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Destruction of the quantum mechanical features of matter by decoherence restricts the applicability of quan-
tum technologies. The limited information of the quantum features (such as coherence) in the basis-dependent
observations urges the use of a basis-independent quantity for a better understanding. In this context, the state
purity of a quantum system (composed of quantized pigments immersed in a noisy protein environment) is
studied with a numerically exact hierarchical equations of motion approach over the wide range of the parameter
domain (with the main focus on the nonzero-energy gradient). It is noted that the state purity does not necessarily
reflect any significant information about the persistence of quantum features (in the dissipative environment),
even when the quantum coherence survives at the steady state in both the localized and the eigenstate
basis.

DOI: 10.1103/PhysRevE.103.052124

I. INTRODUCTION

Interference, or addition, of wavelike amplitudes with fixed
phase differences is termed quantum coherence. Dephasing
of coherence, i.e., decoherence, is ubiquitous in open quan-
tum systems. Despite its central importance in many physical
phenomena, detailed information about decoherence has re-
mained elusive as the experimental techniques used to monitor
decoherence are forced to observe physical observables that
reflect off-diagonal elements of the density matrix expressed
in a given basis, e.g., the spectroscopic experiments observe
the persistence of coherence in the excitation transfer dynam-
ics in the eigenstate basis [1,2]. To study the physical basis for
such experimental observation, theoretical models emphasize
basis-dependent analysis of coherence [3–17]. Moreover, line
shapes or interference (other commonly used observables)
can only illustrate basis-dependent information of decoher-
ence [18–20]. Note that basis-dependent observations do not
necessarily indicate the explicit loss of coherence in the open
quantum system and thus limit our understanding of the role
of decoherence.

Following this, it was argued that for a better estimate of
the role of quantum features, a basis-independent quantity
such as state purity needs to be considered instead of the el-
ements of the density matrix [21]. The purity or idempotence
of a system can be expressed as

P (τ ) = Trρ2(τ ), (1)

where ρ represents the system’s reduced density matrix. The
complete description of a quantum state (i.e., a pure state) cor-
responds to P = 1, which results in minimizing the entropy of
the system (i.e., S = 0). The lack of information of the system
(i.e., an incoherent mixture of two or more quantum states)
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enhances the entropy, which leads to a decrease in the state
purity (i.e., P < 1). Note that ongoing efforts to understand
the role of quantum features in an open quantum system
[22–26] are currently limited by our inability to directly ob-
serve the purity of a quantum state. Therefore, quantitative
analysis of state purity in an open quantum system is largely
unexplored.

Most of the previous work studying the evolution of the
state purity (in the quantum system coupled to a bath) fo-
cused mainly on approximate analytical treatments [21,26–
30]. Recently, Chatterjee and Makri (with the use of the
quasiadiabatic propagator path integral approach) studied a
symmetric quantum two-level system and found the recovery
of state purity in the dissipative tunneling dynamics in a weak
system-bath coupling regime at low temperature [31]. Along
with the recovery of state purity, it was concluded that for
the symmetric two-level system, the complete quenching of
quantum coherence in the eigenstate basis does not neces-
sarily imply the fully mixed state in the weak system-bath
coupling regime [31]. It cautioned the use of purity as a mea-
sure of decoherence in open quantum systems. On the other
hand, for the asymmetric case, the coherence is generally not
completely quenched in both the site basis and the eigenstate
(or exciton) basis. However, the effect of energy gradient was
not considered in the recovery of state purity in dissipative
quantum systems. Moreover, the variation of other essential
parameters such as the Coulomb coupling, bath relaxation
time, or initial population distribution on the recovery of the
state purity was not included. In this work, the evolution of
the state purity in the quantum dissipative system is followed
across a wide variety of parameter regimes.

II. THEORETICAL MODEL

To proceed, a donor-acceptor pair is considered to be cou-
pled with the bath. Both the master equation approach and the
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hierarchical equations of motion (HEOM) approach [32–35]
are employed to study the energy transfer dynamics.

A. Master equation approach

First, the perturbative approach, i.e., a Markovian master
equation, is discussed in detail. For the donor-acceptor pair, in
the singly excited subspace, the effective Hamiltonian for the
spin-boson system consisting of two bases |eDgA〉 and |gDeA〉
is conveniently written as

Heff = ĤS + ĤB + ĤSB

=
(ε

2
σ̂z + �σ̂x

)
+
∑

k

ωkb†
kbk + σ̂z

2

∑
k

gk (b†
k + bk ).

