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Stochastic resetting by a random amplitude
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Stochastic resetting, a diffusive process whose amplitude is reset to the origin at random times, is a vividly
studied strategy to optimize encounter dynamics, e.g., in chemical reactions. Here we generalize the resetting
step by introducing a random resetting amplitude such that the diffusing particle may be only partially reset
towards the trajectory origin or even overshoot the origin in a resetting step. We introduce different scenarios
for the random-amplitude stochastic resetting process and discuss the resulting dynamics. Direct applications
are geophysical layering (stratigraphy) and population dynamics or financial markets, as well as generic search

processes.
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I. INTRODUCTION

Einstein [1] established the probabilistic approach to
Brownian motion based on the assumption that individual
displacements of the tracer particle are independent (uncor-
related) beyond a microscopic correlation time, identically
distributed, and characterized by a finite variance. This
“schematization ... represents well the properties of real Brow-
nian motion” [2]. The theoretical description of stochastic
processes, based on the formulation of fluctuating forces by
Langevin [3], is by now one of the cornerstones of nonequi-
librium physics [4-6], with a wide field of applications across
the sciences, engineering, and beyond.

An important application of diffusive dynamics is in the
theory of search processes [7]. Random search strategies are
efficient processes when prior information about the target is
lacking [8,9] or when the searcher itself can only move diffu-
sively, such as molecular reactants [10]. A number of specific
strategies have been studied as generalizations of the classical
Brownian search [11], such as Lévy flights [12,13], intermit-
tent search [14,15], and facilitated diffusion [16,17]. Appli-
cations of these strategies are found in biochemistry [10,18],
biology [19], computer science [20], and economy [21].

The effects of resetting events, when a stochastic process is
returned to its original state, were studied in a neuron model
[22] and in the context of multiplicative processes [23]. In
the seminal work by Evans and Majumdar [24] stochastic
resetting (SR) was defined as the stochastic interruption of a
random motion, resetting the particle to its initial position and
starting the process anew. A particular feature is that the mean
first passage time in a diffusive search becomes finite and can
be minimized [25]. Stochastic resetting is thus widely applied
to search processes.

Stochastic resetting has two random input variables. One
is the particle’s random motion between resets, for which
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numerous processes were considered [26-34]. The other
variable describes the stochastic time span between succes-
sive resets, with a variety of studied distributions [35—41].
Concrete SR mechanisms include resetting to an initial dis-
tribution [25] to the previous maximum [42], resetting with
a memory [43], resetting after a delay [27,39,44—46], space-
time coupled resets [32,33,47-50], and noninstantaneous
resetting. Stochastic resetting in confinement was considered
for different dimensions [51], with different boundary condi-
tions [28,52,53], or in a potential [54—57]. Finally, interacting
particle effects were studied [58—61]. Applications of SR were
discussed in the context of web searches in computer sci-
ence [62,63], enzymatic velocity [44,64], reaction-diffusion
processes with stochastic decay [65], backtrack recovery by
RNA polymerase [66], and pollination strategies [67]. The
first experimental realization of SR was achieved by tracing
diffusing colloidal particles reset by switching holographic
optical tweezers [68].

Here we consider a random-amplitude SR (RASR), moti-
vated by geophysical stratigraphic records [69,70], made up
of the layers of sedimentary material that accumulated in
depositional environments but were not subjected to subse-
quent erosion. These layers (beds) are separated by erosional
surfaces where previously existing material was removed by
chemical reaction or physical forces. The periods of time
missing from the geologic record due to erosion are known as
stratigraphic hiatuses [71]. It was in fact Hans Einstein, Albert
Einstein’s son, who applied probabilistic approaches to strati-
graphic records [69]. Geologists use the stratigraphic record
to infer the earth’s history, and the sediment bed type is used
to interpret the depositional setting (river, delta, lake, dune,
etc.). If sediment at multiple points within the stratigraphic
column can be dated using geochronological techniques such
as C14 dating [72], average linear rates of accumulation can
be calculated. These rates may be serve as proxies for external
forcing such as climate regime.

The generation of the stratigraphic record is typically mod-
eled as a random process. Thus, random surface elevation at a
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TWO DIFFERNT TYPES OF RANDOM AMPLITUDES

INDEPENDENT RESETTING AMPLITUDES DEPENDENT RESETTING AMPLITUDES

BALLISTIC MOTION IN PRESENCE OF
INDEPENDENT AMPLITUDES

BALLISTIC MOTION IN PRESENCE OF
DEPENDENT AMPLITUDES

EXPONENTIAL RESETTING AMPLITUDES UNIFORM RESETTING AMPLITUDES

[Constant pace| [Poissonian resetting] [Constant pace| [Poissonian resetting]

FIG. 1. Flowchart of the two main concepts, independent and de-
pendent random amplitude stochastic resetting with specific choices
of the resetting and propagation statistics.

given point on the earth moves upward (by deposition), stays
constant (no erosion or deposition), or decreases (erosion).
Deposition and erosion are continuous and were described by
different stochastic processes, starting with the work of Kol-
mogorov [73]. Since then a variety of stochastic models (inter
alia, random walks [74] or fractional Brownian motion [75])
were used to probe the fidelity of the stratigraphic record with
respect to the earth’s history. The observation that measured
linear rates of accumulation decrease as a power law with
measurement interval in a variety of geologic settings [76]
was attributed to power-law hiatus lengths, which in turn arise
because they are created by return times of random surface
fluctuations [77]. Here we explore an additional mechanism
for erosion, typical for regular (e.g., seasonal) or irregular
massive erosion events, such as extreme rainfall, storms, or
floods. In these cases the surface is eroded away by a sizable
amount during a short period in time. The exact erosion height
will be different each time. We model such extreme events
by RASR: Resetting occurs at random intervals with random
amplitude (Fig. 2). The guiding example we consider in the
following is that of ballistic propagation of the process, in-
terrupted by RASR events. Such ballistic motion may reflect
ongoing accretion, for instance, due to deposits in a riverbed
or a river delta. Occasional extreme rainfalls or snowmelts
cause significant erosion of these layers, corresponding to the
resetting events.

Here we develop the RASR model and discuss a range
of applications going beyond the geophysical erosion picture
drawn here. Examples include the dynamics of financial mar-
kets hit by occasional crises [78,79], population dynamics
affected by partial extinction [80], or germs affected by an-
tibiotic treatment [81]. We note that we call RASR a resetting
process despite the fact that the reset leads to a random posi-
tion. However, the RASR process keeps the idea of classical
resetting in that the propagation of the test particle is occa-
sionally interrupted by a significant shift. In the search context
mentioned above the RASR process thus represents a class of
intermittent search processes in which the searcher does not
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FIG. 2. RASR sample paths with ballistic displacement (v =
0.5) and (a) and (b) independent (Poissonian with mean ¢ = 1.6) and
(c) and (d) dependent (uniformly distributed) resetting amplitudes.
Resetting events (x) occur (a) and (c) at a constant pace and (b) and
1

(d) with Poissonian waiting times, both with mean rate r = .

intermittently return to its “nest” but restarts its search at a
range of key points (points of previous search success, etc.).

The layout of the paper is as follows (compare also the
scheme in Fig. 1). We first develop the general resetting pic-
ture of our RASR model in Sec. II. Section III introduces
the concept of independent resetting, in which the coordi-
nate of the process does not depend on the position before
resetting. The opposite case, dependent resetting, is developed
in Sec. IV. In both cases we consider specific cases for the
timing of the resets and the resetting amplitude statistic. We
summarize and draw our conclusions in Sec. V. Additional
derivations are deferred to the Appendixes.

II. GENERAL RESETTING PICTURE

In the RASR model v (¢) denotes the probability density
function (PDF) of time spans between resetting events, and
the PDF for the time ¢ at which the nth resetting event occurs
is

Ya(t) = /0 Y (¢ — )Y ()dr', (1

with (1) = 8(z). In Laplace space, therefore, V,(s) =
Y¥"(s). The probability

W) =1- / v (t))dt' 2)
0

of no reset up to ¢ becomes W(s) = [1 — ¥ (s)]/s. Finally, the
probability to have exactly n resets up to ¢ is

D,(1) = / V(1 YW(t —1"dt'. (3)
0

In what follows we consider independent and identically
distributed resetting time intervals by using the examples
of constant interval lengths (constant pace) and Poisson-
distributed intervals. The RASR process can have independent
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resetting amplitudes z,, at the nth step that do not have a lower
bound [Figs. 2(a) and 2(b)]. For dependent (bounded) reset-
ting amplitudes the process never crosses to negative heights
x(t,) [Figs. 2(c) and 2(d)].

Let the term x(#)|x(fp) denote the position x at a certain
time ¢ provided that at time 7, the position was xy = x(#;). For
the derivations of the first resetting picture we will use the
general relation’

x(®)|x(t)
_ y(t)|x(tp) with probability W(r — fy) forfp < ¢ 4
= Lx0)lx(e)  with probability [ dryr(y —10). P

Equation (4) shows two possibilities. The upper line describes
the possibility of no reset in [fg, f] with the corresponding
probability W(t —fy). In this scenario the process, starting
at position xy = x(fp) at time #y, fulfills a specific dis-
placement process y(t). Thus, with probability W(r — fy) the
process x(¢) = y(¢), which is stochastically described by
G(y,t;x0,1). The lower line of Eq. (4) describes the first
resetting point x(¢;) at the random resetting event #; as a new
initial condition of x(z). The new initial condition x; at #;
will be described by the distribution ¢ (xy, #1; X0, tp), which is,
without loss of generality, dependent on the previous initial
condition x at #y. The corresponding probability for this event
is j;; dny (t; — o) for t; € [to, t].

