize the right-hand
side of this equation with respect to the durations of tr and te
for fixed R. Using Eqs. (6), (B2), and (C1), Eq. (9) can be
rewritten in the form

ψ (R) = ηCεC

1 + εCTmσ/R
, (10)

where ηC and εC are the Carnot efficiency of reversible
Carnot heat engine and refrigerator, respectively, i.e., ηC =
1 − Tm/Th and εC = Tc/(Tm − Tc), and

σ = �Stot,r/tr + �Stot,e/te (11)

is the sum of the average entropy production rates in the
internal heat engine and internal refrigerator and thus the
total average entropy production rate during the CAR cycle.
Expressions for the total entropy changes per engine and
refrigeration cycle �Stot,r and �Stot,e are given in Eqs. (B3)
and (C2) in the Appendix. The maximization of COP (9) at
fixed R is thus equivalent to the minimization of the average
entropy production rate σ = σ (R) under the same conditions.

The output power of the internal heat engine depends
on the setup and performance of the refrigerator through

the refrigeration power R/ε(R) only. Thus, to yield the
maximum value of the product in Eq. (9), η[R/ε(R)] must
attain its maximal value, ηopt[R/ε(R)], corresponding to the
given refrigeration power (MEGP). Furthermore, all known
expressions for MEGP are decreasing functions of power
[25,26,44,55,56]. Importantly, all these models neglect losses,
which cannot be avoided by quasistatic operation, such as
heat leakages, and thus they can saturate the Carnot bound
on efficiency in the limit of vanishing power. Assuming that
this idealization holds also in our present case, ηopt[R/ε(R)]
will be maximal if ε(R) will be given by the maximum refrig-
erating efficiency at the given power εopt (R). Altogether, the
MEGP for the considered idealized CARs reads

ψopt (R) = εopt (R)ηopt

[
R

εopt (R)

]
. (12)

The MEGP for the simultaneous CAR thus, in general, fol-
lows from the expressions for MEGPs for the internal engine
and refrigerator. Let us now consider the simultaneous CAR
composed of a LD heat engine and LD refrigerator [25,44].
For this specific model, we verified the validity of Eq. (12) by
direct numerical maximization of Eq. (9). In the next section,
we utilize the known analytical expressions for ηopt and εopt

for this model to discuss in detail properties of the MEGP (12)
for this LD CAR based on analytical grounds.

III. LOW-DISSIPATION SIMULTANEOUS CARS

Let us now consider the Carnot LD heat engine and refrig-
erator depicted in Fig. 2, for which the MEGPs were derived
in Refs. [25] and [44], respectively. Their working cycles are
composed of two isotherms realized in finite time and de-
scribed by the irreversibility parameters �i, i = h, me, c, mr.
These isotherms are interconnected by infinitely fast adiabats
[57].

The internal engine accepts heat

Qh = Th�Se − �h

th
(13)

during the hot isotherm (red) of duration th and releases heat

Qme = Tm�Se + �me

tme
(14)

during the isotherm corresponding to the medium temperature
(green) of duration tme. The terms proportional to the increase
in the entropy of the working medium of the engine during
the hot isotherm, �Se, correspond to the reversible parts of
the transferred heats. The total duration of the engine working
cycle reads te = th + tme. Similarly, the refrigerator accepts
heat

Qc = Tc�Sr − �c

tc
(15)

during the cold isotherm (blue) of duration tc and dumps heat

Qmr = Tm�Sr + �mr

tmr
(16)

during the intermediate isotherm (green) of duration tmr . The
reversible components of transferred heats are proportional
to the increase in the entropy of the working medium of the
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FIG. 2. Bath temperature-system entropy (T -S) diagrams of the
components of the CAR depicted in Fig. 1 considered in its low-
dissipation version. (a) LD Carnot heat engine and (b) LD Carnot
refrigerator. The horizontal colored lines are isotherms and the ver-
tical black lines represent adiabats. The areas enclosed of the two
rectangles equal to the respective works only if the cycles are realized
quasistatically.

refrigerator during the cold isotherm �Sr , which can be dif-
ferent than �Se. The total duration of the refrigeration cycle is
tr = tc + tmr . The internal heat engine and refrigerator operate
reversibly if the duration of all the isotherms diverge or if all
the irreversibility parameters vanish.

