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We study a single-channel dynamically disordered totally asymmetric simple exclusion process with bulk
particle attachment and detachment. The continuum mean-field equations are derived and solved numerically
to obtain steady-state phase diagrams and density profiles. The effects of various parameters, namely particle
attachment rate, defect binding and unbinding rates, and binding constant, have been investigated. An increase
in the attachment rate of particles reduces the number of steady-state phases, whereas a variation in defect
binding and unbinding rates shifts the phase boundaries. One of the important consequences of introducing
particle nonconserving dynamics is the appearance of shock in the steady state. The shock dynamics have been
thoroughly examined and the defect strength is found to have a significant effect on the shock position. The
mean-field solutions are validated using extensive Monte Carlo simulations.
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I. INTRODUCTION

Intracellular transport of cargoes in eukaryotic cells is ac-
celerated by motor proteins which move along filamentary
tracks called microtubules. The motor proteins are enzymatic
molecules that convert chemical energy, derived from hydrol-
ysis of adenosine triphosphate (ATP), into mechanical energy
[1,2]. The motor proteins often encounter roadblocks which
slow down the transportation process [3]. Specifically, tran-
scription of genetic information stored in DNA is carried out
by a molecular motor called RNA polymerase (RNAP). The
RNAP synthesizes an RNA transcript to create messenger
RNA (mRNA) which is composed of a sequence of codons
[4–7]. The mRNA is decoded in ribosomes to form amino
acid chains. During translation, individual amino acids are
transferred by the transfer RNA (tRNA) and are then chained
together to form a polypeptide or protein. The DNA bind-
ing proteins during transcription and the low concentration
of tRNA during translation act as bottlenecks in the system.
The presence of bottlenecks may cause jams on the micro-
tubule track. The slow transport of cargoes within the cell
due to jamming may result in neurodegenerative diseases like
Alzheimer’s and amyotrophic lateral sclerosis (ALS) [8].

Intracellular transport is characterized as a far-from-
equilibrium system due to continuous supply of energy that
maintains nonzero flux in the system. The simplest statisti-
cal physics model, the totally asymmetric simple exclusion
process (TASEP) [7,9,10] well describes the transport phe-
nomena of such nonequilibrium systems. It is a stochastic
model accounting movement of particles along a track. These
tracks are one-dimensional lattices on which particles pro-
ceed in a preferred direction obeying a hard-core exclusion
principle with certain preassigned rules. The nature of the
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nonequilibrium steady-state of TASEP depends sensitively on
the boundary conditions. The most interesting phenomena
revealed by open boundary conditions are phase separations
and boundary induced phase transitions [11–13].

Despite its simplicity, TASEP and its extensions have also
been used to describe a number of complex natural phe-
nomena. Due to finite processivity, motor proteins diffusing
freely can attach to the microtubule filament and can also
detach from the microtubule to the cytoplasm. The process
of attachment and detachment has been named Langmuir
kinetics (LK) in the literature [14,15]. The inclusion of LK
dynamics violates the particle conservation in the bulk and
exhibits additional feature, namely localization of shock. The
coupling of TASEP with LK has been extensively studied in
single-channel [16–18] as well in two-channel homogeneous
systems [19–22].

The slowing down of motor proteins due to the presence
of a bottleneck while processing over the microtubule track
leads to inhomogeneity in the system. The case of static inho-
mogeneity, where the position of defect is fixed at a particular
site on the lattice, has been extensively studied in TASEPs
with as well as without LK [23–35]. Importantly, the above
mentioned studies focused mainly on static inhomogeneity.

In the process of gene transcription motor proteins are
also encountered by defects that are dynamic, i.e., the de-
fects appear and disappear dynamically [36,37]. In particular,
RNAP comes across bottlenecks caused by DNA binding
proteins such as histones which interrupt RNA chain elon-
gation dynamically [38]. This sheds light on the importance
of considering dynamic disorder in nonequilibrium systems.
From our viewpoint, the case of dynamic disorder has
been less studied in comparison to static disorder. Recently,
single-channel TASEP with dynamic disorder (ddTASEP)
was investigated by Waclaw et al. [38]. Garg and Dhiman
[39] explored the role of dynamic disorder in two-channel
TASEP without LK in a symmetric coupling environment.
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Dynamically disordered TASEP with LK has not yet been
studied to the best of our knowledge. The aim of this paper
is to explore the role played by dynamic disorder in TASEP
(ddTASEP) with LK.