With Eq. (4) we can find the expression for the correspond-
ing PDF P(x, t; xo, ),

P(x,t;x0, 10) = W(t — 10)G(x, t;x0, tg)

t o0

+ f ity — 1) / dx1h (o1, 113 %0, 1o)
Iy —00

P, t5x1,11). 5)

In Eq. (5), ¢1(x1, t1;x0, tp) is the distribution of the first re-
setting point x; = x(#) at time #; under the condition that the
process started at position x, at time #y. The computation of
¢1(x1, t1;x0, 1) depends on which kind of resetting mecha-
nism we will use.

III. INDEPENDENT RESETTING PICTURE

For independent resetting the height after the n + 1st reset-
ting event is

X(tag1) = Y(tagp1)1x () + Zny1, (6)

with the initial condition x(#y) = xo. Here y(t,+1)|x(,) defines
the unperturbed motion during the time interval 7, | — f, start-
ing from point x(t,). Moreover, z,.; is an independent and
identically distributed resetting amplitude of negative value,
z; € (—00, 0). This setup corresponds to our picture of sudden
massive erosion, population decimation, or financial market
loss, in which the resetting amplitude is viewed independently

'In the classical resetting framework, in which the particle is re-
turned to its initial position each time, this approach is reduced to the
first renewal picture defined in Ref. [38]. The same holds for the term
“last resetting picture” introduced below.

of the process. Conceptually, this type of RASR corresponds
to jump diffusion with one-sided jump lengths [82,83].
For n = 0, Eq. (6) yields

x(t1) = y(t1)|xo + z1. @)

The sum of two random variables implies the convo-
Iution of the corresponding PDFs. Thus, with Eq. (7),

o1 (x1, 11; X0, fp) is

@1(x1, t1;5 X0, to) 2/

—00

oo

dy G(y, ti;x0, 10)g(x1 — ). (8)

The PDF P(x, t;xo, tp) to propagate from xp at #y to x(¢) is
obtained by plugging the relation (8) into Eq. (5), yielding

P(x,t;x0, t0) = W(t — 10)G(x, t;x0, o)

t o0
+f dny(t —to)f dy G(y, t15x0, 1)
Io —00

oo
X/ dxiq(xy — y)P(x, t;x1, 11). ©)
—00

The first term on the right-hand side involves the PDF
G(x, t; x9, tp) for undisturbed motion without resetting, where
the probability W(¢) denotes no resetting during the time from
top to t. The second term describes free propagation from
(x0, tp) to the first resetting point at (xy, ¢ ), at which a reset to
x1 occurs with the amplitude PDF ¢(x; — y). Then the process
is propagated by P(x, t;xy, ¢;). Equation (9) can be iterated to
include all resetting steps. From that derivation one can see
that the PDF P(x, t; xo, tp) is homogeneous, P(x, t;Xo, t)) =
P(x — xp,t — 19;0,0), exactly when G is homogeneous. In
the setting of Eq. (9) we can describe a general resetting
process with arbitrary propagation and independent resetting
events. The first resetting picture described here can be shown
to be identical to the last resetting picture, as demonstrated
for independent resetting in Appendixes A and B. We now
consider special cases for the propagation, resetting times, and
amplitudes.

A. Ballistic propagation

An illustrative example is given by ballistic propagation
(and in fact a special case of the jump process considered in
[83]) with speed v, G(x, t) = 8(x — vt), where we set xo = 0
and tp = 0. To compute the characteristic function P(k,t) =
ffooo dxexp(ikx)P(x,t) of P(x,t)=P(x,t;x0 =0, =0)
for the first resetting picture (5) and for the last resetting
picture (B2) in the presence of a ballistic propagation, we use
Eq. (5) with G(x, t;y, ) = 8§(x —y — v(t — 7)). The Laplace
transform P(k, s) = fooo dt exp(—st)ﬁ(k, t) of the character-
istic function P(k, t) then reads

P(x,t) = U(t)s(x — vt) +/ dny (1) [oo dy8(y — vt1)
0 —00

o0
X/ dx1q(x; — y)P(x —x1,t — 1),

oo

from which we obtain the Fourier transform

P(k,t) = W(t)exp(ikvt)

+ / dtiyr (1) exp(ikvt)g(k)Pk, t — ). (10)
0
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Finally, after an additional Laplace transform
P(k,s) = U(s — ikv) + Y/ (s — ikv)g(k)P(k,s), (1)
we obtain the algebraic relation
. V(s — ikv)
1 — ¥ (s — ikv)g(k)

Equation (12) is similar to the Montroll-Weiss equation
[84] for continuous time random walk processes. Rewriting

Eq. (12) in terms of a geometric series, 5(k, s) becomes

Pk, ) (12)

Plk,s)=T(s — ikv) Y (s — ikv)g)l".  (13)

n=0

With the definition (3) we end up with the compact expression
Pk, s) =" ®,(s — ikv)q" (k). (14)
n=0

Note that, by definition ®,(¢) is the probability of exactly
n resetting events in [0, 7], and with fot Y1t — Y ()dt
[Yo(2) = 6(¢), ie., Po(r) = W(¢)], the Laplace transform of
@,(1) becomes ®,(s) = W(s)/"(s). With these relations we
can perform the inverse Laplace transform of P(k, s), yielding
the characteristic function P(k, 1),

o0
P(k,t) =" ®,(t) exp(ikvt)q" (k). (15)
n=0
An alternative approach to derive the characteristic func-
tion is to use its representation as a jump diffusion
process [82]

n(t)
x(t)=vt+ Yz (16)

j=1

where the stochastic variable n(t) is the number of resets in the
interval [0, ¢]. The characteristic function can be computed as

P(k,t) = (explikx(t)])

n(t)
= exp(ikvt)<l—[ eXP(iij)>

j=1

=Y ®,(t)exp(ikve) [ J(exp(ikz;)).  (17)
n=0

j=1

As n(t) in this expression is a stochastic variable, we need
to sum up the probabilities ®,(¢) of every possible value
of n € N. Furthermore, we use the properties of the z; to
be independent and identically distributed random variables,
along with the identity ®((¢) = W(¢). This leads us directly to
Eq. (19).

Define now ¢, (z) as the distribution of the total jump size
z after n independent and identically distributed jumps with
distribution ¢(z). The relation between ¢, (z) and ¢(z) is then

_ f,oooo dZgn1(z—2)q(), n>=1
Qn(Z) = {8(Z), "— 0,

and thus

(18)

Gu(k) = 4" (k). 19)

With g, (z) from Eq. (19) we take the inverse Fourier transform
of the characteristic function P(k, t) [Eq. (15)]. Thus, P(x,t)
takes the form

P(x,1) =) ®,(1)gu(x — vi)

n=0

= W)X — 1) + Y Py(t)galx — v1).  (20)

n=1

Calculation of moments

For the mean (x(¢)) and the variance Var{x(¢)} of the vari-
able x(¢) we compute the first and second derivatives of P(k, t)
(Eq. (15)],

Plhy=Y @n(t)exp(ikvt)qm(k)(ivt +
n=0

n(i'(k)>
qky )’

P'(k,t) =) ®,(t) exp(ikvt)g" (k)
n=0

Al 2
X |:(ivt + —n(;](l(c];)> +n

Let (z) = —i§’'(0) be the mean of the random independent
amplitude z with the corresponding distribution g(z). Then
with Eq. (21) the mean (x(¢)) of x(¢) is

4" (k)q(k) — [é/(k)]z}
[G(k)]? '
21

(x(t)) = —iP'(0,1) = Y @u()(wt + (). (22)

n=0

Now let Var{z} = [§'(0)]*> — 4"(0) be the variance of the ran-
dom independent amplitude z with distribution g(z). Thus, the
variance Var{x(¢)} of the position x(t) becomes

Var{x(1)} = [P'(0,)]* — P"(0,1)
=Y @, +n{z))” + n Var{z}] — (x(1))’.

n=0
(23)

B. Ballistic propagation with exponential resetting amplitudes

For the concrete choice of exponential resetting ampli-
tudes, defined by

_ Z
q(z) = ©(—2)¢ ' exp (E) (24)
the distribution ¢,(z) becomes

1 o . 1 "
qn(Z) = E [m dkeXp(—th)(W)

_\n—1
= —gfl(nZ)— i exp (?)@(—z).
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The density P(x, t) [Eq. (20)] is then realized in the form
_ )C)” 1

P(x,1) = W()8(x — vr) + Z ult )W

(=
xexp| ——

vt
)@(vt —Xx). (25)
The Fourier transform of g(z) is g(k) = 1/(1 + ik¢). With the
first and second derivatives of §(k),

d=—2_ gaw=—2_ o
(1 +ikg)*’ (1 +ikg)*’
we get the average and the variance of z,
(2) = =ig' (0) = -
Var(z) = [§'(O)F —§"(0) = —¢* +2¢% = ¢ (27)

The mean (x(¢)) [Eq. (22)] now becomes

(x(1)) = Z @, (1)(vt = nt) (28)

n=0
and the variance Var{x(¢)} [Eq. (23)] reads

Var{x(t)} = Y ®,(0)[(vt —n¢)* +n’]

n=0

00 2
- (Z @, (1) (vt — nq)) : 29)

n=0
Ballistic propagation with exponential resetting
amplitude and Poissonian resetting times

As a specific example we consider the combination of
an exponential resetting amplitude PDF (24) of width ¢ and
Poissonian resetting times with the distribution

Y (t) = rexp(—rt). 30)

This implies the distributions

- 1—Y(s) 1
P(s) = papt V(s) = s T+ (3D
and from this expression we find the Laplace transform
- r n+1
0= b0 = ()" 6
After Laplace inversion,
(re)"
D,(t) = p exp(—rt). (33)

This yields the density P(x, t) [Eq. (25)] for this case,

2\ (rt)"(vt — x)" !

