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Evaluating expectations on an Ising model (or Boltzmann machine) is essential for various applications,
including statistical machine learning. However, in general, the evaluation is computationally difficult because
it involves intractable multiple summations or integrations; therefore, it requires approximation. Monte Carlo
integration (MCI) is a well-known approximation method; a more effective MCI-like approximation method
was proposed recently, called spatial Monte Carlo integration (SMCI). However, the estimations obtained using
SMCI (and MCI) exhibit a low accuracy in Ising models under a low temperature owing to degradation of the
sampling quality. Annealed importance sampling (AIS) is a type of importance sampling based on Markov chain
Monte Carlo methods that can suppress performance degradation in low-temperature regions with the force of
importance weights. In this study, a method is proposed to evaluate the expectations on Ising models combining
AIS and SMCI. The proposed method performs efficiently in both high- and low-temperature regions, which is
demonstrated theoretically and numerically.
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I. INTRODUCTION

An Ising model, also known as a Boltzmann machine [1,2],
is one of the most important models in not only statisti-
cal physics but also other various fields, such as machine
learning and optimization. For example, in the field of ma-
chine learning, the Boltzmann machine and its variants, such
as restricted Boltzmann machine [3–8] and deep Boltzmann
machine [9–12], have been actively studied. Evaluating ex-
pectations on Ising models is essential for such applications.
However, the evaluation is generally computationally diffi-
cult because it involves intractable multiple summations or
integrations. This study aims to propose an effective approxi-
mation for the evaluation.

Monte Carlo integration (MCI) is the most familiar sam-
pling approximation, in which a target expectation on an
Ising model is approximated by the sample average over a
sample set; the sampling points are generated using Markov
chain Monte Carlo (MCMC) methods on the Ising model.
Recently, a more effective MCI-like method, called spatial
Monte Carlo integration (SMCI), was proposed as an ex-
tension of MCI [13,14] (see Sec. III A). It has been proved
that SMCI is statistically more accurate than MCI. The per-
formances of MCI and SMCI are directly dependent on the
sampling quality. The estimations obtained using these meth-
ods are of substandard quality when the sample set has an
unexpected bias. Gibbs sampling [15] has been widely used
as a sampling method. However, Gibbs sampling tends to
fail when the distribution structure is complicated, e.g., when
there are several isolated modes; this is known as the slow
relaxation problem. The influence of this problem is par-
ticularly prominent in Ising models under low temperatures
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(see Sec. III C). To resolve this problem, sophisticated sam-
pling methods, such as parallel tempering (PT) (or replica
exchange MCMC) [16,17], have been proposed. Neverthe-
less, Gibbs sampling is still preferred in terms of cost and
implementation.

Annealed importance sampling (AIS) is a type of im-
portance sampling based on MCMC with simulated anneal-
ing [18] (see Sec. III B). In AIS, a sequential sampling (or
ancestral sampling) from a tractable initial distribution to the
target distribution is executed, in which the transitions be-
tween the distributions are executed using, for example, Gibbs
sampling. AIS can suppress the performance degradation of
the sampling approximation in Ising models under low tem-
peratures (see Sec. III C). In this study, an alternative sampling
approximation is proposed for Ising models by combining
AIS and SMCI, which can provide accurate approximations
in both high- and low-temperature regions. The proposed
method is based on the usual Gibbs sampling.

The remainder of this paper is organized as follows. The
Ising model used in this study is described in Sec. II. SMCI
and AIS are explained in Sec. III; this section also examines
the results of numerical experiments, in which the influence of
the slow relaxation problem of Gibbs sampling was observed
using MCI and SMCI. The proposed method, i.e., AIS-based
SMCI, is described in Sec. IV, and the validation of the pro-
posed method through numerical experiments is presented in
Sec. V, in which the computational efficiency of the proposed
method and a comparison with PT are also discussed. Finally,
the summary along with the future scope of the study are
presented in Sec. VI.