The paper is organized as follows. The model and dynam-
ical rules are defined in Sec. II. The continuum mean-field
equations are derived in Sec. III. The numerical techniques to
solve continuum mean-field equations and Monte Carlo simu-
lations are explained in Sec. IV. The phase diagrams, density
profiles, and effects of various parameters are discussed in
detail in Secs. V and VI. Lastly, in Sec. VII, we summarize
the outcomes and mention possible future studies.

II. MODEL DESCRIPTION

The proposed model consists of a one-dimensional open
lattice channel with dynamic disorder and Langmuir kinetics
having L sites (ddTASEP with LK). The particles are dis-
tributed under the hard-core exclusion principle, which means
that each lattice site can be either vacant or occupied by
exactly one particle. The state of the system is defined by two
sets of occupation numbers: one for particles denoted by τi

and another for defects denoted by νi at ith site of the lattice,
where i = 1, 2, 3, . . . , L. Each of τi and νi can take value
either 0 or 1, 0 representing absence of particle or defect
and 1 representing presence of particle or defect. For each
time step, a lattice site i (i = 1, 2, 3, . . . , L) is randomly
chosen according to random-sequential update rules. At any
site on the lattice, a defect can bind or unbind with rate k+
or k− respectively. The defect dynamics are unconstrained in
which defect binding to a site is independent of presence of
particle at that site [38]. The evolution of the system from one
state to another occurs according according to the following
dynamical rules.

(i) At the entrance, i.e., i = 1, a particle can enter the
lattice with a rate α provided τi = 0 and νi = 0. In other
words, for a particle to enter the lattice, the first site should
be particle free as well as defect free.

(ii) At the exit, i.e., i = L, a particle can leave the lattice
with a rate β if τi = 1 irrespective of νi = 0 or 1.

(iii) In the bulk, i.e., i = 2, 3, . . . , L − 1, if τi = 1, then
the particle at the ith site first tries to detach itself from the
lattice with detachment rate ωd , and if it fails to detach then
it hops forward to the (i + 1)th site with a rate pi provided
τi+1 = 0, where

pi =
{

p if νi+1 = 0,

pd if νi+1 = 1.

On the other hand, if τi = 0, a particle can attach to the lattice
with attachment rate either ωa if νi+1 = 0, i.e., the target site is
defect free, or ωad if νi+1 = 1, i.e., the target site has a defect.

The hopping rate pd , 0 � pd � p, is the slow forward
hopping rate in the presence of a defect at the target site. A
schematic representation of totally asymmetric exclusion pro-
cess with dynamic disorder and Langmuir kinetics is shown
in Fig. 1.

(a)

(b) (c)

FIG. 1. (a) Schematic diagram of a single-channel TASEP with
dynamic disorder and Langmuir kinetics. The dynamic defect is
represented as a shaded site. Crossed arrows indicate forbidden
transitions. Illustration of unconstrained defect dynamic (b) in the
presence and (c) in the absence of a particle at the target site.