Let us now consider a simultaneous CAR composed of
the LD heat engine and LD refrigerator. We call it an LD
simultaneous CAR. In what follows, we discuss in detail its
performance in terms of MEGP.

A. MEGP

The MEGP for the LD CAR follows from Eq. (12) af-
ter inserting the expressions for MEGP of the internal LD
heat engine ηopt and refrigerator εopt. For the engine, we
derive ηopt in Appendix B. Similarly to the derivation given
in Ref. [25], our present approach involves an approximation
in calculation of the optimal redistribution of the total cycle
duration between the two isothermal branches. Nevertheless,
our analytical result for ηopt is, within the numerical precision,
indistinguishable from the corresponding result obtained by
exact numerical optimization of the efficiency. For the refrig-
erator, we review in Appendix C the derivation of analytical
expression for εopt from Ref. [44].

All results for MEGP available in the literature [2,24–
26,44,55,56] are given as functions of the dimensionless vari-
able

δX = X − X ∗

X ∗ , (17)

measuring how much power is lost by operating the device
at power X smaller than the maximum power X ∗. In our
case, we have three such variables: the loss in power of the
internal engine δP; the loss in cooling power of the internal
refrigerator δR; and the loss in cooling power of the CAR
δRs. In general, these variables can assume values from the
interval [−1, 0]. The minimum is attained if the actual power
is negligible compared to the maximum power and the max-
imum corresponds to devices operating at maximum power.
However, in our specific setting where the input power of the
refrigerator can be limited by the output power of the engine,
the upper bound for δR reads R∗

s /R∗ − 1 � 0.
To insert the known results for MEGP of the refrigerator

and heat engine into Eq. (12), we need to express them in
terms of refrigeration power R and engine output power P =
R/εopt (R), respectively. From now on, we use the shorthand
notation εopt (δR) ≡ εopt[R(δR)], where R(δR) = (1 + δR)R∗,
and similarly for ηopt (δP). Furthermore, to be able to discuss
the MEGP of the CAR, ψopt = εopt (δR)ηopt (δP), as a function
of the loss in cooling power of the CAR, we use Eqs. (6) and
(17) to express δP and δR in terms of δRs. The result is

δP = 1

P̃∗
1 + δR

εopt (δR)
− 1, (18)

δR = (1 + δRs)R̃∗
s − 1, (19)

where we introduced the reduced maximum powers of the
engine P̃∗ = P∗/R∗, and the CAR, R̃∗

s = R∗
s /R∗, measured in

units of maximum power of the internal refrigerator.
When expressed in terms of δP, the MEGP of the LD heat

engine ηopt depends only on the ratio of the irreversibility
parameters �e = �h/�me, Carnot efficiency, ηC , and δP. For
details, see Appendix B. Similarly, we show in Appendix C
that εopt is only a function of �r = �mr/�c, εC = Tc/(Tm −
Tc) and δR. Since the MEGP εopt (R) is a monotonously
decreasing function of R, the ratio R/εopt (R) attains its maxi-
mum value for R∗. Therefore, Eqs. (7) and (8) imply that the
reduced maximum power of the CAR R̃∗

s is given by

P̃∗ = R̃∗
s /ε

opt (R̃∗
s − 1) (20)

if the resulting R̃∗
s is smaller than 1 and by R̃∗

s = 1 otherwise.
Hence R̃∗

s is determined by �r , εC , and P̃∗. Collecting all
these results and inserting them into Eq. (12), we can finally
write the MEGP of the LD simultaneous CAR in terms of the
relative loss in its maximum cooling power δRs. The resulting
expression depends on the six parameters introduced above,
namely,

ψopt ≡ ψopt (δRs, P̃∗, �e, �r, ηC, εC ). (21)

In the following sections, we use this expression to provide
more explicit results on MEGP of CARs.
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B. Bounds on MEGP

We start by deriving maximum and minimum values of
the optimal COP ψopt with respect to the working medium
of the CAR (or of its constituents). In the LD approximation,
the detailed physics of the working medium is described by
the irreversibility parameters �i, i = h, me, c, mr defined by
Eqs. (13) to (16) [15,24,40,58,59].