II. ISING MODEL

Consider an undirected graph G(V, E ), where V =
{1, 2, . . . , n} is the set of vertices, and E is the set of
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undirected edges in which the edge between vertices i and
j is labeled as (i, j). Because the edges have no direction,
(i, j) and ( j, i) indicate the same edge. On this undirected
graph, consider an energy function (or a Hamiltonian) with
a quadratic form, as follows:

E (x) := −
∑
i∈V

hixi −
∑

(i, j)∈E
Ji, jxix j, (1)

where x := {xi ∈ {−1,+1}|i ∈ V} denotes the random (Ising)
variables assigned to the corresponding nodes. Here, hi is
the bias (or local field) on vertex i and Ji, j is the interaction
between i and j; the interactions are symmetric with respect
to their indices, i.e., Ji, j = Jj,i. Using the energy function, an
Ising model is defined as

P(x|β ) := 1

Z (β )
exp(−βE (x)), (2)

where β � 0 is the inverse temperature and Z (β ) is the parti-
tion function defined by

Z (β ) :=
∑

x

exp(−βE (x)), (3)

where
∑

x is the summation over all possible realizations
of x.

The main aim of this study is to investigate an effective
approximation method for the expectation of f (x):

〈 f (x)〉β :=
∑

x

f (x)P(x|β ). (4)

The evaluation of this expectation is computationally infeasi-
ble because its general computational cost is O(2n).

III. SAMPLING APPROXIMATIONS

MCI is one of the most frequently used methods
for approximating Eq. (4), in which the expectation is
approximated by

〈 f (x)〉β ≈ 1

N

N∑
μ=1

f (sμ), (5)

where S := {sμ ∈ {−1,+1}n|μ = 1, 2, . . . , N} is the (i.i.d.)
sample set drawn from P(x|β ). In this section, SMCI [13,14]
and AIS [18], which are effective approximation methods,
are briefly described; subsequently, their performances are
compared through numerical experiments.

A. Spatial Monte Carlo integration

Here, the approximation of the expectation of f (xT ) is
considered, where T is a (connected) subregion of V and
xT := {xi|i ∈ T ⊆ V} denotes the variables in T . For subre-
gion T , a (connected) subregion A, such that T ⊆ A ⊆ V , is
selected. The two subregions T and A are called the “target
region” and “sum region,” respectively. For the sum region, a
conditional distribution on P(x|β ) is considered as

P(xA|x∂A; β ) = P(x|β )∑
xA P(x|β )

, (6)

target region

sum region

sample region

FIG. 1. Illustration of the target, sum, and sample regions of
SMCI.

where ∂A (called the “sample region”) denotes the first-
nearest-neighboring region of A, defined by ∂A := {i|(i, j) ∈
E, j ∈ A, i �∈ A}. This conditional distribution can be imme-
diately obtained as follows. The energy function in Eq. (1) can
be decomposed into two parts as

E (x) = EA(xA, x∂A) + EA∗ (xA∗ ), (7)

where EA(xA, x∂A) is the energy including all terms related
to xA and EA∗ (xA∗ ) is the energy unrelated to xA; here, A∗
is the complementary set of A. Using the decomposition of
Eq. (7), the conditional distribution in Eq. (6) is obtained as

P(xA|x∂A; β ) ∝ exp(−βEA(xA, x∂A)). (8)

In SMCI, with the sample set S generated from P(x|β ), the
expectation is approximated by

〈 f (xT )〉β ≈ 1

N

N∑
μ=1

∑
xA

f (xT )P
(
xA

∣∣s(μ)
∂A; β

)
, (9)

where s(μ)
∂A is the μth sampling point corresponding to the

sample region. The relationship between the subregions is
illustrated in Fig. 1. Two important properties of SMCI have
been proved [13,14]: for a given S, (i) SMCI is statistically
more accurate than the standard MCI of Eqs. (5) and (ii) the
approximation accuracy of SMCI monotonically increases as
the size of the selected sum region increases. The simplest ver-
sion of SMCI is the first-order SMCI (1-SMCI) method [13],
in which the sum region is identical to the target region. The
above two properties are maintained in general Markov ran-
dom fields, including higher-order cases [13,14]. An example
of the 1-SMCI method is presented in Appendix A.

However, SMCI has certain fundamental drawbacks. It re-
quires the execution of multiple summations (or integrations)
over the sum region. Therefore, the sum region cannot easily
expand in dense graphs; only the 1-SMCI and semi-second-
order SMCI [14] methods are applicable in dense graphs. The
1-SMCI method cannot be used when the target region is
significantly large, with the exception of some special cases
(e.g., when the target region is a tree).