III. MASTER EQUATIONS

A. Particle density evolution

The temporal evolution of the average site occupation num-
ber 〈τi〉 for any site in the bulk i (2 � i � L − 1) is obtained
from the following set of master equations:

d〈τi〉
dt

= p〈τi−1(1 − τi )(1 − νi )〉 + pd〈τi−1(1 − τi )(νi )〉
− p〈τi(1 − τi+1)(1 − νi+1)〉 − pd〈τi(1 − τi+1)(νi+1)〉
+ωa〈(1 − τi )(1 − νi )〉 + ωad〈(1 − τi )(νi )〉
−ωd〈τi〉, (1)

where 〈· · · 〉 denotes the statistical average. Here, the first
four terms on the right-hand side represent particle forward
hopping obeying the hard-core exclusion principle and the last
three terms describe the gain and loss arising due to particle
attachment and detachment. At the boundaries, the particle
density evolves as

d〈τ1〉
dt

= α〈(1 − τ1)(1 − ν1)〉 − p〈τ1(1 − τ2)(1 − ν2)〉
− pd〈τ1(1 − τ2)(ν2)〉, (2)

d〈τL〉
dt

= p〈τL−1(1 − τL )(1 − νL )〉 + pd〈τL−1(1 − τL )(νL )〉
−β〈τL〉. (3)

B. Defect density evolution

The defect density for lattice site i (i = 1, 2, 3, . . . , L) is
given by

d〈νi〉
dt

= k+〈1 − νi〉 − k−〈νi〉. (4)
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C. Continuum mean-field equations

Factorizing the correlations as product of their averages
using mean-field approximation, we get

〈τiτi+1〉 = 〈τi〉〈τi+1〉. (5)

To obtain the continuum description of the model in
the hydrodynamic limit L → ∞, we coarse grain the dis-
crete lattice with lattice constant ε = 1/L(x ∈ [0, 1]), and
rescale the time as t ′ = t/L. The system reaches steady state
only due to particle conserving dynamics as the noncon-
serving dynamics occurs at slower rate in contrast to the
conserving dynamics. To ensure the competing interplay be-
tween the particle conserving and nonconserving dynamics,
we rescale the attachment and detachment rates in such a way
that the kinetic rates decrease simultaneously with an increase
in the system size. Such rescaling is well employed in the
literature [15,31,39]. Therefore, we have �a = ωaL, �ad =
ωad L, and �d = ωd L.

Replacing the binary discrete variable τi with a continuous
variable ρi ∈ [0, 1] and performing Taylor’s series expansion
up to second order, we get

ρi±1 = ρi ± 1

L

∂ρi

∂x
+ 1

2L2

∂2ρi

∂x2
+ O

( 1

L3

)
. (6)

The system transitions are site independent as each site in
the bulk has equivalent dynamical rules, so we can drop the
subscript i. The continuum mean-field equation in terms of
the average density ρ(x, t ′) governing the state of the system
is depicted as

∂ρ

∂t ′ = ε

2
(p − pρd + pdρd )

∂2ρ

∂x2

− (p − pρd + pdρd )(1 − 2ρ)
∂ρ

∂x
+�a(1 − ρ)(1 − ρd ) + �ad (1 − ρ)ρd − �dρ. (7)

Similarly, Eqs, (2) and (3) in steady state are translated to

ρ(0) = α(1 − ρd )

ρd pd + (1 − ρd )p
, ρ(1) = 1 − β

ρd pd + (1 − ρd )p
.

(8)

with the particle current J given by

J = [ρd pd + (1 − ρd )p] ρ(1 − ρ). (9)

Equation (4) representing the average defect density gives

ρd = k+
k+ + k−

. (10)

This expression for defect density is the same as that observed
in Ref. [38].

IV. NUMERICAL SOLUTION AND MONTE
CARLO SIMULATIONS

In this section, we describe the numerical scheme to solve
the system of equations (7) and (8) and Monte Carlo simu-
lations to compute the steady-state density profiles and the
average current.

A. Steady-state equation

To compute the steady-state solution of the system, the
left-hand side of Eq. (7) vanishes and we need to solve the
following equation along with the boundary conditions repre-
sented by Eq. (8):

ε

2
(p − pρd + pdρd )

d2ρ

dx2
− (p − pρd + pdρd )(1 − 2ρ)

dρ

dx
+�a(1 − ρ)(1 − ρd ) + �ad (1 − ρ)ρd − �dρ = 0.