P(x, 1) = exp(—rt)8(x — vt) + Z
1

= ¢"nl(n — 1)!
X — vt —rtg
X exp <f>®(vt —X). (34)
With the representation
§ &2 /4)
ne) = va<n+1)' (35)

0.4 : ‘
t=1/r x 107" :
t = 2/7’ * “E\\
0.3 | _ 3 . w2l |
{;: t= 4/r
B2l t=5 1073 ]
15 20 25
| jrul
10 20 30

FIG. 3. Height profile PDF P(x,t) as a function of x for six
different ¢ for ballistic motion with Poissonian resetting times and
exponential resetting amplitudes. The probability of no reset until 7 is
represented by the vertical line at x = v¢; it is shown in log-lin scale
for different ¢ in the inset. Simulations results are shown by points
and the analytical results are shown by solid lines. The parameters
arev =0.5,r =0.125,and ¢ = 2.

of the modified Bessel function of the first kind we then obtain
our result

P(x,t) = e "8(x — vt) + exp[(x — vt — rt)/¢]

e, (2 7 ot — x) )o@ —x).  (36)
vt —x ¢

The mean (x(¢)) of x(¢) [Eq. (28)] is

oo

(x(t)) = Z

=0
= (v — Ot (37)

The mean position thus depends linearly on ¢ and increases
or decreases, depending on the sign of (v — r¢). The variance
Var{x(¢)} [Eq. (29)] has the form

exp(—rt)(vt —ng)

Var{x(t)} = Z (r )n exp(—rt)[(vt — ne)? +ng?
n=0
—(vt —rt)?
=2r1Z>. (38)

The variance is thus also proportional to #, but it is v indepen-
dent.

Figure 3 shows P(x,t) at different times: The maximum
value decreases and the PDF gradually shifts away from nega-
tive values. The possibility of no reset up to time ¢ is encoded
in the finite value at x = vt; the inset shows a discontinuity
of P(x,t) at x = vt and the exponential relation between the
probability of no reset and time ¢.

In Appendix C we derive the Fourier transform of the PDF
P(x,t) from the master equation formulation for the case of
ballistic propagation, Poissonian resetting times, and arbitrary
independent resetting amplitudes. The result (C4) then corre-
sponds to Eq. (15) with the choice (33) for &, ().
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C. Ballistic displacement with constant pace
and exponential resetting amplitudes

We now consider another variant of ballistic propagation,
namely, of a constant duration between successive resetting
events, which we refer to as constant pace. The distribution of
the resetting interval lengths is

1
1//(t)=3<t — —). 39
r
In Laplace space this implies the distributions
. s - 1 —exp(—s/r)
bo =exp(-2), Fo)=—"02 @)
r s
and consequently
&, (s) = exp(—ns/r) — exp[—(n + l)s/r]7 @1

N

After Laplace inversion,

(I>,,(t)=®(t—§>—®<t—n+l>. (42)

r

Thus, the density P(x, t) [Eq. (25)] is given by

P(x,t) = |:®(t) — @(t — %)]S(x —ut)
> (vt — x)+! X — vt
+®(vt—x)zgn(n_l)! exp( c )

x[@(t—%)—@(t—"jlﬂ. (43)

The mean (x(¢)) of x(¢t) [Eq. (28)] becomes

(x(t)) = i[@(r - ;) — @(r — ”Jrr 1)]

n=0
X (vt —ng)
=t —{lrt], 44)

where we introduce the floor function |x] = max{l € Z|l <
x}. The variance Var{x(¢)} [Eq. (29)] reads

nd n n+1
Var{x(t)}=§2nz:;[®(t—;>—®(t— ; >:|n

= 2 |rt]. 45)

In the long time limit the results (44) and (45) coincide with
the corresponding mean and variance in the Poissonian reset-
ting time scenario [Eqs. (37) and (38)].

In Fig. 4 the mean position and variance are shown for two
different examples of ballistic propagation and exponential
resetting amplitudes, demonstrating the linear growth of the
mean height. In this example we see that the constant pace
scenario has the same mean as the Poissonian resetting model
but half the variance, as can also be seen from a comparison
of Egs. (38) and (45).

Let us compare the difference between the cases of
constant pace and Poissonian resetting intervals in more de-
tail. Figure 5 illustrates the PDF P(x,t) for constant pace

@ 30 ‘
constant pace  x
Poissonian resetting  x
20 | :
o
8 /
T s B
0 |
0 50 100
t
(®) 100

T
constant pace  x
Poissonian resetting  *

Var{z (t)}

0 50 100

FIG. 4. (a) Mean and (b) variance of the height x as a func-
tion for ¢ for exponential resetting amplitudes and ballistic motion,
with Poissonian and constant pace resetting times. Points represent
simulations results and solid lines are the analytical results. The
parameters are v = 0.5, r = 0.125, and ¢ = 2.

[Fig. 5(a)] and Poissonian resetting [Fig. 5(b)] at different
times. For the chosen values the maximum of the PDF in-
creases with time, and the standard deviation of the PDF
increases in both panels. In the case of constant pace resetting,
we show the distribution immediately after resetting in Fig. 5.
For Poissonian resetting the possibility that no reset occurs
up to time ¢ is encoded in the finite value at x = v¢. Its value
is detailed in the inset, showing a discontinuity of P(x, t) at
x = vt and the exponential relation between the probability of
no reset and time ¢.

Figure 6 shows the behavior of the mean [Fig. 6(a)] and
variance [Fig. 6(b)] of x(#). For constant pace resetting the
average (x(¢)) increases linearly in time between successive
resetting events; however, the variance of x(¢) does not change
in this time span. The corresponding PDF moves linearly in
time, but does not change its shape during these time spans.
The shape of the distribution only changes at the resetting
events. As it can be seen in Fig. 6, the variance Var{x(¢)}
only increases at these times. For Poissonian resetting the
mean position depends linearly on ¢ and increases or de-
creases, depending on the sign of (v — r¢). Both possibilities
are shown in Fig. 6. Moreover, in the presence of constant
pace resetting, we can see that (x(z)) increases faster than
for Poissonian resetting during the resetting interval lengths.
However, for the same choice of parameters the mean for
constant pace resetting coincides with the Poissonian resetting
at the resetting events. For Poissonian resetting the relation
between Var{x(z)} and 7 is linear and increases faster, as for
constant pace resetting.
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FIG. 5. Height profile P(x, t) as a function of x for four different ¢, for ballistic motion with exponential resetting amplitudes and two
different resetting scenarios: (a) constant pace resetting and (b) Poissonian resetting. The probability of no reset until 7 is represented by the
vertical line at x = vt; it is shown in log-lin scale for different ¢ in the inset of (b). Points show the results of simulations and solid lines the

analytical results. The parameters are v = 0.5, r = 0.125,and ¢ = 2.

IV. DEPENDENT RESETTING PICTURE

In many realistic situations the height x(¢) cannot as-
sume negative values, e.g., when the deposits in a riverbed
shrink until they reach a solid bedrock, when the value of a
given stock becomes zero, or when a population goes extinct.
Random-amplitude resetting processes with strictly positive x
in our framework are described by dependent resetting ampli-
tudes, the main feature introduced in this work.

For such dependent resetting amplitudes we use the rela-
tion between consecutive resetting points

x(tn+1 ) = [y(tn-‘rl )|x(tn)]cn+l s (46)
x(ty) = xo,

where the ¢, € [0, 1) are independent and identically dis-
tributed random variables of the running index n. For n = 0,
Eq. (46) yields

x(t1) = [y(t)|xolcr.
With Eq. (47), ¢1(x1, t1; X0, tp) becomes

(47)

©dy X1
o1 (x1, ti; X0, o) = 7G(y, 113 X0, to) fc 5 ) (48)
0

In Eq. (48) we only allow movement for positive heights 0 <
y < oo. Due to our requirement that the height x(¢) cannot

(a) 25 T T T T
constant pace, v = 0.5, { =2 X
Poissonian resetting, v =0.5,{ =2 =
constant pace, v = 0.15, { = 1.8 *
15 | Poissonian resetting, v = 0.15,¢ = 1.8 ]

assume negative values, we impose the additional condition
that fc(c,) = 0 for ¢, < 0 and ¢, > 1 such that we only have
to consider the range 0 < ¢; = x;/y < 1, in which fc(cy) #
0. Thus we have the inequality 0 < x;/y < 1, or

0<x <y. (49)
For dependent resetting amplitudes we get the first reset-
ting picture of the process if we substitute ¢;(xy, #1; X0, o)
[Eqg. (48)] into Eq. (5) and consider the range of x; for which
fc(x1/y) # 0 [compare Eq. (49)]. Thus, we get

P(x,t;x0, o) = W — 10)G(x, t;x0, Io)

t o0 dy
+/ diny (i —to)/ Z600 130,10
0

fo

x / Cdnfela PG Gx ). (50)
0

The key difference from Eq. (9) is that the y integration is
restricted to y € [0, c0) and that the resetting length PDF
q(x; —y) is replaced by the scaling function y~!fr(x;/y),
which in turn is part of the product distribution (48). We
derive the last resetting picture corresponding to the first

resetting picture (50) in Appendix D. We note that when
the PDF G is homogenous in space and time, the PDF P is

(b) 70 T T T T
constant pace, v = 0.5, { =2 X
Poissonian resetting, v =0.5,{ =2 =
constant pace, v = 0.15,{ = 1.8 *
~~ 50 |~ Poissonian resetting, v = 0. 5, (=18 o m
= ; ; ]
8 ; :
"~ : H
B i
j I
10 | Ft _— i
| i i i
0 10 20 30 40 50

FIG. 6. (a) Mean and (b) variance of the height x as a function of time 7 for exponential resetting amplitudes and ballistic motion, with
Poissonian and constant pace resetting. Points represent simulations and solid lines the analytical results. For all realizations, r = 0.125.
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still homogeneous in time but the spatial homogeneity is lost
(Appendix D).