The performances of MCI and SMCI are strongly depen-
dent on the sampling quality. They degrade when a given
sample set includes an unexpected bias. Therefore, the ap-
proximations in Eqs. (5) and (9) would be poor in cases
where it is difficult to perform high-quality sampling (i.e., a
low-temperature case). In contrast, AIS, described in the
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following section, can reduce this type of performance
degradation.

B. Annealed importance sampling

AIS is a type of importance sampling based on MCMC
with simulated annealing. In AIS, a sample set is gen-
erated as follows. First, for a sequence of the annealing
schedule, 0 = β0 < β1 < · · · < βK = 1, set a sequence of
distributions as

Pk (x) ∝ P0(x)1−βk P(x|β )βk , (10)

where P0(x) is an initial (tractable) distribution, which is often
set to a uniform distribution. When k = K , distribution Pk (x)
is identified as P(x|β ). Next, for Pk (x), a transition probability
Tk (x′|x), which satisfies the balance condition

Pk (x′) =
∑

x

Tk (x′|x)Pk (x) (11)

is defined. With the transition probability, generate the
sequence of sample points X = {x(k) ∈ {−1,+1}n|k =
1, 2, . . . , K} as

x(1) ← P0(x),

x(k) ← Tk−1(x|x(k−1)) (k = 2, 3, . . . , K ). (12)

The final point is employed as the sampled point, ŝ = x(K ),
and the corresponding (unnormalized) importance weight is
obtained by

ω(X) :=
K∏

k=1

P†
k (x(k) )

P†
k−1(x(k) )

, (13)

where P†
k (x) is the relative probability of Pk (x); i.e., Pk (x) =

P†
k (x)/Zk , where Zk is the partition function of Pk (x). When

the initial distribution is a uniform distribution, Eq. (13) is
reduced to

ω(X) = exp

(
−β

K∑
k=1

(βk − βk−1)E (x(k) )

)
. (14)

By repeating the above procedure N times, the sample
set, SAIS := {ŝμ ∈ {−1,+1}n|μ = 1, 2, . . . , N}, and the cor-
responding importance weights, {ωμ|μ = 1, 2, . . . , N}, are
obtained. With SAIS and the importance weights, 〈 f (x)〉β is
approximated by

〈 f (x)〉β ≈ 1

�

N∑
μ=1

ωμ f (ŝμ), (15)

where � := ∑N
μ=1 ωμ is the partition function of AIS. A more

detailed background of AIS is described in Appendix B.
AIS can also approximate the free energy: F (β ) := −β−1

ln Z (β ) [18,19], as

F (β ) ≈ − 1

β
ln Z0 − 1

β
ln

(
�

N

)
, (16)

where Z0 is the partition function of P0(x); therefore, Z0 = 2n

when P0(x) is a uniform distribution. This free-energy approx-
imation is essentially the same as the method proposed by
Jarzynski [20]. The free-energy approximation based on AIS

(or its variants) has also been actively developed in the field of
machine learning [21–23]. For the derivation of Eq. (16), see
Eq. (B7).

C. Numerical experiment: AIS versus SMCI

Consider an Ising model with n = 20. On the Ising model,
the approximation accuracies of AIS and the 1-SMCI method
were investigated through numerical experiments. The accu-
racy was measured by the mean absolute error (MAE) of the
covariances, χi, j = 〈xix j〉β − 〈xi〉β〈x j〉β , defined by

1

|E |
∑

(i, j)∈E

∣∣χ exact
i, j − χ

approx
i, j

∣∣, (17)

where χ exact
i, j is the exact covariance and χ

approx
i, j is its ap-

proximation obtained from an approximation method. In AIS,
the sequence of the annealing schedule was set as βk = k/K
with K = 1000; furthermore, 1-step (asynchronous) Gibbs
sampling was considered as the transition probability. The
initial distribution of AIS was set to a uniform distribution.
Sample set S used in the 1-SMCI method was obtained using
N parallel Gibbs sampling with simulated annealing, whose
annealing schedule was almost identical to that of AIS, i.e., a
sampling point in S was generated using ancestral sampling:

x(0) ← P0(x), x(k) ← Tk (x|x(k−1)) (k = 1, 2, . . . , K ),

and x(K ) was then employed as the sampled point. Therefore,
the sampling costs of SAIS and S were almost the same;
additionally, N = 1000 was used for both SAIS and S.