(2)

The first term ĤS represents the system Hamiltonian de-
lineating the effect of energy mismatch ε (=εD − εA)
between donor and acceptor pigments and the coupling be-
tween the two characterized by the tunneling frequency
�. For simplicity, |eDgA〉 and |gDeA〉 denote, respec-
tively, the donor (|D〉) and acceptor (|A〉) states being
excited. Here σ̂z = |eDgA〉 〈eDgA| − |gDeA〉 〈gDeA| and σ̂x =
|eDgA〉 〈gDeA| + |gDeA〉 〈eDgA| are the corresponding Pauli
spin operators in the two-site single-excitation basis. The

second term ĤB denotes the bath Hamiltonian. The annihi-
lation and creation operators of the kth bosonic mode, bk

and b†
k , respectively, satisfy the bosonic commutation relations

[bk, b†
l ] = δkl . In the last term, the bath modes are coupled to

the pigments with strength gk .
Under the Hamiltonian Heff, the density matrix ρ̂(t )

evolves with time obeying the von Neumann equation
d ρ̂(t )/dt = −i[Ĥeff, ρ̂(t )]. The Markovian approximation as-
sumes that the dynamics of the bath modes quickly relaxes
to its equilibrium and is decoupled from the system’s degree
of freedom such that ρ̂(t ) = ρ̂S (t ) ⊗ ρ̂

eq
B , which allows us

to write the following Markovian master equation for the
reduced density matrix of the system ρ̂S (t ) = [ ρD (t ) ρDA(t )

ρAD (t ) ρA(t ) ]:

d ρ̂S (t )

dt
= − i[ĤS, ρ̂S (t )]

−
∫ t

0
dτTrB

{[
ĤSB(0),

[
ĤSB(−τ ), ρ̂S (t ) ⊗ ρ̂

eq
B

]]}
.

(3)

The diagonal elements ρD(t ) and ρA(t ) correspond to the
populations of acceptors and donors being in their excited
state; the off-diagonal elements (i.e., ρDA or ρAD) arise from
the quantum coherence between the donor and acceptor
molecules.

The above master equation can be written more explicitly

d ρ̂S (t )

dt
= − i

(ε

2

)
[σ̂zρ̂S (t ) − ρ̂S (t )σ̂z] − i�[σ̂xρ̂S (t ) − ρ̂S (t )σ̂x]

− 4
∫ ∞

0
dτ (αR(τ )[σ̂z, [σ̂z(−τ ), ρ̂S (t )]] + iαI (τ )[σ̂z, {σ̂z(−τ ), ρ̂S (t )}]). (4)

Here the irreversibility of the quantum processes is treated in
terms of the bath correlation function (BCF) α(t ). In the last
term αR(t ) and αI (t ) are the real and imaginary parts of the
BCF, respectively, responsible for the dephasing and dissi-
pation. Their explicit expressions are given by assuming the
Lorentz-Drude form of the spectral density J (ω) = 2λ

π

γω

γ 2+ω2 ,

where λ = ∫∞
0

J (ω)
ω

dω is the reorganization energy and γ in-
volves the peak position and the width of the spectral density,
determining the timescale of dephasing and dissipation to the
phonon bath,

αR(t ) = λγ

⎡
⎣cot

(
βγ

2

)
e−γ t + 4

βγ

∞∑
q=1

νq

γ( νq

γ

)2 − 1
e−νqt

⎤
⎦,

(5)

where νq = 2πq
β

corresponds to the bosonic Matsubara fre-
quency

αI (t ) = −λγ e−γ t . (6)

Pertaining to the weak system-bath coupling, a small value of
the reorganization energy (i.e., λ = 15 cm−1) is used (unless

specified). Moreover, the bath relaxation rate is chosen to be
γ = 100 cm−1 and the donor site is assumed to be initially
excited [i.e., ρD(0) = 1] in this study (unless specified other-
wise).

Further, the time dependence of the Pauli matrix σ̂z can be
written in the interaction picture as

σ̂z(t ) = eiĤSt σ̂ze
−iĤSt , (7)

and the Baker-Campbell-Hausdorff formula with ĤS =
(ε/2)σ̂z + �σ̂x allows us to rewrite σ̂z(t ) in the form

σ̂z(t ) = cx(t )σ̂x + cy(t )σ̂y + cz(t )σ̂z, (8)

with � = √
ε2 + 4�2 and

cx(t ) = 2ε�

�2
(1 − cos �t ),

cy(t ) = 2�

�
sin �t,

cz(t ) = 1 − 4�2

�2
(1 − cos �t ). (9)
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The parameters associated with the dephasing (κ1, κ2, and κ3) and dissipation (μ1 and μ2) are calculated as