The optimal COP (21) depends on irreversibility parame-
ters through the ratios �e = �h/�me and �r = �mr/�c and
the reduced maximum power of the internal engine P̃∗. With
respect to the previous two, the optimal COP attains its min-
imum for �e → 0 (hot isotherm of the internal engine cycle
is reversible compared to the other one) and �r → ∞ (cold
isotherm of the refrigeration cycle is reversible compared to
the other one). Its maximum ψopt is attained in the opposite
limit �e → ∞ and �r → 0. Taking these limits into Eq. (21),
we find the lower and upper bounds for the optimal COP as
follows:

0 � ψopt � εC (1 + √−δR)

2 + εC (1 − √−δR)

ηC (1 + √−δP)

2 − ηC (1 − √−δP)
. (22)

This inequality has to be further optimized with respect to the
parameter P̃∗, which enters the upper bound through Eqs. (18)
and (19) for δP and δR, respectively. Note that, due to the
limits �e → ∞ and �r → 0 taken to derive the upper bound,
we have to use εopt = ε

opt
+ defined in Eq. (C13) in the formula

for δP. One finds that the upper bound is a monotonously
decreasing function of P̃∗ and thus its maximum is obtained
for P̃∗ = 0. The resulting ultimate bounds on the optimal COP
of the CAR at given cooling power read

0 � ψopt � εCηC (1 + √−δRs)

2 − ηC (1 − √−δRs)
≡ ψ

opt
+ (δRs). (23)

The upper bound evaluated for δRs = 0, ψ
opt
+ (0) =

εCηC/(2 − ηC ), denotes the upper bound for COP of the
CAR at maximum cooling power.

The increase in COP gained after a slight decrease of the
cooling power from its maximum value can be measured by
the expression

ψ
opt
+ (δRs) − ψ

opt
+ (0)

ψ
opt
+ (0)

= 2 − 2ηC

2 − ηC

√
−δRs + O(δRs). (24)

Its derivative with respect to δRs diverges, implying that a
slight decrease of the cooling power leads to a significant gain
in the upper bound on COP. Qualitatively the same behav-
ior has generally been observed for MEGPs of various heat
engines [22,23,25–27,56]. With respect to LD refrigerators,
the MEGP is proportional to

√−δR for a limited range of
parameters only and behaves as ∝ −δR otherwise [44]. In the
next section, we investigate whether the increase of MEGP
for the CAR behaves for small values of δRs always like the
MEGPs in heat engines [25] or if it sometimes also exhibits
the linear behavior observed in refrigerators [44].

C. MEGP near maximum cooling power

Examples of parameter regimes where the MEGP for LD
refrigerators exhibits the two qualitatively different behaviors
are �r → 0 (square root) and �r → ∞ (linear) [44]. We thus

investigate behavior of the MEGP for the CAR (21) in these
two regimes using the cumbersome analytical expressions
derived in Appendixes B and C.

1. �r → 0

Expanding the exact expression for εopt in Eq. (C12) up to
the first order with respect to �r , we obtain

εopt = ε
opt
+ − 2(1 + εC )

(
ε

opt
+

)2
(1 − √−δR)

√
�̃r

εC (−δR)1/4(1 + √−δR)
, (25)

where �̃r is defined below Eq. (C11) and ε
opt
+ in Eq. (C13).

Substituting Eqs. (25) and (B14) for εopt and ηopt into Eq. (12)
for MEGP for the CAR, expressing δP and δR in terms of
δRs using Eqs. (18) and (19), and expanding the resulting
expression up to the first order in δRs, we find

ψopt = r1 + r2

√
−δRs. (26)

The coefficients r1 and r2 depend, in a complicated way, on
the parameters P̃∗, εC , ηC , and �e. The obtained dependence
of the MEGP of the CAR on the loss in cooling power might
have been expected since, in this parameter regime, the behav-
ior near maximum power of the engine and the refrigerator is
the same [25,44].