(11)

B. Numerical scheme

Since our system is complex due to the presence of dy-
namic disorder along with particle nonconserving dynamics,
it is difficult to obtain the analytical solution of differential
equation (11). Numerical techniques have been widely used
in the literature in order to get approximate solutions of such
complex systems [31,39]. The time derivative term is kept in
the system and the steady-state solution is captured at very
large values of n. The model equation is discretized by using
a finite difference scheme, applying the first-order forward
difference formula for the time derivative and the center dif-
ference of first and second order for space derivatives, which
gives

ρn+1
i = ρn

i + ε

2

�t ′

�x2

(
p − pρn

i,d + pdρ
n
i,d

)(
ρn

i+1 − 2ρn
i + ρn

i−1

)

+ �t ′

2�x

( − p + 2pρi + pρn
i,d − 2pρiρ

n
i,d − pdρ

n
i,d

+ 2pdρiρ
n
i,d

)(
ρn

i+1 − ρn
i−1

)
+�t ′[�a(1 − ρn

i )(1 − ρn
i,d ) + �ad (1 − ρn

i )ρn
i,d

−�dρ
n
i

]
. (12)

C. Monte Carlo simulations

To test the validity of the results given by te contin-
uum mean-field approximation, Monte Carlo simulations are
performed. Random sequential update rules are used, tak-
ing lattice length L = 1000. The Monte Carlo simulations
are carried out for 109 time steps and also the first 5%
of time steps are ignored to ensure the occurrence of steady
state. The stationary state density has been obtained with a
typical time interval of 10L between each step of average. The
upcoming section shows the comparison of our theoretical
findings using the mean-field approximation with those of
Monte Carlo simulations.

V. RESULTS AND DISCUSSION

In this section, we explore the steady-state behavior of
dynamically disordered TASEP with LK. The dynamics of
the system are mostly governed by the following parame-
ters: the defect binding rate k+, the defect unbinding rate
k−, attachment rates �a,�ad , and detachment rate �d . To
investigate the role of each of these parameters in a com-
prehensive way, the results have been represented in the
form of phase diagrams and density profiles obtained using
a numerical scheme for the continuum mean-field equations,
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FIG. 2. Steady-state phase diagram with seven different phases
for k+ = 0.4, k− = 0.8, pd = 1/3, K = 1, � = 0.2, and �ad = �/2.
The markers are results from Monte Carlo simulations (MCS) and
the solid lines are results from continuum mean-field (CMF) approx-
imation. The LMH region corresponds to LD-MC-HD.

and are further validated with Monte Carlo simulations. For
the numerical solution, the values of �t ′ = 0.0005, �x =
1/L = 0.001 have been chosen, which satisfy the stability
condition |�t ′

�x | � 1 [40].
We found in the literature that, for exclusion processes

with particle nonconserving dynamics (LK), the stationary
state dynamics of the system is characterized in terms of the
binding constant K defined as K = ωa/ωd [15]. In this study,
our focus is on analyzing the dynamics of the system for two
different values, K = 1 and K = 3.

A. K = 1

For simplicity, first we explored the symmetric case in
which the attachment and detachment rates of particles are
taken as equal, i.e, �a = �d = �. Without loss of generality,
the attachment rate in the presence of a defect at the target site
(�ad ) is taken as half the attachment rate in the absence of a
defect at the target site (�a), i.e., �ad = �a/2 throughout the
paper.

The phase diagram for � = 0.2, k+ = 0.4, and k− = 0.8
has been sketched in Fig. 2, where the solid lines represent
transitions between different phases obtained using numerical
solution of the continuum mean-field equations, and corre-
sponding markers represent phase transitions using Monte
Carlo simulations. The deviations in results of Monte Carlo
simulations and the finite difference scheme are due to ap-
proximations used in mean field approach which ignore the
interactions in neighboring sites. The corresponding density
and current profiles are shown in Figs. 3 and 4 respectively.
Evidently, the following inferences can be drawn from the
phase diagram.

(i) It can be seen that there exist seven different phases
in the steady state of the system which are the combinations
of low density phase (LD), maximal current phase (MC), and
high density phase (HD) where LD characterizes average den-
sity less than 1/2, HD characterizes average density greater
than 1/2, and MC has average density equal to 1/2 [10].