κ1 =
∫ ∞

0
dtcx(−t )αR(t ) =

(
2�

γ

)(
ε

γ

)⎡⎣ λ

1 + (�
γ

)2
⎤
⎦S2(�, γ ),

κ2 =
∫ ∞

0
dtcy(−t )αR(t ) = −

(
2�

γ

)⎡⎣ λ

1 + (�
γ

)2
⎤
⎦S1(�, γ ),

κ3 =
∫ ∞

0
dtcz(−t )αR(t ) =

⎡
⎣ λ

1 + (�
γ

)2
⎤
⎦[S0(�, γ ) +

(
ε

γ

)2

S2(�, γ )

]
,

μ1 =
∫ ∞

0
dtcx(−t )αI (t ) = −

(
2�

γ

)(
ε

γ

)⎡⎣ λ

1 + (�
γ

)2
⎤
⎦,

μ2 =
∫ ∞

0
dtcy(−t )αI (t ) =

(
2�

γ

)⎡⎣ λ

1 + (�
γ

)2
⎤
⎦, (10)

where

Sn(�, γ ) ≡ cot

(
βγ

2

)
+ 4

βγ

∞∑
q=1

(
γ

νq

)n

Wq(�, γ ),

with

Wq(�, γ ) ≡
1 + (�

γ

)2
[( νq

γ

)2 − 1
][

1 + ( �
νq

)2] .
For the terms involving the summation over q, a finite number of terms (q = 1, 2, . . . , qmax) suffices to obtain a convergent value
of the BCF.

The elements of the density matrix satisfy the set of equations at the steady state

ρ̂ss
S =

[
1
2 (1 − δρss) 2κ1μ1−μ2(�−2κ2 )

2κ3(�−2κ2 )−κ1ε

2κ1μ1−μ2(�−2κ2 )
2κ3(�−2κ2 )−κ1ε

1
2 (1 + δρss)

]
, (11)

where δρss ≡ ρss
A − ρss

D = μ2ε−4κ3μ1

2κ3(�−2κ2 )−κ1ε
. Interestingly, the real part of coherence survives even at the steady state in the site

basis. Now for the symmetric case with ε = 0, and hence κ1 = μ1 = 0, ρss
D = ρss

A = 0.5. Even in this case the coherence in the
site basis is nonzero, i.e., ρDA = ρAD = − μ2

2κ3
.

Next, in the donor-acceptor pair, the corresponding eigenstates (with the energy eigenvalues E+ = �
2 and E− = −�

2 ) can be
expressed as

|�+〉 =
√

2�√
�(� + ε)

(
ε + �

2�
|D〉 + |A〉

)
, |�−〉 =

√
2�√

�(� − ε)

(
ε − �

2�
|D〉 + |A〉

)
(12)

and the coherence in the exciton basis can be written as

ρ+− = |�+〉 〈�−| = 2ε(κ1μ1 + κ2μ2) − 4�κ3μ1

�[2κ3(� − 2κ2) − εκ1]
. (13)

It is evident that in the exciton basis at the steady state coherence will be zero only for the symmetric case (i.e., when ε = 0 and
hence κ1 = μ1 = 0). For the asymmetric case (i.e., when ε �= 0), the coherence cannot be completely quenched.

B. Hierarchical equations of motion approach

The perturbative approach, i.e., the master equation, indicates the persistence of the quantum coherence in both the site and
the eigenstate basis. Along with this approximate approach, a numerically exact method such as the HEOM approach can also
be implemented for a better understanding and further verification of the existence of steady-state coherence in both bases. In the
HEOM approach, with the use of the path integral formalism, the dynamics is studied using the set of auxiliary density operators
(ADOs), i.e., ρa(τ ) [where the index of the ADOs can be written as a = (a10, . . . , a1K , . . . , aN0, . . . , aNK ) with ank > 0], as
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[33,34,36,37]

ρ̇a(τ ) = − i

[
N∑

n=1

εn |n〉 〈n| +
∑
m<n

�nm(|n〉 〈m| + |m〉 〈n|), ρa(τ )

]
−
∑
n,k

ankγnkρa(τ )

+ i
∑
n,k

{[|n〉 〈n| , ρank+ (τ )] + ank pnk |n〉 〈n| ρank− (τ ) + ank p∗
nkρank− (τ ) |n〉 〈n|}, (14)

where ρank± describe that each ADO is coupled to operators
in the level above or below in the hierarchy such that ank± =
(a10, . . . , ank±, . . . , aNK ) [34]. A hierarchy level is assigned
to the each reduced density matrix described in detail by
Strümpfer and Schulten [34]. Further, pnk and γnk are defined
in the Padé decomposition [38].