A. Reduction to classical stochastic resetting

Before proceeding with our analysis we stop to prove that
our RASR process with dependent resetting amplitudes is

J

In the first resetting picture we have in our framework

1

a generalization of classical SR. In fact, we can prove this
equivalence for both the first resetting picture and the last re-
setting picture if we set fc(c,) = §(c,,) and use the Poissonian
resetting ¥ (t) = rexp(—rt) along with the initial position
xo = 0. With this deterministic resetting mechanism we can
verify the results of [38] for the first renewal picture and [25]
for the last renewal picture of SR.

o 4 y
P(x, 10, 0) = exp(—r1)G(x, 1:0, 0)+/ dtlrexp(—rtl)/ Y6, 1:0, 0)/ dx15<’ﬂ)P(x,z;x1,tl)
0 o Y 0 y

t

00 1
= exp(—rt)G(x, t;0, 0)+r/ dn exp(—rtl)/ dyG(y, t;0, 0)/ dci16(c1)P(x,t;c1y, 1),
0 0 0

in which ¢; = x;/y. This implies that

t [oe)
P(x,1;0,0) = exp(—rt)G(x,1;0,0) + r/ dt exp(—rtl)/ dyG(y,11;0,0)P(x,t;0,1)
0 0

t
= exp(—rt)G(x,t;0,0) + r/ dt) exp(—rt))P(x,1;0, 1), (629
0

and therefore proves the equivalence to [38] with xo = 0. Conversely, in the last resetting picture we have [cf. Eq. (D11)]

o t 1 [eS] n—1 g
P(x,1;0,0) = exp(—rt)G(x, £;0,0) + Y | / dt, / dey / dy, (]‘[ / dtn_irexp[—r(rn+1_,~—rn_,-)]>
n=1"0 0 0 i=1 70
n—1 00 1
X l_[/ Ay, _iGVni1—is Tnti—is Cn—iVp_is Tn—i)/ dcp—i6(Cry1-i)
i=1 Y0 0

x 8(c)rexp(—rt)G(yy, 1150, 0) exp[—r(t — 1,)1G(x, 15 ¢y, Tr)

n—1

o t
= exp(—rt)G(x, t;0, O)—i—Zr”/ dr,,(
n=1 0 =

l_[/ drn—i) eXP[_"(Tn - 7:n—l)] exp[_r(fn—l - Tn—Z)] et
i=1 0

x exp[—r(r3 — 1)l exp[—r(z2 — )] exp(—rt) exp[—r(t — ,)]G(x,1;0, 7,)

t 0 (I"L’)nil
= exp(—rt)G(x,t;0,0) + r/ drt Z m exp(—rt)G(x, t;0, 1), (52)
0 — n— !
with T = 1,,. This demonstrates that
t
P(x,1;0,0) = exp(—rt)G(x,1;0,0) + r/ drexp[—r( — 1)]G(x,1;0, T) (53)
0

and completes our proof of equivalence with the formulation in [25] for xp = 0.

B. Ballistic propagation with dependent resetting amplitude

For the spatial Laplace transform P(u,t;xy) = fooo dxexp(—ux)P(x,t;x9) of the one-sided density P(x,t;x9) =
P(x, t;x0, % = 0) in the first resetting picture (50) and in the last resetting picture (D2) for the case of ballistic propagation,
we use Eq. (D2) with G(x, t;y, ) = 6(x —y — v(t — 1)). Collecting terms, P(x, t; xo) reads

0 t 1 oo n—1 Tnt1—i
P(x,t;x0) = W()d(x — xo — vr) + Z/ drn/ dcn/ dm(ﬂ/ At Y (Tur1-i — Ti)
n=1"0 0 0 i=1 70

o) 1
X / AYn—i6Vns1—i — CniYn—i — V(Tug1-i — fn—i))/ dcn—ifC(Cn-H—i)>
0 0

X feley (T8 (y1 — xo — vT) W — )8 (x — Cuyn — v — ), (54)
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and after the spatial Laplace transform we find

x t 1 n—1 Tnt1—i 1
Pl i) = WO expl-ut + vl + Y [ e, dc,,(]"[ [ - | dcn,-fc(cmi))
n=1"0 0 i—=1 Y0 0

x fele)yr ()W —)exp | —ulxo [ [ej + vt —m)+v ) (1 =10 [Je | |- (55)

j=0 j=1 k=j

in which ¢y = 1 and 7y = 0. Performing a Laplace transform in time (with the corresponding Laplace variable s), in addition,
our general result for the PDF reads

f:’(u S3Xg) = Z U(s+ uv)|:1_[/ degfe(e)yr <s + uv Hc,>i| exp (—uxo 1_[ c,) (56)

j=0
To compute the mean
(x(®)lxo) = —P'(0, 1;x0) (57)
and variance
Var{x(t)|xo} = P"(0,¢;x9) — P'(0, t;x0), (58)

we use the first and second derivatives of P(u, t;xg) [Eq. (55)] with respect to u and set u = 0. It is easier to work with the
Laplace transform (56) in time. General formulas for the first and second derivatives of Eq. (56) with respect to the Laplace
variable u are presented in Appendix E. They will be used in Secs. IV C and IV D below.

C. Ballistic displacement with arbitrary resetting times and uniform dependent resetting amplitudes

We now turn to the ballistic displacement process with arbitrary resetting intervals but the specific choice of uniform
dependent resetting amplitudes. This choice allows us to specify (E2) and (E4) when we include fc(c) = 1. Thus, for the

first and second moments of ¢ we get (c) = % and (¢?) = %, respectively. The first derivative P’ (u, t; xo) becomes

P'(0, 53%0) = ; {U[W(S)‘I”(S) + 1ﬁ"_l(b“)lﬁ/(S)‘I’(S)<1 - %)} - 0(‘//5»?)) ‘I’(S)}- (59
The second derivative P (u, t; xp) reads
f,//o . _oo 2| .7n ¥ 1‘“n—l 7 (s U 1 1 2 7n—1 ¥ 1
( ,S,XO)—nzzgv [lﬁ () (S)+§¢ Y (s) (S)( —3—n> + 29" ()P (5) (S)( 2,1)}

+ ; [vsz(s)]ﬁ’z(s)&”(s)( + 33 — 21) +x0<¢§ )> lIJ(s)]
- w< ) - 11

- Z%XO ‘1’ () + 29" ()P ()T (s) 7 3 (60)
n=0

For constant pace resetting times, we have a periodic reset with () = §(+ — 1/r) corresponding to the expressions (40).
Thus, the resetting amplitude is the only stochastic variable in this process. After some algebra and Laplace inversion we find

oo
PO.x)==3 dD,,(t)|:v(t -2+ §<1 - 21) - ’22] (61)
in which ®,(t) = O(t — n/r) — ©(t — (n+ 1)/r). The mean (x(¢)|xo) [Eq. (57)] is then realized in the form
) 1 /v v
(x(1)lxo) = xo + v + 2:1: [2—(7 — xo) - ;], (62)
with the asymptotic properties
lim sup (1) xo) = 2%, lim inf (x() o) = ; (63)

Thus, in the long time limit the oscillating mean (x(#)|xg) is restricted by the two bounds (63).
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Similarly, we compute the second derivative of the PDF,
o0
_ n\2 202 n 1 v? 5 8 2vxy n
P"(0,t; =E D,(t 2t——> —(t—=)1-= — 3+ —=———=] - t——
( X0) e a( )|:U ( , + r ( r)( 2n> + 2r2< + 3n 2n) on ( r>:|
> 4uxg (1 1 xS
O, ) — | = — = — |, 64
+Z; ({ r<21 3n)+3n (64)
in which ®,(t) = O(t — n/r) — ©(t — (n + 1)/r). The variance (58) finally reads

Lrt]
3002\ xu/4 3 1\ 126 4 10 1 /0y2
_ 2f 2 4 el i 2, 1—>oo & (Y
Var{x(t)|x°}_z[x°(4n 3">+2r<3” 4 2”)+2(r) <4n+2n 3)] 2<r)' (63)

n=1

D. Ballistic propagation and Poissonian resetting times

We now consider Poissonian resetting intervals with rate r, ¥ (t) = r exp(—rt). Such exponential distributions are in fact used
in several SR studies, including [24,39,40,51]. For the resetting amplitudes we first derive a general solution and then consider
specific examples.