(ii) Another characteristic of phase diagram is an appear-
ance of shock phase in a ddTASEP with LK which otherwise
is not noticed in single-channel and two-channel ddTASEP
without LK [38,39].

(iii) Unlike the existence of three phases [LD, MC, and
HD in Figs. 3(a), 3(c) and 3(d) respectively] in ddTASEP
without LK [38], the nonequilibrium phenomenon of phase
coexistence has been observed. The bulk transitions in the
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FIG. 3. Density profiles for pd = 1/3, k+ = 0.4, k− = 0.8, � =
0.2, �ad = �/2. and L = 1000. (a) LD phase for α = 0.2, β = 0.8,
(b) LD-MC phase for α = 0.45, β = 0.9, (c) MC phase for α = 0.9,
β = 0.85, (d) HD phase for α = 0.8, β = 0.1, (e) MC-HD phase
for α = 0.8, β = 0.25, (f) LD-MC-HD phase for α = 0.4, β = 0.25,
and (g) S phase for α = 0.2, β = 0.1. The solid lines (blue) indi-
cate the density profiles obtained through Monte Carlo simulations
(MCS) and triangles (red) are profiles from continuum mean-field
(CMF) approximation.

phase plane lead to the existence of a three-phase coexistence
region (LD-MC-HD) in Fig. 3(f) and the two-phase coexis-
tence regions namely (S, LD-MC, and MC-HD) Figs. 3(g),
3(b), and 3(e) respectively. All the transitions between differ-
ent phases in the diagrams are continuous.

(iv) On comparing the results with homogeneous single-
channel TASEP with LK [15], the phase diagrams are found to
be qualitatively similar. However, there are a few differences
in the density and current profiles due to the dynamic disorder
clearly shown in Figs. 3 and 4 respectively.

In general the bulk particle density ρ = 1/2 and the current
J = 1/4 in the MC phase in homogeneous TASEP [10]. Inter-
estingly, in the current model, the bulk particle density in the
MC phase remains slightly less than 1/2. This decrease might
be due to the presence of dynamic defects in the system.

Figure 4 represents current profiles corresponding to dif-
ferent density profiles shown in Fig. 3. The current in pure
LD, MC, and HD phases for given sets of parameters can be
seen in Figs. 4(a), 4(c), and 4(d) respectively. Although the
magnitude of particle current in the MC phase is less than
1/4, we continue to name this the MC phase as per convention
used in the literature [13,31,38,39]. Figures 4(b) and 4(e)
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FIG. 4. Current profiles for pd = 1/3, k+ = 0.4, k− = 0.8, � =
0.2, �ad = �/2, and L = 1000. (a) LD phase for α = 0.2, β = 0.8,
(b) LD-MC phase for α = 0.45, β = 0.9, (c) MC phase for α = 0.9,
β = 0.85, (d) HD phase for α = 0.8, β = 0.1, (e) MC-HD phase
for α = 0.8, β = 0.25, (f) LD-MC-HD phase for α = 0.4, β = 0.25,
and (g) S phase for α = 0.2, β = 0.1. The solid lines (blue) indi-
cate the current profiles obtained through Monte Carlo simulations
(MCS) and triangles (red) are profiles from continuum mean-field
(CMF) approximation.

show current for two-phase coexistence regions LD-MC and
MC-HD respectively. In the LD-MC phase the current first
increases and then at the transition point of LD to MC it
reaches its maximum value. A similar observation is made
for the HD-MC phase. The current corresponding to density
in LD-MC-HD and S phases is shown in Figs. 4(f) and 4(g)
respectively. The current profile has a transition point located
at the position of shock in the plane.