2. �r → ∞
In this limit, the MEGP for LD refrigerators (C12) reads

(see Eq. (29) in Ref. [44])

εopt ≈ δR(1 − δR)εC

2δR + (1 + δR)(δR − �r )εC
. (27)

Using a similar procedure as for obtaining Eq. (26), we find
that up to the second order in δRs

ψopt = g1 + g2

√
−δRs + g3δRs, (28)

where the coefficients g1, g2, and g3 depend on P̃∗, εC , ηC ,
and �e in a complicated way. Interestingly, for P̃∗ → ∞, g2

vanishes and the increase in COP of the CAR becomes linear.
As discussed at the end of the next section, for diverging P̃∗,
the heat engine works at Carnot efficiency and the behavior
of the MEGP of the CAR is solely determined by that of the
refrigerator [44].

D. MEGP for arbitrary parameters

Outside the limiting parameter regimes discussed above,
the full analytical expression (21) for the MEGP is too cum-
bersome to get an immediate insight into the behavior of ψopt.
Therefore, in this section, we investigate its dependence on
the model parameters graphically.

In Fig. 3, we show the reduced maximum power of the
CAR R̃∗

s as a function of the reduced power of the internal
heat engine P̃∗. The larger the available input power of the
refrigerator (provided by the engine) the larger the corre-
sponding maximum cooling power of the CAR until it reaches
its maximum R̃∗

s = 1, where the whole cooling potential of
the internal refrigerator is utilized. The minimum value of the
reduced power P̃∗ = 1/εopt (0), allowing for R̃∗

s = 1, follows
from Eq. (20). Here, εopt (0) = ε∗

± denotes the MEGP for the
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FIG. 3. The reduced maximum power of the CAR R̃∗
s as a func-

tion of the reduced maximum power of the internal heat engine P̃∗ for
three values 0, 1, and 10 of the ratio �r of irreversibility parameters,
which increases from the uppermost solid line to the lowermost
dashed one. We take εC = 1.

refrigerator defined in Eqs. (C5) and (C6). Hence, R̃∗
s = 1

for finite value (P̃∗ = 1/ε∗
+) of the reduced power only if

�r = 0, i.e., when the dissipation during the hot isotherm of
the refrigeration cycle becomes negligible compared to that
during the cold one. For �r > 0, the whole cooling potential
of the internal refrigerator can be utilized only for infinite
values of the reduced power P̃∗ = 1/ε∗

− → ∞. This is caused
by the discontinuity in the ability of the refrigerator working at
maximum power conditions to utilize the energy provided by
the engine εopt (0), which is positive for �r = 0 and vanishes
for �r > 0 [44]. Figure 3 also shows that, for fixed P̃∗ and εC ,
R̃∗

s decreases as the amount of energy dissipated during the hot
isotherm of the refrigeration cycle increases (larger �r).

In Fig. 4, we plot the MEGP for CARs (21) as a function of
δRs for different values of P̃∗, �e, and �r . The upper bounds
(22) for MEGP for fixed reduced power P̃∗ are depicted for
P̃∗ = 1 (top pink solid line in the middle) and P̃∗ � 1/ε∗

+
(bottom pink solid line in the middle). They indeed bound the
MEGP obtained for arbitrary values of ratios of irreversibility
parameters �e and �r , and values of P̃∗ larger than those
chosen to plot the individual curves. The ultimate upper bound
on MEGP (23) is depicted by the uppermost black solid line.
According to the figure, the MEGP ψopt exhibits a fast non-
linear increase with decreasing power near δRs → 0 unless
P̃∗ → ∞. Only then is this increase linear, in agreement with
our discussion below Eq. (28). To check our analytical results,
we also calculated the MEGP for simultaneous LD CARs by
a direct brute-force numerical optimization of COP (5). The
figure shows that the obtained numerical results (symbols)
perfectly overlap with our analytical predictions (lines).