We start from Eqs. (E2) and (E4) and use the resetting time distributions with their Laplace transforms 1/7(s) =r/(r+s)and
U(s) = 1/(r + ). Evaluating the geometric series, we obtain the derivatives of the PDF. After Laplace inversion, these read

P(0,1;x) = ;{GXP[—”(I — ()] — 1} = xg exp[—rt(1 — (c))], (66)
r(1—{c))
_, _ _ 2v? exp[—rt(1 — (c*))]  exp[—rt(1 — (c))]
P@%W—am—mK =@ - )
+ 2 +xZexpl—rt(1 — ()]
21— (N — () | TP
+ 2x—ov{ex [—rt(1 — ()] — exp[—rt(1 — ()]} (67)
ey —(@n P P ‘
‘We then derive the mean and variance
(x(®)|x0) = ;{1 —exp[—rt(1 — (c))]} + xpexp[—rt(1 — (c))], (68)

r(l —=(c))

_ 2vzexp(—rt) exp(rt(c2)) exp(rt{c))
Wm”m‘ﬂwwwm<14ﬂ _14w)

202 1 exp[—rt(1 — (c))] v {1 4+ exp[—2rt(1 — (c))]}
+ﬂa—¢»@—w% () )_ 21— ()
2xov exp(—rt) (exp(rt(c)) —exp(rt(c?))  exp[—rt(l —2(c))] — exp(rt(c)))
+
r (c) — (c?) 1 —{c)
+ x3{expl—rt (1 — (¢*))] — exp[—2rt(1 — ()0}, (69)

with the initial condition x(0) = x.
For uniformly distributed resetting amplitudes with (c¢) = % and (¢?) = % we then find the specific expressions

rt v rt t—>o00 U
(x(1)]x0) = xo exp (——) + 2—[1 —exp (--)] i Yl (70)
2 r 2 r
and the variance
) 2rt VX rt 2rt
Var{x(t)|xo} = x5| exp | ——— | —exp(—rt) | + — | 4exp(—rt) + 8exp (——) — 12exp| ——
3 r 2 3
+(v)2 2~ 16ex (—”) F18exp (=2 = dexplern) | =3 2(”)2 1)
r P 2 P 3 P r/
Moreover, for the case of a deterministic reset to the initial height, (¢) = 0 and (c?) = 0, we arrive at
v
(x@)lxo = 0) = ;[1 — exp(—r1)], (72)

v2  2v%texp(—rt)  v?exp(—2rt)

Var{x(t)|xo = 0} = )

(73)

r r2
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FIG. 7. (a) Mean and (b) variance of the height profile for de-
pendent stochastic resetting with Poissonian [r = 0.125, Egs. (72)
and (73)] and constant pace [Eqgs. (62) and (65)] resetting times for
a uniform resetting amplitude and two different initial heights xo,
in comparison with classical resetting (SR). We plot both quantities
according to the normalization in Egs. (74) and (75). The propagating
process is ballistic (v = 0.5) in all cases. Numerical results are shown
by points and the analytical results by solid lines.

For Poissonian resetting times both the mean and variance
become independent of the initial height in the long time limit.
The functional behavior of both quantities for Poissonian and
constant pace resetting times are shown in Fig. 7, in which we
use the normalized expressions

{x(®)[x0)

(x(D)lxo) = limsup(—x(t)|x0)’ (74)
Varle O] = ——artx(®)lxo) (75)

lim Var{x(t)|xo}
—00

In this asymptotic limit the normalized mean converges to
unity for Poissonian resetting. In contrast, with constant pace
resetting times the oscillating quantity (x(#)|xo) is limited
from above by unity. Based on the definition (74) of the
normalized mean, the two different convergence behaviors are
compared in Fig. 7(a). The normalized variance in Eq. (75)
has the same limiting value for both Poissonian and constant
pace resetting [see Fig. 7(b)].

E. Derivation of the probability density P(x, ¢) for Poissonian
resetting, ballistic propagation, and dependent
resetting amplitudes

To derive a differential equation for the PDF P(x, ¢; xo; fo)
we use the fact that the process is homogeneous in
time and derive the master equation for P(x,;xp), for
which (x(r + At)|xp) = c(x(¢)|xp) with probability rAt and

(x(t + At)|xp) = x(t)|x0) + vAr with probability 1 — rAt,

IP(x,t;x0) OP(x,t;x0)
_— = —_— ) —
ot 0x

© dy X
+ r/ —P(y, l;Xo)fc<—>, (76)
o Y y

vyith P(x,0;x9) = 8(x — xo9). For the Laplace transform
P(u, t;x9) of P(x, t;x9) with respect to x this yields

—I’P(X,t;xo)

0P(u,t; _ _
% = —uvP(u,t;xy) — rP(u, t;xp)

1
+r / de Pluc. t:x0)fe(o). (T7)
0
with P(u, 0; x0) = exp(—uxp).

1. Comparison with classical stochastic resetting

If we assume a standard SR to the initial condition xg
we have fc(c) = §(c). Moreover, the relation of the corre-
sponding random variable and thus the partial differential is
slightly different. Explicitly, (x(¢# + At)|xo) = c(x(t)|x0) + xo
with probability rAt and (x(r + Af)|xo) = (x(t)]xo) + vAt
with probability 1 — rAt; thus

P (x,t;x9) OP(x, t;x0)
il | ———

—rP(x,t;
” o rP(x, t;x0)
Py, t; -
_H/ (y XO)(S(X xO)dy
0 y y
0P(x,t;
_ (x, £;x0) (78)
ot
OP(x, t;x0)
= —va— —rP(x, t;x0) + ré6(x — xp),
X

where P(x, 0;x9) = §(x — xo) and we used the condition that
P(x, t;x0) is normalized and the scaling property of the delta
function, §(ax) = §(x)/|a| for a € R. Finally, in the case
of SR with an arbitrary initial distribution ¢(x) the dis-
tribution of x at time ¢ can be computed from p(x,?) =
1o~ o(xo)P(x, t;x0)dx and we get

ap(x,t) ap(x, 1)
=—v
ot ox

—rp(x,t) 4+ rgo(x), (79)

with p(x, 0) = ¢o(x). Equation (78) is homogeneous in space
and confirms the results of Ref. [24] for ballistic displacement
instead of a diffusive displacement.

2. Stationary distribution for ballistic displacement, uniform
dependent resetting amplitude, and Poissonian resetting

We get the stationary solution of Eq. (77)
for fc(c)=1 with P*(x) =Ilim,_ P(x,1;x9) for
lim;_, o dP(x,t;x9)/0t = 0. Thus, for the spatial Laplace
transform P*(u) becomes

I
0 = —uvP*(u) — rP*(u) + r/ P*(uc)dc < u(uv + r)P*(u)
0

. / "B, (80)
0
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with ¢’ = uc. If we now differentiate Eq. (80) with respect to
u and use the normalization condition P*(0) = 1, we get

Quv + r)P*(u) + u(uv + r)P* (1) = rP*(u), (81)

implying P* (1) = 2v_ p* () and P*(0) = 1. The solution is

Equation (82) solves Eq. (80), which proves our claim. Thus,
the stationary solution P*(x) is the inverse Laplace transform
of P*(u) [Eq. (82)],
" . r\2 rx
P*(x) = lim P(x, t;x9) = <—) X exp (——) (83)
t—o00 v v

3. Proof of equality between the partial differential equation (77)

given by S and integral representation (56)
If we let ﬁ(u, s) denote the Laplace transform of P(u, t),
2 we can obtain the form for Poissonian resetting in double
Pr(y) = ———. 82 Laplace space,
W= (82)  Laplace sp
|
Pusi) = PP L de Plue, s:x0)fele) (34)
u, $;xp) = c P(uc, s; x c),
0 r+s+uv  r—+s—+uvjg 0¢
with the iterative approximations
exp(—uxo) N
_ eroth approximation),
r+s+uv (2 Pprox )
exp(—uxo) N r /" J exp(—uxoc)f © (first imation)
c c rst approximation),
r—+s—+uv r+s—+uv r+s—|—uvcc PP
exp(—uxp) r b exp(—uxocy)
+ / dey————— fe(er)
r+s+uv r+s+uv r+s 4+ uvey
1 1 —
+; / dec, M / de exp(—uxoci1c2) fe(e2) (second approximation),
r+s—+uv Jy r+ s+ uvey r+s+uveic;

exp(—uxp)

rfe(cj)

r—+s-+uv

+r+s~|—uvm 1(1_[/

such that we find

exp(—uxp)

I3 ,8:X0) =
(u 0) r+s+uv

r+s+uv]_[l | Ci

(1

) exp (—xo H c j) (nth approximation)
j=1

rfc(c;) exp [ —xo l_[ ci |, (85)
r+s+uv]_[, | Ci e

which is equal to Eq. (56) for Poissonian resetting, and thus proves our claim.

F. Graphical illustration for dependent resetting

We finally illustrate the difference between ballistic propa-
gation with Poissonian and constant pace resetting for uniform
dependent resetting amplitude. To this end we compare the
corresponding PDFs at different times and show the behavior
of the mean and variance of (x(z)|xg).

Figure 8 shows the position PDF for ballistic displace-
ment, the uniformly distributed resetting amplitude, and two
different distributions of resetting interval lengths. For each
process the impact of different initial values xy is shown.
It is obvious that the influence of initial values eventually
disappears, as can be seen in Figs. 8(a) and 8(b). In Figs. 8(a)
and 8(c) constant pace resetting is used. When the impact
of the initial value disappears [Fig. 8(c)] the PDF of x has
a uniform part for small values of x. However, the uniform
character disappears from a certain value of x and decreases in
the tail. The distribution does not change its shape; however,
the PDF of x fulfills a periodic movement. This motion of the
distribution P(x, t;xy) is divided in a linear shift in time and
a shift in the opposite direction as a point process in time. In
Figs. 8(b) and 8(d) Poissonian resetting is used. The height of

(

the probability of no resets is independent of the value of x.
This probability is mapped at x = vt 4 x¢ and decreasing in
time. For longer ¢ [Fig. 8(d)] it can be seen that the process is
stationary.