1. Elimination of phases

Figure 5 represents the phase diagram for different values
of � with all other parameter values the same. Figures 5(a)
and 5(b) correspond to � = 0.5 and � = 1 respectively. It has
been found that the number of phases decreases in the phase
plane on increasing �. The LD and HD phases disappear,
leaving behind only five phases. The process of elimination of
pure LD and HD phases with an increase in � is found to be
similar to single-channel TASEP with LK [15], which is due
to localization of shock in the bulk. A similar trend continues
on increasing � to 1, in which the phase diagram comprises
only four phases.
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FIG. 5. Phase diagram for k+ = 0.4, k− = 0.8, pd = 1/3, K =
1, �ad = �/2; (a) � = 0.5 and (b) � = 1. The markers are results
from Monte Carlo simulations (MCS) and the solid lines are results
from continuum mean-field (CMF) approximation. The LMH region
corresponds to LD-MC-HD.

2. Effect of defect binding and unbinding rates

Another set of important parameters controlling the steady-
state behavior are the defect binding and unbinding rates
(k+ and k−). Their values control the defect density ρd =
k+/(k+ + k−) in the system which further affects not only the
particle density ρ but also the current J . For k+ = 0.4 and
k− = 0.8, ρd = 1/3.

Figure 6(a) represents the phase diagram for � = 0.2,
k+ = 0.15, and k− = 0.1. On comparing Figs. 2 and 6(a), the
significant effect is shifting of phase boundaries in the phase
plane which leads to elimination of the HD phase. Note that
here the value of defect density ρd = 0.6.

Upon increasing the defect density ρd to 0.9 by choosing
k+ = 0.9 and k− = 0.1, a significantly different phase dia-
gram is obtained, as shown in Fig. 6(b). The phase diagram
only consists of two phases, namely LD and S. With the
increase in the defect density in the system, there is a relative
decrease in the particle density because of which the LD phase
is expanded over a larger area in the phase plane. The effect
of varying k+ and k− is found to be similar for � = 0.5 and
� = 1.

3. Variation in strength of dynamic defect

In the previous subsection, we have examined the effect
of defect binding and unbinding rates (k+, k−) which control
the defect density in the system. Another parameter related
to defect dynamics is the slow hopping rate of particle pd ,
which indicates the strength of defect. Lowering the value of
pd , the defect becomes stronger. Further, the strength of defect
regulates the particle density in the system.

Figure 7 shows the density profiles for α = 0.42, β = 0.9,
k+ = 0.4, and k− = 0.8 with three different values of pd .
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FIG. 6. Phase diagram for pd = 1/3, K = 1, � = 0.2, �ad =
�/2; (a) k+ = 0.15, k− = 0.1 and (b) k+ = 0.9, k− = 0.1. The mark-
ers are results from Monte Carlo simulations (MCS) and the solid
lines are results from continuum mean-field (CMF) approximation.
The LMH region corresponds to LD-MC-HD.
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FIG. 7. Density profile for K = 1, k+ = 0.4, k− = 0.8, and vary-
ing pd ; (a) α = 0.2, β = 0.8 and (b) α = 0.8, β = 0.1.

There is only a minor quantitative effect observed by varying
the defect strength in the system. A decrease in the magnitude
of particle density ρ in the LD phase [Fig. 7(a)] and an
increase in the magnitude of particle density in the HD phase
[Fig. 7(b)] have been found by increasing the defect strength.
Apart from these changes, there are no noticeable changes
in the phase diagrams except for minor shifting in the phase
boundaries.

B. K = 3

This section explains the steady-state dynamics for K = 3.
The phase diagram for �a = 0.2, k+ = 0.4, and k− = 0.8 is
shown in Fig. 8. On comparing the phase diagram for K = 1
and K = 3 (Figs. 2 and 8) with all other parameter values the
same, the following observations can be listed.

(i) Clearly, the number of phases decreases in the steady
state of the system upon increasing K . Only four phases are
found for K = 3, which are LD, S, HD, and MC phases. The
coexisting phases completely disappear. This phenomenon of
reduction of phases is similar to the one observed for homo-
geneous single-channel TASEP with LK [15].

(ii) Interestingly, the phase diagram is qualitatively similar
to the one in homogeneous single-channel TASEP with LK
[15].