Further, for a detailed analysis of the influence of the per-
sistence of coherence (in the asymmetric case) on the state
purity, Eq. (1) can be expressed in terms of the system’s
reduced density matrix elements as

P (τ ) = ρ2
D(τ ) + ρ2

A(τ )︸ ︷︷ ︸
=P1(τ )

+ 2
[
ρR

DA(τ )
]2︸ ︷︷ ︸

=P2(τ )

+ 2
[
ρI

DA(τ )
]2︸ ︷︷ ︸

=P3(τ )

= ρ2
+(τ ) + ρ2

−(τ )︸ ︷︷ ︸
=Peig

1 (τ )

+ 2[ρR
+−(τ )]2︸ ︷︷ ︸

=Peig
2 (τ )

+ 2[ρI
+−(τ )]2︸ ︷︷ ︸

=Peig
3 (τ )

, (15)

where ρ+ (ρ−) represents the eigenstate population, corre-
sponding to the eigenvalue E+ (E−), and ρR

+− (ρI
+−) is the real

(imaginary) part of coherence between the eigenstates.

III. RESULTS AND DISCUSSION

A. Effect of steady-state coherence on state purity

With the use of the HEOM approach, dynamical simula-
tions also verify the persistence of coherence in the eigenstate
basis [see Fig. 1(a)]. However, the state purity (in the long-
time domain) seems to be dependent mainly on the eigenstate
population (without any significant contribution from the
eigenstate coherence), as illustrated by Fig. 1(b). Evidently,
after ∼1 ps the state purity components Peig

2 and Peig
3 (which

depend on eigenstate coherence [see Eq. (15)]) contribute
negligibly to the P . Therefore, the dynamics of the state
purity is mainly governed by the eigenstate population as the
system evolves towards equilibrium (even in the presence of

FIG. 1. Dynamics of the (a) eigenstate coherence and (b) purity
i.e., P (along with its components Peig

1 , Peig
2 , and Peig

3 ) for a donor-
acceptor pair with ε = 400 cm−1 and � = 300 cm−1 at cryogenic
temperature 25 K. The reorganization energy used here is 35 cm−1.

eigenstate coherence). This implies that, irrespective of the
energy gradient ε, the state purity cannot be used as a measure
of quantum features.

B. Comparative analysis of the results of the HEOM approach
and the master equation

Next the comparative analysis of the predictions of the
master equation approach and the HEOM approach is stud-
ied. As expected, in the weak system-bath coupling (when
λ = 10 cm−1), both approaches, i.e., the HEOM approach
and master equation approach, predict almost the same donor
population at the steady state [see Fig. 2(a)]. With an increase
in the system-bath coupling, the predictions of the master
equation approach deviate from the numerically exact HEOM
approach, as illustrated in Figs. 2(b)–2(d). For instance, in the
strong system-bath coupling (i.e., when λ = 200 cm−1), the
steady-state donor population predicted by the master equa-
tion approach is significantly different from the results of the
HEOM approach. Note that the inclusion of non-Markovian
effects in the HEOM approach results in long oscillatory
timescales compared to the Markovian master equation used
in this work, which leads to the different transient behavior

FIG. 2. Comparative analysis of the time evolution of the donor
population by varying the re-organization energies such that (a) λ =
10 cm−1, (b) λ = 50 cm−1, (c) λ = 100 cm−1, and (d) λ = 200 cm−1

[at room temperature 300 K (kBT = 208.5 cm−1)] with the HEOM
approach and master equation approach. The energy gradient used
in this case is ε = 100 cm−1 with Coulomb coupling � = 100 cm−1

and bath relaxation rate γ = 2000 cm−1. In the HEOM approach four
hierarchy levels were used with three bath exponential terms. A time
step of 0.5 fs was used in both approaches.
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FIG. 3. (a) Equilibrium values of the state purity by varying Coulomb coupling � and temperature T with ε = 0 cm−1. The time evolution
of the purity is illustrated for the different pairs of � and T , i.e., (i) � = 300 cm−1 and T = 100 K (kBT = 69.5 cm−1), (ii) � = 300 cm−1

and T = 300 K (kBT = 208.5 cm−1), (iii) � = 50 cm−1 and T = 100 K (kBT = 69.5 cm−1), and (iv) � = 50 cm−1 and T = 300 K (kBT =
208.5 cm−1). Also shown are the steady-state values of (b) P1, P2, and P3 and (c) system entropy (i.e., S). The value of the reorganization
energy used in this case is 15 cm−1 with a bath relaxation rate of γ = 100 cm−1.

of both approaches in the whole parameter domain of system-
bath coupling.

C. Recovery of the state purity

In this section, the recovery of state purity will be evaluated
in a wide range of parameters using the HEOM approach.