Figure 2 depicts the results against the inverse temperature
β in the Ising model defined on a random graph with con-
nection probability p. In the Ising model, {hi} and {Ji, j} were
randomly selected according to a uniform distribution over
[−1,+1]. For comparison, the results obtained using the stan-
dard MCI with S were also plotted. In the high-temperature
region (i.e., the low β region), the 1-SMCI method was
significantly superior than the other methods. However, the
accuracies of the 1-SMCI method and standard MCI were
poor in the low-temperature region (i.e., the high β region).
This is because, in the low-temperature region, the quality of
sampling tends to degrade; therefore, the obtained size-limited
sample set cannot incorporate the detailed structure of the
distribution. Meanwhile, it is noteworthy that AIS did not
exhibit such degradation.

IV. PROPOSED METHOD: AIS-BASED SMCI

In this section, the proposed approximation method that
combines AIS and SMCI is discussed. The experimental
results from Sec. III C elucidated that SMCI is effective
in high-temperature regions and AIS is effective in low-
temperature regions. Combining both methods may provide
a method that is effective over a broad range of temperature.

Consider a function

f(T :A)(x∂A) :=
∑
xA

f (xT )P(xA|x∂A; β ), (18)

whose conditional distribution can be expressed via Eq. (8).
The expectation of this function is equivalent to 〈 f (xT )〉β

052118-3



MUNEKI YASUDA AND KAIJI SEKIMOTO PHYSICAL REVIEW E 103, 052118 (2021)

)c()b()a(

β
0.5 1.0 1.5 2.0

M
A

E

10−4

10−3

10−2

MCI
SMCI
AIS

β
0.5 1.0 1.5 2.0

M
A

E

10−3

10−2

MCI
SMCI
AIS

β
0.5 1.0 1.5 2.0

M
A

E

10−3

10−2

10−1

MCI

SMCI

AIS

FIG. 2. MAE in Eq. (17) versus the inverse temperature β when (a) p = 0.2, (b) p = 0.4, and (c) p = 0.8. These plots present the averages
over 1000 experiments.

because

〈 f(T :A)(x∂A)〉β =
∑

x

f(T :A)(x∂A)P(x|β )

=
∑

x

f (xT )P(x|β ).

Equation (9) can be considered as the approximation of
〈 f(T :A)(x∂A)〉β based on the standard MCI of equation (5).
Based on the AIS of Eq. (15), instead of the standard MCI,
the following approximation can be obtained:

〈 f (xT )〉β ≈ 1

�

N∑
μ=1

ωμ f(T :A)
(
ŝ(μ)
∂A

)

= 1

�

N∑
μ=1

ωμ

∑
xA

f (xT )P
(
xA

∣∣ŝ(μ)
∂A; β

)
, (19)

where SAIS = {ŝμ ∈ {−1,+1}n|μ = 1, 2, . . . , N} and
{ωμ|μ = 1, 2, . . . , N} represents the sample set of AIS and
the corresponding importance weights, respectively, which
have been explained in Sec. III B; � is the partition function
of AIS and ŝ(μ)

∂A is the μth sampling point corresponding to the
sample region of SMCI. Equation (19) denotes the method
proposed in this study.

In the following, the efficiency of the proposed method is
considered. As described in Eq. (B8), the asymptotic variance
of the approximation of 〈 f (xT )〉β using AIS is approximated
as [18]

VAIS[ f (xT )] ≈ 1

N
WVβ[ f (xT )], (20)

where Vβ[ f (xT )] := 〈 f (xT )2〉β − 〈 f (xT )〉2
β is the variance of

f (xT ) and W � 1 is the constant factor that is independent
of f (xT ). This asymptotic variance indicates the efficiency
of this approximation (evidently, a lower variance is better).
The factor W may be expected to be close to 1 when P(x|β )
has few isolated modes (namely, when β is not large). When
a given sample set, S, does not include an unexpected bias,
the asymptotic variance of the standard MCI for 〈 f (xT )〉β
is expressed as VMCI[ f (xT )] := N−1Vβ[ f (xT )]. Therefore, in
cases where high-quality sampling can be executed, the ef-
ficiency of AIS is considered to be almost the same as that
of the standard MCI; in fact, the accuracies of both methods

were almost the same in the high-temperature region in the
numerical results presented in Sec. III C. In contrast, in the
low-temperature region, the accuracy of MCI significantly
degraded owing to the degradation of the sampling quality,
whereas that of AIS did not.