In Fig. 9 we can see the temporal behavior of the mean
and variance of (x(¢)|xg). We show the results for the bal-
listic displacement process, which is interrupted by uniform
dependent resetting events for two different distributions of
resetting interval lengths. All analytical results are numeri-
cally verified (see Fig. 9). The vanishing impact of different
initial values x( for the average and variance of (x(¢)|xy) with
t can be seen in both panels. The average (x(¢)|xo) [Fig. 9(a)]
increases linearly with 7 during the constant resetting interval
lengths and decreases at the resetting points. After some time
the average of (x(#)|xp) is confined to a certain range and
has a periodic switch between a linear increase and decrease
as a point process in time. The corresponding Var{x(#)|xo}
[Fig. 9(b)] stays the same during the resetting interval lengths
and increases discontinuously at the resetting points, a jump in
the figure. For longer ¢ the variance Var{x(¢)|xy} converges to
a finite limit. In Fig. 9(b) the convergence of the average and
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FIG. 8. PDF P(x, t;x,) of the height profile for different initial heights and ballistic motion with uniform resetting: (a) and (c) constant
pace resetting and (b) and (d) Poissonian resetting, compared to the classical resetting scenario with enforced resets to the origin, for (a) and
(b)t = 1/r and (c) ad (d) = 10/r. Numerical results are shown by points and analytical results by solid lines. The parameters are v = 0.5

and r = 0.125.

variance of (x()|xp) in the presence of Poissonian resetting is
obvious. Thus, this process is stationary.

Figure 10 shows the PDF for ballistic propagation with
Poissonian resetting times for classical resetting to the origin
and uniform resetting amplitudes, for two different initial
heights xy. At early times of the process [Fig. 10(a)] the
difference due to the initial height is distinct, while in the long
time limit [Fig. 10(b)] the PDFs for the two uniform resetting
cases coincide. The difference from the classical resetting case
with enforced resetting to the origin clearly results in a lower
height profile.

(a) 10
s
=
oy
E 5
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~ 1 L e
constant pace, zg = 0 X
constant pace, g = 4 *
Poissonian resetting, zo =0 ®
Poissonian resetting, xo = 4
SR, xrog = 0
0 E |
0 50 100

t

V. CONCLUSION

We introduced a generalized resetting concept with random
resetting amplitudes in two different scenarios: independent
resetting, in which the height profile may become negative,
depending on the specific resetting amplitude PDF and the
propagating process, and dependent resetting, in which the
positivity of the height profile is guaranteed by the definition
of the resetting amplitude PDF. We derived an explicit ana-
lytical formulation of the process and analyzed specifically
ballistic propagation in the presence of Poissonian resetting
times and different resetting amplitude PDFs. We also demon-
strated that the classical resetting theory with mandatory

40
s f
S B0
=
R
=
=

10 |-

0

0 50 100

FIG. 9. (a) Mean (x(¢)|xo) and (b) variance Var{x(¢)|xo} of the height profile for dependent stochastic resetting with Poissonian and constant
pace resetting times for uniform resetting amplitude and two different initial heights x, in comparison with classical resetting. The propagating
process is ballistic (v = 0.5) in all cases. For both types of resetting the resetting rate is » = 0.125. Numerical results are shown by points and

the analytical results by lines.
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FIG. 10. PDF P(x, t;xy) of the height profile for different initial
heights and uniform resetting amplitude, compared to the classical
resetting scenario with enforced resets to the origin, for ballistic
propagation (v = 0.5) and Poissonian resetting times (r = 0.125)
(a)t = 1/r and (b) t = 10/r. Numerical results are shown by points
and analytical results by lines.

resets to the origin is contained in our model in the dependent
case, whereas the independent scenario is a specific case of
jump diffusion [82] with one-sided jump lengths.

Physically, the RASR process introduced here corresponds
to the scenario of a propagating stochastic or deterministic
process that is interrupted by random resets. This may cor-
respond to the geophysical stratigraphic scenario, in which
the propagation mimics the gradual buildup or decay of a
sedimentation profile, whereas the resets represent sudden
erosion events. The latter could be seasonal (constant pace)
or random-in-time weather events such as extreme floods.

J

In fact, our model is similar (albeit more flexible) to that
proposed in [85], where constant rates of accumulation were
considered the null hypothesis and the effect of random ero-
sion periods on bed hiatus length distributions were explored.
We also note similar strategies developed for ecohydrology
applications [86] and the general development of a class of
jump processes [83]. In a different context we could think
of population dynamics interrupted by epidemics, pathogens
(e.g., embodied by bacterial biofilms) decimated by antibi-
otic treatment (here both periodic and random application
protocols are being employed in clinical studies), or crises-
interrupted financial markets. All these processes correspond
to the intermittent picture of a parent process (the propagation)
with superimposed resetting statistic.

The qualitative difference between independent and depen-
dent resetting is that the latter case becomes stationary for
ballistic propagation and Poissonian resetting times, whereas
the former remains nonstationary. The fact that our basic
model can be recast in these two variants underlines the flexi-
bility embedded in this simple extension of classical resetting
(SR). Another appeal is the relatively straightforward, fully
analytical description, with the caveat that not all resulting
expressions can be expressed fully explicitly. Having said this,
we believe that our results represent an attractive extension of
the resetting process. Apart from the above physical scenar-
ios, the described flexibility of our extension of the resetting
dynamics will be of interest in the mathematical theory of
random search processes.
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APPENDIX A: MATHEMATICAL IDENTITY BETWEEN THE FIRST AND LAST RESETTING PICTURES

In this Appendix we prove the formal mathematical identity that will be used in Appendix B below to demonstrate the

equivalence of the first and the last resetting pictures,

n t Ay Ay
1_[ </ dt_,‘/ dy_,-/ denl(tj,tj—lay_/ﬁ)’j—l,Zj,Zj—l)>772(xat,tna}’n,Zn)
et M A As

t—ty As Ay n—l g Ay
= / d, / dyn / dz, 1_[ / dt,; / dyn—i
0 Al A 170 Al A

xn1(T1 +to, to, Y1, Yo, 21, 20)02(X, t, Ty + to, Yn, Zn)

Ay
/ Azu—in (Tug1—i + 10, Tnei + 10, Yt 1—is Yn—is Tntl—is Zn—i))
3

n =ty Ay Ay
& H(/ drj/ dyj/ dzini(tj + 1y, Tj—1 +t(),yjsyj—l,Zj»Zj—l))UZ(xvt’Tn+t0syn,zn)
j:1 Tj-1 A] A3
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t—foy Tnt1—i Az Ay
=/ dfn/ dyn/ dz, / dfn—i/ dyn—i/ Az i (Tug1—i + 1o, Tuei + 105 Ynp1—is Yn—i> Zntl—is Zn—i)
0 A Az A Az

xn1(t1 + 1o, to, Y1, Yo, 21, Zo)'?z(xy t, Ty + 10, Yns Zn); (AD)

with 7; = t; — #o for 0 < j < n. To prove Eq. (A1) we use the method of induction. For n = 1, Eq. (A1) is obviously fulfilled,
13 Az A4
/ dn/ d}’l/ dzini(t1 + 1o, 1o, Y1, Yo, 21, 20)1M2(X, £, T1 + o, Y1, 21)
0 A Az

t—to A Ay
:/ dl’l/ dy1/ dzym (t1 + to, 1o, Y1, Yo, 21, 20)N2(x, £, T1 +to, y1, 21)- (A2)
0 A Aj

Next we take the inductive stepn = n + 1,

n+1 Ay Aq
l_[ ( de/ dyj/ dzjni(tj + 10, Tj—1 +10, Y}, Yj—1,Zjs Zj-l))ﬂz(X, t, Tugl + 105 Yas1s Zns1)
Ay Az

—foy Ay Ay
Z/ drn+l/ dyn+l/ dzn+l771(fn+l +t07 Tn+t0’ Yn+15 Yn, Zn+lazn)
Tn

n 1— Ay
XH(/ / dy]/ dZﬂ']](T] +t0,1'/ l+l‘0,y,,y; 1,Zj,Zj— 1))772(~Xt 7:n-H_'_Z‘O’yn-f-l’Zn-H)
j=1 N A

i.e.,

—ty 1—1Iy Az A4
f drn/ dfn-&-]/ dynf dZn
0 T Ay Az
n—lag Aq
X<l_[/0 dtnfi/ dyn— z/A Az im (Tpg1-i + to, Ta—i +t0ayn+lisyniazn+1i7Zni))
i=1 3

A Ay
X / dyni1 / Az 101 (Tug 1 + 10, Tn + 10, Va1 Yoo Zut 1> 20N (T1 + fo, 0, Y1, Yo, 21, 20)102(X, £, Ty + 10, Y, Zn)
Ay

Tn+1 Ay
= / dTn-H / f dyn / dZn
Ay Az

Tn42—i Ay
X(l |/ dTn+17i/ dy,i1- 1/ Az 1-in1 (Tuga—i +to, Tn+1i+t07yn+2isyn+1i»Zn+2inn+li)>
0 A A
i=2 1

3

A As
X / dynt1 / Az 11 (Tt + 10, Tn + 10, Yuir 1 Yas Zut 1> 20N (T1 + fo, 0, Y1, Yo, 21, 20)12(X, £, Ty + 10, Y, Zn)
A As

=1y As Ag
=/ dTn+1/ dyn+1/ dzu+ (A3)
0 A Az

n Tnt2—i Ay Ay
x l_[/ dTn+17i/ dyn+17i/ AZpp1-iM1 (Tn2—i F 10, Tnpi—i 105 Ynt2—is Ynt1—is Zn2—is Tnt1—i)
. 0 Ay A

3

xn1(T1 + to, to, Y1, Y0, 215 20)02(X, t, Ty + 1o, Yus Zn)- (A4)

This proves our claim.