1. Symmetric case

First, the symmetric case (i.e., ε = 0 cm−1) is considered
to determine the state purity in the donor-acceptor pair. The
quantum simulations reveal that at the steady state, low inter-
site coupling leads to the maximally mixed state (i.e., lowest
state purity) such that when � = 5 cm−1 the steady-state
value of the state purity is ∼0.5 [see Fig. 3(a)]. Moreover,
the enhancement in the thermal fluctuations results in the de-
crease in state purity at equilibrium. For instance, when � =
50 cm−1, the steady-state value of P is higher at low temper-
ature 100 K (kBT = 69.5 cm−1) i.e., P ≈ 0.67 compared to

the room temperature 300 K (kBT = 208.5 cm−1), where P ≈
0.53. Evidently, an almost pure state (P ≈ 1) can be achieved
at equilibrium with increases in the Coulomb coupling �, e.g.,
state purity varies from ∼0.5 to ∼0.99 as � increases at a
cryogenic temperature of 100 K [see Fig. 3(a)]. It is evident
from Fig. 3(b) that the enhancement of the contribution of P2

in the state purity at equilibrium with Coulomb coupling leads
to the achievement of an approximately pure state. Further, the
variation in the contribution of P2 in the state purity with the
temperature governs the effect of thermal fluctuations on
the state purity at equilibrium. Although P2 varies with the
Coulomb coupling and temperature, the variation of P1 and
P3 ceases to exist [see Fig. 3(b)]. The steady-state entropy
[i.e., S = −kBTr(ρ logρ)] is also investigated for the different
values of Coulomb coupling and temperature [see Fig. 3(c)].
As is obvious, the comparative analysis of Figs. 3(a) and 3(c)
shows that high entropy corresponds to low state purity and
vice versa.
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FIG. 4. Shown on top is the schematic illustration of the eigen-
states on energy scale and on the bottom is the time evolution of
the purity with (a) ε = 100 cm−1 and � = 100 cm−1 and (b) ε =
400 cm−1 and � = 300 cm−1 at room temperature 277 K (kBT =
192.5 cm−1). The value of the reorganization energy used in this case
is 15 cm−1 with a bath relaxation rate of γ = 100 cm−1.

The dynamical simulations of the purity show that with
strong Coulomb coupling, the state purity decreases initially.
Subsequently, the initial drop is followed by a rebound as
the system evolves towards equilibrium. Therefore, a par-
tially mixed state is obtained at the steady state, as illustrated
Figs. 3(a i) and 3(a ii). When the Coulomb coupling is weak
and temperature is high (e.g., when � = 50 cm−1 and T =
300 K), the recovery of the purity is negligible, as shown
by Fig. 3(a iv). However, at the same value of the Coulomb
coupling, the substantial recovery of purity is observed with
a decrease in temperature [see Fig. 3(a iii)]. As the sys-
tem evolves in time, the addition of P1 and P3, i.e., P13

(=P1 + P3), always tends to move towards 0.5 irrespective
of Coulomb coupling or temperature while the contribution
of P2 in the state purity increases [substantially in the do-
main of strong Coulomb coupling and low temperature (see
Fig. 7 in Appendix A)], and hence the purity recovers before
plateauing.

2. Asymmetric case

Next the asymmetric case (i.e., ε �= 0) is considered to
study the state mixedness at both room temperature (i.e., T =
277 K) and cryogenic temperature (i.e., T = 125 K). From
Figs. 5(a) and 5(c) it is clear that the equilibrium state purity
increases with both the Coulomb coupling � and energy gra-
dient ε. For example, when ε = 100 cm−1 and � = 100 cm−1

the state purity is ∼0.63, which rises gradually to ∼0.95
with enhancement of both the energy gradient and Coulomb
coupling, i.e., for ε = 400 cm−1 and � = 300 cm−1. With
an increase in the energy gradient (i.e., ε) and hopping pa-
rameter (i.e., �), the energetic separation of eigenvalues (i.e.,
E = � = √

ε2 + 4�2) increases. For instance, as the ener-
getic separation increases from 223.6 cm−1 [corresponding
to ε = 100 cm−1 and � = 100 cm−1; see the top panel of
Fig. 4(a)] to 721.1 cm−1 [corresponding to ε = 400 cm−1 and
� = 300 cm−1; see the top panel of Fig. 4(b)] at room tem-

perature 277 K (kBT = 192.5 cm−1), the dip in purity revival
increases. In other words, the state purity (at the steady state)
increases with the energetic separation E when the energy of
the thermal phonons is considered to be fixed. In the earlier
case, the energetic separation E and the energy of thermal
phonons (i.e., kBT ) are of the same order [see Fig. 4(a)],
and hence a comparatively strong effect from the thermal
bath on the system’s evolution results in the significant loss
of information about the quantum state; therefore a mixed
state is observed. On the other hand, in the latter case, the
energetic separation E is higher compared to the energy of
thermal phonons (i.e., kBT ), as shown in Fig. 4(b). In this
case, the loose coupling of bath phonons to the system leads
to a comparatively low loss of information about the quantum
state of the system and an almost pure state is observed. As
expected, this implies that in the dissipative dynamics, if the
energetic separation of the eigenstates is of the same order as
the thermal phonons, the bath-induced coherences are impor-
tant and one will have a mixed state; if they are negligible, the
state will be close to a pure one. Again, it is evident that as the
system evolves towards equilibrium, the eigenstate population
(illustrated by Peig