This argument can be extended to the proposed method in
Eq. (19). The asymptotic variance of the proposed method can
be estimated as

VSMCI+AIS[ f (xT )] ≈ 1

N
WVβ[ f(T :A)(x∂A)]. (21)

The asymptotic variance of SMCI is VSMCI[ f (xT )] :=
N−1Vβ[ f(T :A)(x∂A)], which was proved to be VSMCI[ f (xT )] �
VMCI[ f (xT )] [13,14]. Using Eqs. (20) and (21) and this in-
equality,

VSMCI+AIS[ f (xT )] � VAIS[ f (xT )] (22)

is obtained, which implies that the proposed method is more
efficient than the standard AIS.

Based on the above arguments, the following two proper-
ties can be expected: the accuracy of the proposed method
is (i) almost the same as that of SMCI in high-temperature
regions and (ii) higher than that of AIS in low-temperature
regions. If these properties are satisfied, a result similar to
that illustrated in Fig. 3 can be obtained. The empirical

AIS
SMCI

proposed
method

inverse temperature

error

FIG. 3. Qualitative illustration of the expected performance of
the proposed method.
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FIG. 4. MAE in Eq. (17) versus β when (a) p = 0.2, (b) p = 0.4, and (c) p = 0.8. The results of SMCI and AIS are identical to those in
Fig. 2. These plots present the averages over 1000 experiments.

justification of this expectation is demonstrated in the follow-
ing section.

The proposed method and AIS require O(KN ) steps of
Gibbs sampling to generate the set of sampling points,
{ŝμ|μ = 1, 2, . . . , N}, and that of the corresponding impor-
tance weights, {ωμ|μ = 1, 2, . . . , N}, when one-step Gibbs
sampling is employed as the transition probability, Tk (x′|x).
Because N different sequences of Gibbs sampling can be per-
formed independently, the implementation of these sequences
can be easily parallelized.

V. NUMERICAL EXPERIMENT

In this section, the performance of the proposed method
is examined using numerical experiments. In the following
experiments, the term “SMCI” denotes the 1-SMCI method.
For the detailed formulation of the 1-SMCI method, see
Appendix A.

A. Ising model on random graph

The validation of the proposed method is demonstrated via
numerical experiments, whose settings are the same as those
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FIG. 5. MAE in Eq. (17) versus N when (a) p = 0.2 and β = 0.5, (b) p = 0.2 and β = 2, (c) p = 0.8 and β = 0.5, and (d) p = 0.8 and
β = 2. These plots present the averages over 1000 experiments.
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FIG. 6. MAE in Eq. (17) versus K when (a) p = 0.2 and β = 0.5, (b) p = 0.2 and β = 2, (c) p = 0.8 and β = 0.5, and (d) p = 0.8 and
β = 2. These plots present the averages over 1000 experiments.

in the numerical experiments presented in Sec. III C, unless
otherwise noted. Figure 4 depicts the results obtained from
the proposed method, in which the setting of the experiment
is identical to that of Fig. 2. The accuracy of the proposed
method was consistent with the expected results illustrated in
Fig. 3. The proposed method is efficient in both high- and low-
temperature regions.

In the following, the dependency of the proposed method
on N and K , the sizes of the sample set and annealing se-
quence, respectively, are investigated. Figure 5 depicts the
results against N , in which K = 1000 was fixed. The er-
rors of AIS and the proposed method decreased at a speed
approximately proportional to O(N−1/2) in both high- and
low-temperature cases; however, those of MCI and SMCI
did not exhibit such a decrease in the low-temperature cases
Figs. 5(b) and 5(d)], which can be attributed to the unexpected
bias in S. Figure 6 depicts the results against K , in which N =
1000 was fixed. The errors decreased as K increased; they
became saturated at approximately K = 500; thus, K = 1000
seems to be sufficient in the presented experiments.