APPENDIX B: DERIVATION OF THE LAST RESETTING PICTURE FOR INDEPENDENT RESETTING AMPLITUDES

In this Appendix we aim to show the equivalence of the description in the first resetting picture,

t o0 o0
P(x, t;x0, t0) = W(t — 1))G(x, t; X0, to) +/ dnyr(h —fo)/ dy G(y, ll;xo,fo)/ dxig(x; —y)P(x,t;x1,t1)  (B1)
—00 —00

fo
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and the last resetting picture that includes all resetting steps,

P(x, t;x0, 1)

S t—1ty 00 0
=06 -G+ Y [ dn [ an [ a,
n=1 0 —00 —00

n— Tn1—i 00 00
X <1_[/ dtn—il//(fn+l—i - Tn—i)/ dYn—iG(yn-H—i, Tnt1—i + 105 Xn—is Tn—i + tO)/ dxn—iq(-xn-H—i - YrH-l—i))
i=1 Y0 —00 —00

xqxr —yD¥(t1)GO1, 11 + to; Xo, 1)V — to — T)G(X, 15X, Tu + o). (B2)
To this end we write Eq. (B2) as
P(x,t;x', 1) = Wt —t")G(x, t;x', 1)
+ Z (H f dtjy(t; — ;1) / dy;G(yj, tjsxj 1,151 / dxjq(x; — y,)) W(t — )G(x, 3%, 1) (B3)
n=1 fj-1

with o = ¢’ and xo = x’. The equivalence of Eqs. (B2) and (B3) will be proven below in this Appendix. Now we substitute
P(x, t;x0, to) and P(x, t;x, t1) in the first resetting picture, Eq. (B1) with Eq. (B3). The left-hand side (LHS) of Eq. (B1) after
this substitution becomes

LHS = P(x, t;x9, o) = W(t — t9)G(x, t; x0, 1)

+Z<H/t dejy(t; —tj- 1)/ dy;G(yj, tjsxj_1,t;— 1)/ dxjq(x; — yj)>\11(t )G, tx,, 1), (B4)

n=1

As P(x,t;x1, t1) in Eq. (B1) has the initial value x; at#;, these two variables have the lowest index 1 instead of 0, and thus instead
of Eq. (B4) one gets

P(x,t;x1, 1) = Wt — )G, t5x1, 1)

-i-Z(l_[/t~ ]dt W —tj 1)/ dy;iG(yj, tj;xj—1,tj— 1)/ dxjq(x; — y,))\ll(t—t,,)G(x t; Xy, ty). (BS)

Substituting (B5) into the right-hand side (RHS) of Eq. (B1) we get
RHS = W(r —19)G(x, t;x0, to)

/ iyt — 1) / dy Gy 1130, 1o) / dx1g(x1 — VW — )G, 1, 1)

n t 00 o
/dzl / dy / dny (1‘[ [ v = [ ay6ostnnn | dx_jq(x_,-—y»)
-2 ]:2 tj—1 —00 —00

Xy (ty —10)G(y, fl;xo,lo)CI(Xl — VW = 1,)G(x, 13X, 1)
= Wt —1))G(x, t; X9, tp)

t o0 o0
+/ dtiy (1 —fo)/ dY1G(y1,l1;x0,fo)/ dx1q(xy —yDW( — 1)G(x, t;x1, 1)

fo

+Z(H/; ldt W —t 1)/ dy;G(yj, tjxj—1,t;— 1)/ dxjq(x; — y,))\l—’(t t,)G(x, t;x,,1,), (B6)

with y; = y. Then
RHS = W(r —1))G(x, t;x9, to)
+Z<]‘[ f ity — 1;-1) / dy;G(yjs 173%j-1,1j-1) / dxjq(x; — y»)\v(r—tn)G(x 15X 1), (B7)
n=1 =

and thus RHS = LHS, which proves our claim. Thus, Eq. (B3) solves the first resetting picture of Eq. (B1) and Eq. (B3) describes
the RASR with independent resetting amplitudes. If we can show that Eq. (B3) and the last resetting picture of Eq. (B2) are equal,
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we demonstrate that both mathematical representations describe the same process. To this end, consider
LHS = P(x, t;x0, to) = W(t — 10)G(x, 13 X0, ty)

il

= \IJ(I‘ - tO)G(x’ t; Xo, tO)

0 n t—ty 00 00
+ Z l_[/ dtjy(rj — 1j-1) /_oo dyiG(yj, Tj + t05%j-1, Tj—1 + fo)/_oO dxjq(xj —y;)

n=1 \j=1"%-I

n t o0 o0
l—[/ dtjlﬂ(tj —tj_l)f dij(yj,tj;Xj_l,tj_l)/ dqu(xj _yj))“p(t _tn)G(xvt;xnatn)

j=1"1-1

XW(t — 7,)G(x, t; X, Ty + 1), (B8)

witht; =t; —fgfor1 < j < n.
If we now use Eq. (A1) with the substitution (B9), we obtain

M@, =1, ¥, Yj-1,%j, 2j—1) = ¥ (t; — tj—1)G;, tj3 2j—1, tji—1)q(Zj — ¥}),
Uz(X,f, tws Yn» Zn) = \Ij(t - tO)G(xyt;Zm tn)»
Zj =xj, tj =71+,

A, A3 = —00, Ay,Ay=00 (B9)

for 1 < j < n. We then find

o t—1y ] 00 =l g
LHS = 0 — )6t + 3 [ dn [ an [ an([] [ dnow s - 6o
n=1""0 — —0 i=1 70

n—1 .00 00
X (H/ AYn—iGYns1-is Tn1-i + 105 Xn—i> Tni + to)/ dXn—iq(Xnt1-i — }’n+1—i)>
i=1 v/~ -
xq(x1 —yD)Y (TG, T + o3 Xo, 10)W(E — 1o — Tw)G(x, 15X, Ty + 10), (B10)

which represents exactly the last resetting picture (B2), proving our claim.

If we assume a free propagator, which is homogeneous in space and time, the stochastic process with resetting itself will be
homogeneous in space and time, G(x, t; xg, tp) = G(x — xo,t — 1; 0, 0) = P(x, t;x0, to) = P(x — xo,t — 19; 0, 0). By assuming
G(x, t;x9, 1) = G(x — xo,t — 1y; 0, 0), the density P(x, f; xo, fo) [Eq. (B10)] then becomes

P(x,t;x0, 1)

o0 t—to o0 [e9)
= W(t — 1))G(x — X0, t — 15;0, 0) + Z/ drn/ dx,,/ dyn
n=1"0 —o0 —00

n—l g [ o)
X l_[/ At (Thy1—i — Tn—i)/ AYn—iG(Ynt1—i — Xn—is Tng1—i — Tn—i3 0, 0)/ dxy—iq(Xnp1—i — Yns1-i)
i=1 70 —o0 oo

xq(xy —yD¥ (t1)G(y1 — xo, 17150, OW(E — 1o — T,)G(x — Xp, £ — fo — 7,3 0, 0)

o0 t—to o0 [e9)
= W(t — 1))G(x — X, t — 15; 0, 0) + Z/ drn/ dx,;/ dy,
n=1 0 —00 —00

=l g 00 00
X 1_[/ At (Thy1-i — Tn—i)/ d)’;,_iG(J’;H.]_,' - x;,_,-’ Tpt1—i — Tn—is 0, 0)/ d'x},'l—iq('x}/'1+l—[ - y,/1+1_,‘)
i=1 70 —00 oo
xq(x) — YDV (GG, 7130, 0W(t — fo — )G (x — Xo — X}t — 1 — 1,0, 0), (B11)
in which x; = x; — xo and y} =y; —xo for 1 < j < n. On the right-hand side of Eq. (B11) x and xo as well as ¢ and #y only
occur as differences x — xg and t — #; and not as single terms. Thus, G(x, t; xg, o) = G(x — xo,t — 19; 0, 0) = P(x, t;x0, %) =

P(x — xo,t — 19; 0, 0), which proves our claim.
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APPENDIX C: DIFFERENTIAL EQUATION FOR P(x, t) WITH POISSONIAN RESETTING, BALLISTIC DISPLACEMENT
PROCESS, AND ARBITRARY INDEPENDENT RESETTING AMPLITUDES

To derive a differential equation for the PDF P(x, ¢; xo; o) we use the fact that the process is homogeneous in space and time.
We use the shorthand form P(x, r) for the choice x(fyp = 0) = 0. As the x propagation for ballistic motion reads

x4z with probability r At
X+ A1 = {x(t) 4 A with probability 1 — rAz. CDH
This means that
OP(x,t OP(x,t o0
(x, 1) = —v x. 1) — rP(x,t)+r/ dzP(x — z,1)q(2),
ot ox oo (C2)
P(x,0) =68(x).
For the characteristic function we therefore find
Pk, 1) . 4 . .
= ikvP(k,t) — rP(k,t) + rP(k,t)g(k),
ikvP(k,t) — rP(k,t) + rP(k, t)g(k) ©3)
P(k,0)=1.
The solution of Eq. (C3) is
o (r1)"
P(k,t) = exp(ikvt) Z exp(—rt)[§(k)]", (C4)
n!

n=0

which verifies our result (15) for Poissonian resetting.