(iii) Similar to the MC phase for K = 1, here also the
current in the MC phase is less than 1/4.

Figure 9 shows the density profiles corresponding to four
different regions in the phase diagram. Here also it is found
that with an increase in the magnitude of particle density there
is a decrease in maximal current in the system.

1. Disappearance of LD phase

To examine the effect of �a, the phase diagrams for dif-
ferent values of �a have been plotted in Fig. 10. Upon an
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FIG. 8. Steady-state phase diagram with four different phases
for k+ = 0.4, k− = 0.8, pd = 1/3, K = 3, �a = 0.2, and �ad =
�/2. The markers are results from Monte Carlo simulations (MCS)
and the solid lines are results from continuum mean-field (CMF)
approximation.
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FIG. 9. Density profiles for pd = 1/3, k+ = 0.4, k− = 0.8, K =
3, �a = 0.2, �ad = �/2 and L = 1000; (a) LD phase for α = 0.07,
β = 0.8, (b) S phase for α = 0.3, β = 0.4, (c) MC phase for α =
0.8, β = 0.9, (d) HD phase for α = 0.8, β = 0.1. The solid lines
(blue) indicate the density profiles obtained through Monte Carlo
simulations (MCS) and triangles (red) are profiles from continuum
mean-field (CMF) approximation.

increase in �a, one can observe the reduction in number
of phases in the phase plane due to elimination of the LD
phase. This is because an increase in the number of particles
getting attached to the lattice hinders the forward motion of
particles and consequently particles stay for longer time on the
lattice causing high density. On further increase in the value
of �a = 1 the phase diagram remains almost the same as that
for � = 0.5.

2. Effect of defect binding and nbinding rates

To examine the effect of defect binding and unbinding
rates, the phase diagrams have been plotted for different val-
ues of k+, k− at �a = 0.2. Figure 11(a) represents the phase
diagram for � = 0.2 and for k+ = 0.15, k− = 0.1. On com-
paring Figs. 8 and 11(a), the significant observation is shifting
of phase boundaries in the phase plane whereas qualitatively
the phase diagrams remain the same. Also, the number of
phases remains identical. This effect is equivalent to that
observed for the same parameters under K = 1. Additionally,
this effect is similar to the analogous model of dynamically
disordered TASEP without nonconserving dynamics [15].

The phase diagram observed for ρd = 0.9 taking k+ = 0.9
and k− = 0.1 is shown in Fig. 11(b). The S phase is observed
to be expanded over a larger area in the phase plane which
might be due to increase in the defect density in the system
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FIG. 10. Phase diagram for k+ = 0.4, k− = 0.8, pd = 1/3, K =
3, �ad = �/2, (a) �a = 0.5, and (b) �a = 1. The markers are results
from Monte Carlo simulations (MCS) and the solid lines are results
from continuum mean-field (CMF) approximation.
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FIG. 11. Phase diagram for pd = 1/3, K = 3, �a = 0.2, �ad =
�a/2; (a) k+ = 0.15, k− = 0.1 and (b) k+ = 0.9, k− = 0.1. The
markers are results from Monte Carlo simulations (MCS) and
the solid lines are results from continuum mean-field (CMF)
approximation.

and larger value of binding constant K . Also the trend contin-
ues for � = 0.5 and � = 1.

Apart from this, it is observed that on varying slow hopping
rate pd there is a qualitative minor change in the density
profiles which is similar to that for K = 1.

VI. SHOCK DYNAMICS

We explore the effect of defect density on shock and the
results are shown in Fig. 12. It is clearly found that the shock
moves from left to right boundaries upon increasing defect
density on the lattice. This is because the particle density
decreases with increasing density of defects in the system.
Consequently, the HD phase is found to be eliminated whereas
the LD phase expands. This observation can be validated from
the phase diagrams (Figs. 2 and 6). The trend has been found
to be similar using Monte Carlo simulations and continuum
mean-field approximation.