B. Hopfield-type and bipartite Ising models

In this section, the results of numerical experiments on
a Hopfield-type Ising model [24] and bipartite Ising model
are presented. In these experiments K = 1000 and N = 1000
were used.

First, a Hopfield-type Ising model [24] was considered, in
which the interactions Ji, j were determined by

Ji, j = 1

n

m∑
k=1

ξi,kξ j,k,

where ξ = {ξi,k ∈ {−1,+1}|i ∈ V, k = 1, 2, . . . , m} were
randomly generated, and the biases hi were set to zero.
Figure 7 depicts the results on the Hopfield-type Ising models
with n = 20, for α := m/n = 0.2, 0.5.

Next, an Ising model defined on a bipartite graph was
considered. This model is related to restricted Boltzmann
machines in the field of machine learning [4,25]. The set of
vertices V is divided into two different groups (or layers) V0

and V1; a variable in one group interacts with variables in
the other group with probability p and does not interact with
variables in the same group. Figure 8 depicts the results on
the bipartite Ising models with |V0| = 10 and |V1| = 100 (i.e.,
n = 110), in which the biases and interactions were generated
in the same manner as that in Sec. III C. The transition proba-
bility was based on a group-wise blocked Gibbs sampling, i.e.,

Tk (x′|x) = Pk
(
x′
V1

∣∣x′
V0

)
Pk

(
x′
V0

∣∣xV1

)
.

It is noteworthy that exact expectations on the
model can be evaluated in O(2|V0|) time through the
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FIG. 7. Results on the Hopfield-type Ising models; MAE in Eq. (17) versus β when (a) α = 0.2 and (b) α = 0.5. These plots present the
averages over 2000 experiments.

marginalization:

P
(
xV0

∣∣β) =
∑
xV1

P(x|β )

∝ exp

⎧⎨
⎩

∑
i∈V0

bixi+
∑
j∈V1

ln cosh

(
b j +

∑
k∈V0

Jk, jxk

)⎫⎬
⎭,

where Jk, j = 0 if xk (k ∈ V0) and x j (k ∈ V1) have no interac-
tions.

The proposed method preformed most efficiently in both
models.

C. Comparison with parallel tempering

This section describes the comparison of the proposed
method (i.e., AIS-based SMCI) with PT (i.e., PT-based
SMCI). In the PT-based method, ten different temperature
processes, 1 = β1 > β2 > · · · > β10 = 0.01 and the sampling
interval of 100 MC steps were used to coincide with the
proposed method in terms of the number of MC steps; the
temperature intervals were set according to a geometric se-
quence. Figure 9 depicts the results on (a) the random graph
with p = 0.5 and (b) the Hopfield-type Ising models with

α=0.2, respectively. In these experiments, n = 20, K=1000
and N = 1000 were used. The setting of parameters (bi-
ases and interactions) were the same as those in Secs. III C
and V B, respectively. The PT-based method (“SMCI+PT” in
Fig. 9) improves the accuracy in the low-temperature region.
However, the proposed method is more efficient.

D. Computational efficiency

In this section, the comparison of the proposed method
(based on the 1-SMCI method) with AIS in terms of the com-
putational cost for evaluating 〈xi〉β for all i ∈ V and 〈xix j〉β
for all (i, j) ∈ E is discussed. Assume that |E | > |V| � 1,
N � 1, and K � 1. The cost of one-step Gibbs sampling can
be estimated as O(|E |); therefore, the cost for generating SAIS

is O(KN |E |). The cost for evaluating the importance weights
{ωμ} is also O(KN |E |); here, the cost of O(|E |) is the evalu-
ation cost of the energy function of Eq. (1). Given SAIS and
{ωμ}, the cost for evaluating Eq. (15) for all expectations (i.e.,
{〈xi〉β} and {〈xix j〉β}) can be estimated as O(N |E |). The above
arguments conclude that the total cost of AIS is O(KN |E |).