1 ) contributes significantly, while there is
a negligible contribution from the eigenstate coherence (i.e.,
Peig

2 or Peig
3 ).

In the local basis, at the steady state, the contribution of P1

in the purity increases with the energy gradient and decreases
with an increase in the Coulomb coupling [see Figs. 5(b) and
5(d)]. The excitation trapping probability at acceptor pigment
varies with both ε and � but inversely, such that the increase
in ε enhances the trapping probability while an increase in
� results in enhancement of back transfer, which reduces
the trapping probability. The steady-state value of P1, and
hence the state purity, increases with the excitation trapping
probability. Moreover, the contribution of P2 in state purity
increases with the Coulomb coupling and decreases with an
increase in energy gradient, as illustrated by Figs. 5(b) and
5(d). This implies that the maxima of P2 correspond to the
minima of P1 and vice versa. Contrary to the symmetric case,
both P1 and P2 contribute substantially to the state purity at
equilibrium. Therefore, the destruction of quantum features
in the donor-acceptor pair with a nonzero-energy gradient is
significantly reduced compared to the symmetric case. Similar
to the symmetric case, at equilibrium, the contribution of P3

in the state purity is negligible in the whole parameter domain
used in this work.

Note that, in the asymmetric case, the recovery of purity is
more evident compared to the symmetric case [see Fig. 5(a)].
For instance, when � = 300 cm−1, the purity initially falls to
a minimum value, i.e., Pmin � 0.5, and then rises to ∼0.95
during the dynamics with ε = 400 cm−1 [see Fig. 5(a ii)],
while for the symmetric case (i.e., ε = 0 cm−1), the purity
drop is less such that Pmin � 0.79 before a maximum rise to
Pmax = 0.91 [see Fig. 5(a i)]. It is observed that the dip in
the state purity increases with both the energy gradient and
Coulomb coupling as demonstrated in Fig. 5(a). Surprisingly,
with the increase in the energy gradient, the purity recovers
after achieving the maximally mixed state [see Figs. 5(a ii)
and 5(a iv)]. In contrast, with the low-energy gradient, the
maximally mixed state is not attained by the system; however,
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FIG. 5. (a) Steady-state values of the state purity by varying the energy gradient ε and Coulomb coupling � at room temperature T =
277 K. The time evolution of the purity is illustrated for different pairs of ε and �, i.e., (i) ε = 100 cm−1 (subset ε = 0 cm−1) and � =
300 cm−1, (ii) ε = 400 cm−1 and � = 300 cm−1, (iii) ε = 100 cm−1 and � = 100 cm−1, and (iv) ε = 400 cm−1 and � = 300 cm−1. Also
shown are the steady-state values of (b) P1, P2, and P3 at 277 K, (c) the purity at cryogenic temperature T = 125 K, and (d) P1, P2, and P3

at 125 K. The value of the reorganization energy used in this case is 15 cm−1 with a bath relaxation rate of γ = 100 cm−1.

the recovery of the purity is observed, as shown in Figs. 5(a i)
and 5(a iii). Enhancement in the initial drop of state purity
with ε results in the enhancement of the dip in the purity with
energy gradient. With the high-energy gradient, as the system
evolves in time, P13 and P2 attain their minima at the same
moment, which results in the minima of state purity during
the evolution of the system (see Fig. 8 in Appendix A). Such a
condition is avoided with the low-energy gradient, and hence
the maximally mixed state is not achieved during the evolution
of the system. On the other hand, although the initial drop
in purity decreases with Coulomb coupling, the substantial
enhancement of the maxima of state purity (i.e., Pmax) with
� leads to the increase in the dip in state purity with Coulomb
coupling.

3. Effect of bath relaxation rate

The dip in the purity also varies with the bath relaxation
rate γ , a measure of the degree of non-Markovianity in the
dynamics, such that relaxation of the bath slower than the
effective evolution of the system corresponds to the strong
memory effects in the dynamics and vice versa (see Fig. 9 in

Appendix A). Remarkably, the dip in purity decreases with
the degree of non-Markovianity, as shown in Fig. 6. The
P2 increases quickly with γ (i.e., with the decrease in the
degree of non-Markovianity); therefore, the decrease in the
state purity due to P13 is compensated quickly, which leads to
the reduction in the dip of the state purity P . Besides the bath
relaxation rate, the initial population distribution also affects
the dip in the state purity (see Fig. 10 in Appendix A).