In Fig. 5, we show the characteristics of the heat engine
and refrigerator corresponding to the MEGP of the CAR with
�r = �e = 1, depicted in Fig. 4. For P̃∗ → 0, Eqs. (18) to
(20) imply that δR = −1, εopt = εC , and δP = δRs. Similarly,
for P̃∗ → ∞ it follows that δR = δRs, δP = −1, and ηopt =
ηC . When the refrigerator works at the Carnot COP εC , the
dimensionless refrigeration cycle duration τ

opt
r diverges and

-1 -0.75 -0.5 -0.25 0

0

0.1

0.2

0.3

0.4

0.5

FIG. 4. The MEGP of the CAR (21) as a function of the loss
in cooling power δRs for three values 0, 1, and ∞ of the reduced
maximum power of the engine P̃∗. The reduced power P̃∗ increases
from the uppermost dashed line to the lowermost one with �r =
�e = 1. The dot-dashed lines of the same color as the dashed ones
correspond to the same P̃∗ and �r = �e = 10. The two pink solid
lines in the middle depict the upper bound on MEGP (22) for fixed P̃∗

obtained for �r = 0 and �e → ∞. For the top one we took P̃∗ = 1.
The bottom one corresponds to arbitrary P̃∗ � 1/ε∗

+. The bottom
and top black solid lines represent the ultimate lower (�r → ∞,
�e = 0, and arbitrary P̃∗) and upper (�r = 0, �e → ∞, and P̃∗ = 0)
bounds on MEGP (23) (note that the lower bound coincides with
the horizontal axis). MEGP for the CAR obtained using brute-force
numerical optimization of its COP (circles) perfectly agree with the
curves calculated using the analytical formula (21) (lines). Other
parameters taken: εC = 1 and ηC = 1/2.

we have Ne/Nr → ∞, i.e., within one full CAR cycle, there
are infinitely more engine cycles than refrigeration cycles. An
opposite situation occurs when the engine works at Carnot
efficiency.

IV. CONCLUSION AND OUTLOOK

We showed that the maximum efficiency at given cooling
power (MEGP) for an absorption refrigerator composed of
simultaneously operating Carnot-type heat engine and Carnot-
type refrigerator (CAR) follows from the MEGPs for the
internal heat engine and refrigerator. We applied these general
findings to low-dissipation (LD) simultaneous CARs, where
the internal devices work in the LD regime and the corre-
sponding expressions for MEGPs are known [25,44]. We used
the resulting cumbersome analytical formula for the MEGP
for derivation of concise expressions for upper and lower
bounds on the MEGP for the LD CARs. We also investigated
the behavior of the MEGP close to the maximum power.
Unless the ratio of maximum powers of the internal engine
and the refrigerator diverges, a slight decrease in power of the
LD CAR leads to a fast nonlinear increase in the MEGP gener-
ically observed in heat engines [25]. Otherwise, the increase
in the MEGP is linear as can be observed in LD refrigerators
[44].

In the LD approximation, the detailed dynamics of the
system in question determines the so-called irreversibility
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FIG. 5. Top: Characteristics of the internal refrigerator corresponding to the MEGP for the CAR depicted in Fig. 4 for �r = �e = 1
as functions of the loss in output power of the CAR, δRs. (a) The loss in output power δR, (b) MEGP εopt, (c) the optimal dimensionless
cycle duration τ opt

r , defined in Eq. (C7), and (d) the optimal relative duration of the hot isotherm αopt
r , defined below Eq. (C7). Bottom: The

corresponding characteristics of the internal heat engine. (e) The loss in output power δP, (f) MEGP ηopt, (g) the optimal dimensionless
cycle duration τ opt

e defined in Eq. (B8), and (h) the optimal relative duration of the hot isotherm αopt
e , defined above Eq. (B1). Colors of the

individual lines, marking the used value of the reduced maximum power P̃∗, are the same as those used in Fig. 4 (red dashed, blue dotted,
green dash-dotted corresponds to reduced powers 0, 1, and ∞, respectively). The vanishing reduced power corresponds to the Carnot COP
of the refrigerator εopt = εC , where τ opt

r diverges, and arbitrary αopt
r . Panels (c) and (d) thus show no red dashed lines. Similarly, diverging