The total cost of the proposed method is the same as that of
AIS in the perspective of the order; because, given SAIS and

)b()a(

β
1.0 2.0 3.0

M
A

E

10−2

10−1

MCI

SMCI

AIS

proposed

β
1.0 2.0 3.0

M
A

E

10−2

10−1

MCI

SMCI

AIS

proposed

FIG. 8. Results on the bipartite Ising models; MAE in Eq. (17) versus β when (a) p = 0.5 and (b) p = 1. These plots present the averages
over 3000 experiments.
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)b()a(

β
2.0 4.0 6.0 8.0 10.0

M
A

E

10−2

SMCI

SMCI+PT

proposed

β
1.0 2.0 3.0

M
A

E

10−3

10−2

SMCI
SMCI+PT

proposed

FIG. 9. Comparison with PT-based method; MAE in Eq. (17) versus β on (a) the random graph with p = 0.5 and (b) the Hopfield-type
Ising models with α = 0.2. The results of SMCI and the proposed method in panel (b) are identical to those in Fig. 7(a). These plots present
the averages over 2000 experiments.

{ωμ}, the cost for evaluating equation (19) for all expectations
can be estimated as O(N |E |) (see Appendix A), which is the
same as that of AIS.

The costs for evaluating all expectations of both methods
are the same as mentioned above. However, the evaluation
of the proposed method is more time consuming than that
of AIS in terms of the computational time (or CPU time),
because it requires more complicated computations. Table I
presents the computational times of AIS and the proposed
method in an Ising model on a complete graph obtained
from our implementation without a parallel computation, in
which K = 1000 and N = 1000. The computational time for
evaluating the expectation of the proposed method is tens of
times slower than that of AIS. However, these computational
times are considerably small compared with those required for
sampling and evaluating the importance weights.

VI. SUMMARY AND FUTURE STUDIES

In this study, an effective sampling approximation, AIS-
based SMCI, was proposed to evaluate the expectations on
an Ising model. As demonstrated by the numerical results
in Sec. V, the importance weights of AIS considerably
improved the approximation performance of SMCI in the
low-temperature region. Because the proposed method does
not use any characteristic property of the Ising model (at least

in theory), it can be applied to more general models besides
the Ising model, such as a high-order Markov random field.

The proposed method performed efficiently in both high-
and low-temperature regions without using a sophisticated
sampling method, besides Gibbs sampling; this is a significant
result in terms of cost and implementation. However, the con-
sideration of alternative possibilities is still required. SMCI
does not have any limitation in terms of the sampling method;
therefore, SMCI can be directly combined with more sophisti-
cated sampling methods, such as the Suwa-Todo method [26]
and belief-propagation-guided MCMC [27]. This can be an in-
teresting future investigation. Furthermore, the improvement
of AIS must also be considered. Hukushima and Iba proposed
a resampling method for AIS that can reduce the variance
of the importance weights [28]; we believe that the resam-
pling method can improve the performance of the proposed
method.

As mentioned in the Introduction, accurate approximations
of expectations on Ising models are also required in the field
of machine learning. The application of the proposed method
to the Boltzmann-machine learning and inference will be ad-
dressed in our future project.
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APPENDIX A: 1-SMCI METHOD

This Appendix shows the formulations of the 1-SMCI
method for 〈xi〉β and 〈xix j〉β for the sample set S [13,14].

For the approximation of 〈xi〉β , the target and sum regions
are set as T = A = {i}; thus, the conditional distribution in
Eq. (8) is

P(xi|x∂{i}; β ) ∝ exp β

(
hixi +

∑
j∈∂{i}

Ji, jxix j

)
, (A1)

where ∂{i} is the first-nearest-neighboring region of i. Equa-
tions (9) and (A1) lead to

〈xi〉β ≈ 1

N

N∑
μ=1

∑
xi

xiP(xi|x∂{i}; β )

= 1

N

N∑
μ=1

tanh φ
(μ)
i , (A2)

where

φ
(μ)
i := βhi + β

∑
j∈∂{i}

Ji, js
(μ)
j ;

here, s(μ)
j is the μth sampling point corresponding to vertex j.

For the approximation of 〈xix j〉β , the target and sum
regions are set as T = A = {i, j}; thus, the conditional dis-
tribution in Eq. (8) is

P(xi, x j |x∂{i, j}; β ) ∝ exp β

⎛
⎝hixi + h jx j + Ji, jxix j

+
∑

k∈∂{i}\{ j}
Ji,kxixk +

∑
l∈∂{ j}\{i}

Jj,l x jxl

⎞
⎠.