Further, shock profile has been examined by varying the
defect strength (pd ). Figure 13 shows the density profile for
α = 0.3, β = 0.4, k+ = 0.4, and k− = 0.8 with three different
values of pd . A change in the shock position has been no-
ticed upon varying pd . Lowering the value of pd , the defect
becomes stronger and the blockage of particles increases,
leading to an increase in the HD profile on the lattice. Hence
the shock continuously changes its position from right to left
boundaries of the system. Further, Monte Carlo simulations
and continuum mean-field approximation give similar obser-
vations.

Effect of system size

The effect of system size on the steady state density profiles
has been analyzed. Extensive Monte Carlo simulations have
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FIG. 12. Shock profile for K = 1, �a = 0.2, pd = 1/3, α =
0.2, β = 0.1, and varying k+ and k−. The results are captured
using (a) Monte Carlo simulations and (b) continuum mean-field
approximation.
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FIG. 13. Shock profile for K = 3, �a = 0.2, k+ = 0.4, k− =
0.8, α = 0.3, β = 0.4, and varying pd . The results are captured
using (a) Monte Carlo simulations and (b) continuum mean-field
approximation.

been carried out taking L = 500, 1000, 5000, and 10 000 for
different set of system parameters which are found to have
no significant effect on the density profiles. Figures 14(a) and
14(b) show the results for shock profiles from Monte Carlo
simulations and the continuum mean-field approximation re-
spectively. It is clearly found that the results are not affected
by system size.

VII. CONCLUSION

In this paper, we have attempted to study the role played
by Langmuir kinetics in a single-channel dynamically disor-
dered exclusion process. The unconstrained system with open
boundary conditions is considered, in which a defect can bind
to a site irrespective of presence or absence of a particle at
that site. The motivation behind this model is the biological
process of gene transcription in which the DNA binding pro-
teins and the low concentration of tRNA act as disorder. This
hindrance slows the transport of cargoes, causing jamming of
molecular motors on DNA track. The continuum mean-field
equations are employed to obtain steady-state phase diagrams
and density profiles. The finite difference scheme is used to
solve the mean-field equations, which otherwise are difficult
to solve analytically due to the presence of dynamic disorder
and LK. A random sequential update rule is used to carry out
Monte Carlo simulations of the system. The computational
results are in good agreement with numerical results.

The competing interplay between dynamic disorder and
LK results in rich steady-state phase diagrams consisting of
pure and coexisting phases. Another considerable outcome
due to the presence of LK dynamics is the appearance of
steady-state shock which otherwise is not found in the single-
channel ddTASEP without LK. The system is explored for two
values of binding constant, K = 1 and K = 3. The effect of
binding constant �a is examined on the phase diagrams and it
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FIG. 14. Effect of system size for α = 0.2, β = 0.1, k+ = 0.4,
k− = 0.8, K = 1, � = 0.2, �ad = �/2, and L = 500, 1000, 5000,
and 1000. The results are obtained using (a) Monte Carlo simulations
and (b) continuum mean field approximations.
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is found that an increasing �a reduces the number of phases in
the system, which is due to localization of shock in the bulk.
Further, the defect binding and unbinding rates are observed
to shift phase boundaries in the plane, with the number of
phases remaining identical. For large value of defect density
in the system the phase diagram consists of only two phases,
namely LD and S, which is due to low particle density on
the lattice. Moreover, effect of variation in defect strength is
observed on density profiles. It has been observed that with an
increase in defect strength, the particle density in the LD phase
decreases whereas in the HD phase the particle density in-
creases. These mentioned findings are similar for both values

of binding constant K . The shock dynamics are explored by
varying defect density and the defect strength in the system.
The shock moves from right to left upon increasing defect
strength on the lattice. Also, the steady-state results are found
to be independent of system size.

Here, we focused on a complete study of steady-
state properties of a single-channel dynamically disordered
TASEP system with LK under unconstrained conditions.
In the future, the single-channel model can be general-
ized to a two-channel model that might uncover other
interesting features of the steady-state behavior of the
system.
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