P̃∗ corresponds to the Carnot efficiency of the engine ηopt = ηC , and thus we show no green dash-dotted lines in panels (g) and (h). Even
though the depicted parameters for the heat engines were obtained using the approximation (B13), they are almost indistinguishable from
exact numerical results (circles). Slight deviations can be observed for αopt

e only.

parameters. The MEGP for simultaneous LD CARs, derived
in this paper, is as function of power measured in units of
the maximum power, which depends on the irreversibility
parameters. Using a specific dynamical model, the maximum
power can be further optimized with respect to theses param-
eters, allowing to derive expressions for maximum power at
fixed maximum efficiency. For LD heat engines and refriger-
ators, such an optimization was performed in Refs. [58,59]
using the geometrical approach to thermodynamics generi-
cally valid close to equilibrium. While the dependence of
maximum power on irreversibility parameters in these two
settings is obvious, the situation in LD CARs is slightly dif-
ferent since their maximum power is controlled by both the
maximum power of the internal refrigerator and that of the
internal heat engine. Equations (7) and (8) suggest that the
power of the CAR attains its maximum if one maximizes the
COP of the internal refrigerator, its maximum power, and also
the maximum power of the heat engine. However, detailed
investigations in this direction will be a subject of our future
work.

The presented LD model is constructed in an idealized
fashion and the resulting MEGP can serve as a (loose) upper
bound for real-world absorption refrigerators. Such bounds
are thus nowadays available for heat engines [25], refriger-
ators [44], and absorption refrigerators. It remains to derive
them for heat pumps, which will also be a subject of our future
work. For a numerical study of the MEGP for absorption
heat pumps, we refer to Ref. [46]. Furthermore, it would be
interesting to investigate MEGPs for LD systems in context
of the stability analysis described in Refs. [8,60–62].

Originally, the finite-time performance of heat engines was
studied using the endoreversible model [63]. While efficien-
cies at maximum power for the endoreversible and LD models
are described by similar expressions [64], to the best of our
knowledge, no results for MEGP for endoreversible models
are known. As a future research project, it would be also in-
teresting to investigate to what extent the apparent equivalence
between the two models holds concerning the MEGP.
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APPENDIX A: MEGP FOR ALTERNATING CARS

For alternating CARs [45], the internal heat engine and re-
frigerator do not operate simultaneously. The duration of one
cycle of the alternating CAR is thus given by the sum te + tr
of the durations of the engine and refrigerator. According to
the first law of thermodynamics, the output work of the heat
engine per cycle equals to the input work of the refrigerator,
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i.e., We = Wr . The power of the heat engine and the cooling
power of the refrigerator then read

P = We

te + tr
= P

1 + �
, (A1)

R = Qc

te + tr
= R

1 + 1/�
, (A2)

where � ≡ tr/te measures the ratio of durations of the two
internal cycles. The first law in the form of Eq. (6) implies
that these two powers are interconnected through the COP ε

of the refrigerator

P = R
ε(R)

. (A3)

Using Eqs. (A2) and (A3), the COP (5) can be rewritten as

ψ (R) = ε(R)η(P)

= ε(R,�)η(P,�)

= ε(R,�)η

( R
ε(R,�)

,�

)
, (A4)

where the notation ε(R) = ε[R(1 + 1/�)] ≡ ε(R,�) high-
lights that both the efficiencies now explicitly depend on the
ratio of the durations of the internal cycles � through the
definitions (A1) and (A2) of R and P . Consequently, in the
optimization of COP (A4) with respect to the durations of the
refrigeration and engine cycles, the engine and refrigeration
efficiencies cannot be optimized independently as it was done
in Eq. (12). The optimization of COP for alternating CARs is
thus more complicated than that for simultaneous CARs and
the knowledge of MEGPs for the internal engine and refrig-
erator might not be sufficient for determination of MEGP for
alternating CARs.