In the aforementioned work, a simple case, i.e., a donor-
acceptor pair, was discussed in detail. In reality, a complex
network of pigments participates in the energy transfer pro-
cess, which leads to the different pathways of energy transfer.
The effect of the quantum interference between the different
pathways of energy transfer should be considered for a re-
alistic study of the recovery of the state purity. To include
such effects, the dynamics of the state purity is studied for
a trimer system (i.e., an acceptor is coupled to a pair of donor
pigments) and recovery of the state purity is observed for both
the symmetric and asymmetric cases (see Fig. 11 in Appendix
B). This implies that in the weak dissipative conditions, the
recovery of the state purity can be observed in any complex
network of pigments weakly coupled to the protein molecules.
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FIG. 6. Time evolution of the state purity P and its components
P1, P2, and P3 with (a) γ = 10 cm−1, (b) γ = 50 cm−1, and (c) γ =
100 cm−1. The energy gradient used in this case is ε = 0 cm−1 with
� = 100 cm−1 at T = 125 K. The value of the reorganization energy
used in this case is 15 cm−1.

IV. CONCLUSION

Quantum features and their destruction are of great in-
terest for a detailed understanding of countless physical and
biological phenomena. The physical basis for the long-time
persistence of quantum features can be used as a blueprint for
designing nanoscale devices, such as bioinspired solar cells
with a targeted function. Quantum simulations have illustrated
the survival of quantum mechanical features in the dynamics
of the energy transfer in the weakly dissipative environment in
both the site and eigenstate bases. The long-time existence of
quantum features in dissipative conditions indicates the pos-
sibility of their fundamental importance in the energy transfer
mechanism. However, the state purity is not affected signifi-
cantly by the survival of eigenstate coherence as the system
moves towards the steady state even with a nonzero-energy
gradient.

Further, in the dissipative environment, a comparison of
the energetic separation of the eigenstates with the energy of
the thermal phonons governs the mixedness of the quantum
state such that higher mismatch results in high state purity
at equilibrium. In the recovery of state purity, besides the
energetic separation, the dip in the state purity is also affected
by the bath relaxation rate and initial population distribution.
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FIG. 7. Time evolution of the state purity P and its components
P1, P2, and P3 for different pairs of � and T , i.e., (a) � = 300 cm−1

and T = 100 K (kBT = 69.5 cm−1), (b) � = 300 cm−1 and T =
300 K (kBT = 208.5 cm−1), (c) � = 50 cm−1 and T = 100 K
(kBT = 69.5 cm−1), and (d) � = 50 cm−1 and T = 300 K (kBT =
208.5 cm−1). Here six hierarchy levels with four bath exponential
terms were used with time steps of 0.5 fs for convergence.

APPENDIX A: DIMER SYSTEM

1. Symmetric case

The evaluation of the dynamics of the state purity P and
its components P1, P2, and P3 illustrates the persistence of
transient oscillations in the evolution of P1 and P3 (see Fig. 7).
Further, it is observed that the frequency and amplitude of
the oscillations increase with the Coulomb coupling, with an
adverse effect of the thermal fluctuations on the timescale
of oscillations. It is evident from Fig. 7 that the amplitude
discrepancy of the transient oscillations of P1 and P3 results
in the oscillations of state purity. The opposite phase of the
transient oscillations leads to the destructive interference of
P1 and P3, which reduces the state purity. In contrast, the
nonoscillatory contribution of P2 increases gradually during
the later stages of the destructive contribution of P1 and P3,
which not only stops the decay of the state purity but also
governs the recovery of the state purity.

2. Asymmetric case

The dynamical simulations show that all the components
of the state purity oscillate in the asymmetric case as demon-
strated by Fig. 8. The amplitude of the oscillations of P2

increases with the energy gradient, while the amplitude of
P3 decreases with the energy gradient. However, an arbitrary
effect of ε is observed on the oscillations of P1. Interestingly,
a random phase relation is observed in the transient oscilla-
tions of the three components of state purity (as the Coulomb
coupling and energy gradient vary). As in the symmetric case,
state purity decreases initially and then rises to the maximum
value before plateauing; however, in this case, besides P2, P1

also contributes in the recovery of the state purity.
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FIG. 8. Dynamics of the purity P and its components P1, P2,
and P3 for different pairs of ε and �, i.e., (a) ε = 100 cm−1 and � =
300 cm−1, (b) ε = 400 cm−1 and � = 300 cm−1, (c) ε = 100 cm−1

and � = 100 cm−1, and (d) ε = 400 cm−1 and � = 300 cm−1

at room temperature 277 K. Here four hierarchy levels with four
bath exponential terms were used with time steps of 0.5 fs for
convergence.