APPENDIX D: DERIVATION OF THE LAST RESETTING PICTURE FOR DEPENDENT RESETTING AMPLITUDES

We now show the equivalence of the first resetting picture

! ©d Y X
P, t:x0. 10) = Wt — 10)G(x, 1301 10) + / vyt — 1) / S 600133010 / dmk(;‘)P(x,z;xl,n)
0 0

fo

t o) 1
— Wt — 10)G(x 1330, 1) + / iyt — 1) / dy G, 1150, 10) / der fe(e)P(x, e ty), (D)
0 0

to

with ¢; = x;/y, and the last resetting picture

o0 t—to 1 00
Pt ) = Wt = )G tixo )+ Y [ [ da, [y,
—Jo 0 0

n—l g 00 1
X <1_[/ dTn—il/f(Tn-&-l—i - Tn—i)f dyn—iG(yn-H—i, Tntl1—i + tO;Cn—iyn—i’ Tp—i + tO)/ dcn—ifC(cn-H—i))
i1 70 0 0
x fe(e)¥ (z1)G(1, T1 + fo; coyo, 10)W(t — to — T,)G(X, t; Cuyn, Tu + 10), (D2)
with ¢g = 1 and yy = xg. Therefore,
P(x,t;x', 1)y =¥ —tHG(x, t;x', 1)

0 n t 00 1
+Z(]‘[ |t =) /0 dy;G O, 173yt 1) /0 dc,-qu))wa—rn>G(x,r;cnyn,rn>, (D3)

n=1 \j=1"0-1

withtg =1, ¢o = 1, and yp = x’. The LHS of Eq. (D1) after substitution reads

LHS = P(x,t;x0, 1)) = W — 19)G(x, t; X0, 1)

ol

n

t o) 1
f dtjy(t; —tj—l)/ d)’jG(Yj,tj;Cj—l)’j—htj—l)/ defc(Cj))‘I'(f —1,)G(x, t; CpYns ta).  (D4)
i 0 0

j=171-1
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As P(x, t;c1y1, t1) in Eq. (D1) has the initial value c;y; at t;, these three variables have 1 as the lowest index and we write
P(x,t;x1, 1) = W(t —1)G(x, t;c1y1, 1)
0 n t 00 1
+3 (H / A1) | avGos i | dc,-fc(c,-)) Wt — 1,)GCx, 15 6y 1) (D)
= \j=2 /1
Substituting Eq. (D5) into the RHS of Eq. (D1) we get
RHS = W(r —19)G(x, t;x9, to)

t 00 1
+/ dtiy (4 —fo)/ dy G(y, fl;xo,lo)/ deife(e)W(t —1)G(x, t;ciy1, 1)
T 0 0

t 00 1 oo n t 0 1
+f dll/ dY/ dcy Z l_[/ dty(t; _tj—l)/ dij(yj,tj§cj—1)’j—latj—l)/ dcjfc(c))
T 0 0 ti—1 0 0

n=2 \j=2

XW(ll - lo)G(y, 115 X0, lo)fc(C])lI/(l - tn)G(xv 15CnYn, tn)
= Wt —10)G(x, 15 x0, f)

t 00 1
+/ dtl'(//(ll —fo)/ dylG(yl,ll;Xo,to)/ dlec(Cl)q/(t —II)G()C,Z;Cly],tl)
to 0 0

(o] n t [ele] 1
+Z H dtjy(t; —t;_1) dyiG(yj, tjscj—1yj—1,tj—1) | dcjfc(c;) | W@ — )G (X, 15 ¢ yn, 1), (D6)
= \im1 Vo 0 0

-1
with y; = y. Then
RHS = W(r —19)G(x, t;x9, to)
[0¢]
+> (

n=1

n t o0 1
[T/ dnwts =10 [ dyGossier v [ dc,-fc<c<,~>)w—rn>G(x,r;cnyn,rn>, 7)
ti_ 0 0

j=1 J

and thus we have the identity RHS = LHS. Consequently, Eq. (D3) solves the first resetting picture of Eq. (D1). This implies
that Eq. (D3) describes the RASR with a dependent resetting amplitude. If we show that Eq. (D3) and the last resetting picture
of Eq. (D2) are equal, this means that both mathematical representations are equivalent. To proceed,

LHS = P(x,t;x0, 1) = W(t — 19)G(x, t; X0, 1)

(0

00 1
drjyr (1 —fj—l)/ d)’jG(yj,tj;cj—lyj—l’tj—l)/ defc(Cj)) W(t — ,)G(x, 5 Cuyn, tn)
0 0

= W(t —10)G(x, 1: X0, 1)

ol

n t—to 00 1
l_[/ dty(t; — ijl)‘/‘ dy;iG(yj, T; +to;¢cjm1yj—1, Tj—1 + lo)/ defc(Cj)>
T 0 0

j=177m1
xWU(t — 1, — t0)G(x, t;Cpyn, Tn + o), (D8)
with 7; =t; — 19 for 1 < j < n. If we now use Eq. (A1) with the substitutions
Mm@, -1, Y5, Yj-1,2j, 2j—1) = ¥ (@t; — t;-1)GW;}, tj52j-1¥j-1, tj-1) fc(z)),
M2(X, E, tny Yn, Zn) = V(I — 10)G(X, 1520 Vs ),
ti=ti+t, zj=c¢;, A =0, A=o00, A3=0, As4=1 (D9)
for 1 < j < n, we get

o0 t—to 1 o0 n—1 Tntl—i
LS = v~ 0)Ge i)+ Y [ do [da [ an([] [ dnw s - o
n=1"0 0 0 i=1 70

n—1 .00 1
X (1_[/ dyn—iG(yn-H—i, Tpt1—i =+ to; Cn—i¥Yn—is Tn—i + tO) / dcn—ifC(C11+l—i))
i=1 Y0 0

X fele)¥ (t1)G(y1, 11 + fo; Xo, 1)V (E — fo — T,)G(X, 15 CpYns Tn + 1), (D10)

which is exactly the last resetting picture.
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If we assume that the free propagator is homogeneous in space and time, the stochastic process will be also homogeneous in
time but not in space, G(x, t; xg, o) = G(x — xo,t — 19; 0, 0) = P(x, t; X0, to) = P(x, t — fo;x0, 0). By assuming G(x, t; xo, tp) =
G(x — xp,t — 19; 0, 0), the density P(x, t; xo, o) [Eq. (D10)] becomes

0 t—1ty 1 [ee] n—1 Tnrl—i
P 0, 10) = W = )6~ 0t = 1:0.0)+ 3 [, [ e [ an ([T dntm - n
n=10 0 0 i=170
=1 .00 1
X l_[f AYn—iG(Ynt1—i — Cn—iVn—i> Tnp1—i — Tu—i3 0, 0)/ dep—ifc(Cnr1-i)
1o 0

x fele)¥ (11)G(y1 — xo, 7150, )W — 19 — T2)G(X — Y, t — to — 7,50, 0). (D11)
On the right-hand side of Eq. (D11) ¢ and fy only arise as the differences ¢ — 7y, but x and xy occur as a single term. Thus,
G(x,t;x0, 1) = G(x — xp,t —19;0,0) = P(x, t;x0, t0) = P(x,t — 19; x0, 0) # P(x — x0,t — 19; 0, 0), which proves our claim.
APPENDIX E: FIRST AND SECOND DERIVATIVES OF EQ. (56) WITH RESPECT TO THE LAPLACE VARIABLE u
The first derivative of Eq. (56) reads

P (u, s;x0) = Z U(s + uv)|:1_[/ dckfc(ck)llf (s + uv Hc,>j| exp (—uxo nc1>

n=0 j=0

X<U\~Il/(s+uv)+vzlﬂ(5+uvnl lcl) i= lcl _ OHCJ> (El)

W (s + uv) — V(s + uv M- )

Using Eq. (E1) and with the notation ( fo cfc(c)dc this expression is rewritten as

= _ _°°~ o /() ws) _ "
P(0, ;%)) = ;w(s)w (s)( ET5) +v ) 121:(@ xo(c) )

>_< n+1

- Tn \TU Tn—1 7! \T <C C>
=y (vw OV () + 03" () (5) B ()
n=0

- xOlﬁ”(S)\T’(S)(C)”) (E2)
(c)

The second derivative of Eq. (56) is

P”(u S;X0) = Z U(s + uv)[n/ dey fe(c)yr (s + uv 1_[ c,)] exp (—uxo ch>

j=0

><|:(U‘I’/(S + uv) . i ' (s + uv [T ) [Tizici % ﬁcj>2 5 U7 (s + uv)W(s + uv) — [¥'(s + uv)]2i|

\il(s+uv) = d/(s—|—uu I—[z 1Cz) \I}Z(s+uv)
00 n 1 n
+ Z U(s + uv)|:l_[/ dey fe(e)yr (s + uv l_[ ci>i| exp (—uxo l_[Cj>
n=0 k=10 i=1 j=0
Z (s +uv ., )xﬁ”(:v +uv ], lc,) —[¥'(s + uv M, c,~)]2 ﬁ 2). E3)
=1 V(s +uv [l @) i=1

With the definition (c?) = fol c? fe(c)dc we further transform this expression to
S0 gl 2 YOV VPSP 6PE) - [P OF ¢ 2 VOT' ) S,
P, s:x0) = Y ()P (s)<v ) +v 0) l;(c ) 4 20 TN l;(c)

n=0

+i®<s>lﬁ"<s> WP | SWOF $~ (0 o S ymgion) 42y
Z 720 e 2

=1

B (s) V' (s) nei
Zwmw (S)<va0qj()<) + 2ux W)Z<c><c> )

n=0 =1
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Now P” (0, s;x0) can be simplified to

o0

ﬁmwmn=2p{WwW%9+W”mwwwG>

1 — (c2)

2 2\n+1 _ n+1
() = (c7) + +21/7"_1(s)1/7’(S)\TJ’(s)(C> {c) + )

1 —{c)

n=0
00 Tn—2 2
2020 (5)(U)2 < Y (s)(e){e)
+ LW\ T -

— Y 2ux (&”(S)‘P’(S)(d” + P OP ()W (s)
n=0

PO

({e) = ()e) = 1)

() — (e)"(e)
() = {e)

&“wmwwl)
({e) = (N1 = (c?)

)4—§:x3&"@wi@o¢2w. (E4)
n=0
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