APPENDIX B: MEGP FOR LD HEAT ENGINES

In this Appendix, we derive the expression ηopt for MEGP
for LD heat engines. The derivation is slightly different from
that used in Ref. [25].

Introducing the relative duration of the hot isotherm, αe =
th/te, in Eqs. (13) and (14), the power output and efficiency of
the LD heat engine can be expressed as

P = We

te
= (Th − Tm)�Se

te
− α�me + (1 − α)�h

α(1 − α)t2
e

, (B1)

η = We

Qh
= ηC

1 + Tm�Stot,e/(Pte)
, (B2)

where

�Stot,e = −Qh

Th
+ Qme

Tm
= �h

thTh
+ �me

tmeTm
� 0 (B3)

is the total entropy production per engine cycle.
Maximizing the power (B1) with respect to α and te yields

[15]

α∗
e =

√
�e

1 + √
�e

, (B4)

t∗
e = 2

(√
�h + √

�me
)2

ThηC�Se
, (B5)

P∗ = 1

4

(
ThηC�Se√
�h + √

�me

)2

, (B6)

η∗ = ηC
(
1 + √

�e
)

2 + √
�e(2 − ηC )

, (B7)

where �e = �h/�me is the so-called irreversibility ratio
and ηC = 1 − Tm/Th denotes Carnot efficiency. Now we use
Eqs. (B4) and (B5) to define the coordinate transformation

τe = te
t∗
e

− 1 ∈ [−1,∞], (B8)

a = αe

α∗
e

− 1 ∈
[
−1,

1

α∗
e

− 1

]
, (B9)

which reduces the number of variables in the problem [25].
The point of maximum power (B6) corresponds to δP = 0
(17) and τe = a = 0. The (relative) loss in power (17) and
efficiency (B2) in these new coordinates read

δP = a2
√

�e

(1 + a)(a
√

�e − 1)(1 + τe)2
−

( τe

1 + τe

)2
, (B10)

η = (1 + √
�e)ηC

a
√

�e − 1

× 2a2
√

�e(1 + τe) + (a
√

�e − a − 1)(1 + 2τe)

2(1 + a)(1 + √
�e)(1 + τe) − ηC

√
�e

.

(B11)

Solving Eq. (B10) with respect to the dimensionless cycle
duration τe, we find two roots

τe = −δP

1 + δP
±

√
δP(1 + a − a

√
�e) + a2

√
�e

(1 + δP)
√

(1 + a)(a
√

�e − 1)
. (B12)

Since longer cycles in general allow for larger efficiencies,
we thus take the root with the positive sign. Substituting it
into Eq. (B11), evaluating the condition ∂η/∂a|a=aopt = 0 for
maximum efficiency, and expanding it up to the fourth order
in a, we find

∂η

∂a

∣∣∣∣
a=aopt

=
4∑

n=0

bnan + O(a5) = 0, (B13)

where the coefficients bn are complicated functions of δP,
�e, and ηC . Equation (B13) for the optimal value aopt of the
parameter a can be solved exactly [65]. The corresponding
optimal value of τ

opt
e follows by substituting the resulting aopt

for a in Eq. (B12).
Substituting the obtained expressions for aopt and τ

opt
e for

a and τ into Eq. (B11), we obtain a lengthy but manageable
(e.g., by using software for symbolic manipulation such as
MATHEMATICA) formula for the MEGP for LD heat engines

ηopt = ηopt (δP, �e, ηC ). (B14)

Even though this results was obtained using the approxima-
tion (B13), we tested that the resulting approximate MEGP
(B14) and the exact MEGP obtained numerically are indis-
tinguishable within the numerical precision (the measured
absolute error is on the order of 10−7). Furthermore, the
expression (B14) yields exact lower (�e = 0) and upper
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(�e → ∞) bounds on the MEGP of LD heat engines [25]

ηC

2
(1 + √−δP) � ηopt � ηC (1 + √−δP)

2 − ηC (1 − √−δP)
. (B15)

APPENDIX C: MEGP FOR LD REFRIGERATORS

In this Appendix, we review the derivation of the expres-
sion εopt for MEGP for LD refrigerators given in Ref. [44].