3. Effect of bath relaxation rate

The effect of the bath relaxation rate (a measure of the
degree of non-Markovianity in the system) is studied (see
Fig. 9). It is evident from Fig. 9 that when γ is small (i.e.,
the bath relaxation is slow), the oscillations of P3 persist for a
long timescale compared to the high value of bath relaxation,
e.g., when γ = 10 cm−1, P3 oscillates until ∼2.5 ps, while
low-amplitude oscillations of P3 appear for almost 1.8 ps with
γ = 100 cm−1. As is obvious, the amplitude and timescale
of the oscillations vary with the degree of non-Markovianity
such that the strong memory effects in the system-bath evolu-
tion (shown by the small value of the bath relaxation rate γ )

FIG. 9. Comparative analysis of P3 for different values of γ . The
energy gradient used in this case is ε = 0 cm−1 with � = 100 cm−1

at T = 125 K. Here four hierarchy levels with four bath exponential
terms were used with time steps of 0.5 fs for convergence.

FIG. 10. Dynamics of the purity for different initial conditions
with (a) ε = 0 cm−1, (b) ε = 100 cm−1, and (c) ε = 200 cm−1.
The Coulomb coupling used in this case is � = 100 cm−1 with
T = 125 K. Here four hierarchy levels with four bath exponential
terms were used with time steps of 0.5 fs for convergence.

enhance the timescale and amplitude of P3 compared to the
weak memory effects (shown by the high value of the bath
relaxation rate).

4. Effect of initial population distribution

To study the effect of the initial condition on the dip in
the state purity, the following three different initial conditions
were chosen to study the dynamics of the state purity:

ρ1(0) = ρD,

ρ2(0) = 0.5ρD + 0.5ρA + 0.5ρDA + 0.5ρAD,

ρ3(0) = ρA. (A1)

For the symmetric case (i.e., ε = 0 cm−1), the dip in purity
is the same for the initial population distributions ρ1(0) and
ρ3(0), as demonstrated by Fig. 10(a). However, the dip in
the state purity increases substantially with the energy gra-
dient for the initial condition ρ1(0) compared to the initial
population distribution ρ3(0), as shown by Figs. 10(b) and
10(c). For example, with the initial condition ρ1(0), a max-
imally mixed state is achieved during the time evolution when
ε = 200 cm−1, while Pmin � 0.77 for the initial population
distribution ρ3(0). This implies that the initial localization of
the population away from the trap site leads to a transient
maximally mixed state with the enhancement of the energy
gradient. On the other hand, when both sites are equally pop-
ulated initially [i.e., an initial pure state ρ2(0)], the system
evolves in such a way that an almost maximally mixed state
is obtained during the evolution of the system, irrespective of
the energy gradient ε.
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FIG. 11. Illustration of the dynamics of the state purity of a
trimer system (i.e., two donors coupled to one acceptor pigment) at
a cryogenic temperature of 125 K with (a) zero-energy gradients,
i.e., εD1A(= εD1 − εA) = 0 cm−1 and εD2A(= εD2 − εA) = 0 cm−1,
and (b) nonzero-energy gradients εD1A = 500 cm−1 and εD2A =
400 cm−1. Here four hierarchy levels with four bath exponential
terms were used with time steps of 0.5 fs for convergence.

APPENDIX B: TRIMER SYSTEM

Finally, the dynamics of the state purity is investigated in
a trimer system (i.e., an acceptor connected to the two donor

pigments). The site energies and the Coulomb couplings used
to evaluate the trimer system are illustrated as

Ĥtrimer =

⎛
⎜⎝

εD1 300 300

300 εA 300

300 300 εD2

⎞
⎟⎠, (B1)

where εD1 (εD2) denotes the transition frequency of the first
(second) donor and εA is the transition frequency of the accep-
tor pigment. The off-diagonal elements of Eq. (B1) represent
the Coulomb coupling between different sites.

The recovery of the state purity is observed for both the
symmetric (when all the pigments have the same transi-
tion frequency) [see Fig. 11(a)] and asymmetric cases [see
Fig. 11(b)]. The analysis of the trimer system also verifies that
for a given Coulomb coupling, the dip in the state purity is
enhanced with the energy gradient. The quantitative evalua-
tion of the state purity indicates the possibility of the recovery
of the state purity (in the dynamics of energy transfer) in
any pigment-protein complex when the pigments are weakly
coupled to the protein environment.
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