(A3)

Equations (9) and (A3) lead to

〈xix j〉β ≈ 1

N

N∑
μ=1

∑
xi,x j

xix jP(xi, x j |x∂{i, j}; β )

= 1

N

N∑
μ=1

tanh
[
atanh

{
tanh

(
ψ

(μ)
i: j

)
tanh

(
ψ

(μ)
j:i

)}
+ βJi, j

]
, (A4)

where ψ
(μ)
i: j := φ

(μ)
i − βJi, js

(μ)
j and atanh is the inverse hyper-

bolic tangent function.
For the given S, the computational cost for evaluating

{φ(μ)
i } is O(N |E |); and for the given {φ(μ)

i }, the costs for
evaluating Eq. (A2) for a specific i ∈ V and Eq. (A4) for a
specific (i, j) ∈ E are O(N ). Therefore, for the given S, the
total computational cost for evaluating Eq. (A2) for all i ∈ V
and Eq. (A4) for all (i, j) ∈ E can be estimated as O(N |E |).

APPENDIX B: DETAILS OF ANNEALED
IMPORTANCE SAMPLING

First, the background of AIS described in Sec. III B is
considered. The expectation 〈 f (x)〉β is rewritten as

〈 f (x)〉β =
∑

X

ωnorm(X ) f (x(K ) )Qf (X ), (B1)

where X = {x(k) ∈ {−1,+1}n|k = 1, 2, . . . , K} and

ωnorm(X ) := Qb(X )

Qf (X )
(B2)

is the (normalized) importance weight. Here, the two distribu-
tions, Qf (X ) and Qb(X ), are defined as follows:

Qf (X ) := P0(x(1) )
K−1∏
k=1

Tk (x(k+1)|x(k) ), (B3)

Qb(X ) := PK (x(K ) )
K−1∏
k=1

T̃k (x(k)|x(k+1)), (B4)

where P0(x) and PK (x) = P(x|β ) are the initial and target
distributions, respectively, and Tk (x′|x) is the transition prob-
ability. Here, T̃k (x|x′) is the “reverse” transition probability,
satisfying

T̃k (x|x′) = Tk (x′|x)Pk (x)

Pk (x′)
.

Qf (X ) expresses the forward transition process from the initial
to the target distribution, and Qb(X ) expresses the backward
process. From Eqs. (B2)–(B4),

ωnorm(X ) =
K∏

k=1

Pk (x(k) )

Pk−1(x(k) )
= Z0

Z (β )
ω(X ) (B5)

is obtained, where

ω(X ) = exp

(
−β

K∑
k=1

(βk − βk−1)E (x(k) )

)

is the unnormalized importance weight defined in Eq. (13).
Equation (15) can be viewed as the sampling approximation
of Eq. (B1), i.e., using N different sequences, X1, X2, . . . , XN ,
obtained from N parallel samplings from Qf (X ) [the sampling
processes shown in Eq. (12)],

〈 f (x)〉β ≈ 1

N

N∑
μ=1

ωnorm(Xμ) f
(
x(K )

μ

)
(B6)

is obtained, where Xμ = {x(k)
μ ∈ {−1,+1}n|k = 1, 2, . . . , K}.

Moreover, to avoid the evaluation of the partition function,
ratio r(β ) := Z0/Z (β ) is approximated by N/� in Eq. (15):

1 =
∑

X

ωnorm(X )Qf (X )

= r(β )
∑

X

ω(X )Qf (X )

≈ r(β )

N

N∑
μ=1

ω(Xμ). (B7)
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In the following, the asymptotic variance of the approxima-
tion of Eq. (15) is considered. Here, the annealing schedule
is assumed to be sufficiently slow, i.e., βk − βk−1 = ε  1.
Based on this assumption, ω(X ) and f (x(K ) ) are considered to
be almost independent under Qf (X ) (as well as under Qb(X ))
because the correlations between the distant variables (e.g.,
x(K ) and x(1)) are expected to be negligible (in other words,
the dependency of ω(X ) on x(K ) is expected to be negligible).
With this assumption, the asymptotic variance is estimated

as [18]

VAIS[ f (x)] ≈ 1

N
WVβ[ f (x)], (B8)

where Vβ[ f (x)] is the variance of f (x); here, W � 1 is the
constant factor obtained from the variance of ω(X ), and is
independent of f (x). The factor W may be close to 1 when
the target distribution has few isolated modes [18].
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