The COP of the refrigerator is given by

ε = Qc

Wr
= εC

1 + εCTm�Stot,r/(Rtr )
, (C1)

where

�Stot,r = −Qc

Tc
+ Qmr

Tm
= �c

tcTc
+ �mr

tmrTm
� 0 (C2)

is the total entropy production per refrigeration cycle. Sub-
stituting Eq. (15) into Eq. (4) and maximizing the resulting
expression with respect to tmr and tc gives [44,66]

t∗
c = t∗

r = 2�c

Tc�Sr
, (C3)

R∗ = (Tc�Sr )2

4�c
. (C4)

At maximum power conditions, the duration of the cold
isotherm t∗

c thus equals the duration of the entire cycle t∗
r ,

which should be understood in the sense that the hot isotherm
is infinitely faster than the cold one. The corresponding COP
of the internal refrigerator at maximum power ε∗ reads

ε∗
− = 0 for �r > 0, (C5)

ε∗
+ = εC

2 + εC
for �r = 0, (C6)

where �r = �mr/�c is the so-called irreversibility ratio and
εC = Tc/(Tm − Tc) denotes Carnot COP. The COP at maxi-
mum power ε∗ thus exhibits a discontinuity at �r = 0. Using
Eq. (C3), we define the dimensionless cycle duration as

τr = tr
t∗
r

− 1 ∈ [−1,∞]. (C7)

Introducing further the relative duration of the hot isotherm
αr = tmr/tr , we find from Eqs. (4), (17), and (C7) that

αr = 1 + 1

(1 + δR)τ 2
r + 2δRτr + δR − 1

. (C8)

Since αr by definition satisfies 0 � αr � 1, the above formula
makes sense only if

−
√−δR

1 + √−δR
� τr �

√−δR

1 − √−δR
. (C9)

The COP (C1) in these new variables reads

ε = τ 3
r + A1,3τ

2
r + A0,3τr + A0,1

−τ 3
r + A1/ε∗+,−3τ 2

r + B3,4,1τr + B1,2,−1
, (C10)

with Ak,l = (k + lδR)/(1 + δR) and Bk,l,m = [−k(δR)2 +
(l/εC + 1 + �r )δR + m�r]/(1 + δR)2. The maximum
of COP (C10) can be determined by the condition
∂ε/∂τr |τr=τ

opt
r

= 0, which explicitly reads

(
τ opt

r

)4 + Ã
(
τ opt

r

)3 + B̃6+3�̃r ,2+2�̃r ,−�̃r

(
τ opt

r

)2

+ B̃4+3�̃r ,−2�̃r ,−�̃r
τ opt

r + B̃1+�̃r ,−2�̃r ,0 = 0. (C11)

Above, the coefficients Ã = [(4 + �̃r )δR + �̃r]/(1 + δR) and
B̃k,l,m = (kδR2 + lδR + m)/(1 + δR)2 depend on �r and εC

only through the combination �̃r = �r/( 1
εC

+ 1).
The quartic equation (C11) has four roots and can be

analytically solved [44,65]. The optimal dimensionless cycle
duration τ

opt
r = τ

opt
r (δR, �r, εC ) is determined by the only

physically reasonable root, located in the interval (C9). Sub-
stituting it for τ in Eq. (C10), we obtain a lengthy but
manageable (e.g., by using software for symbolic manipula-
tion such as MATHEMATICA) exact expression for εopt,

εopt = εopt (δR, �r, εC ). (C12)

It turns out to be bounded by the inequalities

0 � εopt � εC (1 + √−δR)

2 + εC (1 − √−δR)
≡ ε

opt
+ , (C13)

where the lower bound corresponds to �r → ∞ and the upper
bound to �r = 0.
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