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From soft- to hard-sphere fluids: Crossover evidenced by high-frequency elastic moduli
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The conventional (Zwanzig-Mountain) expressions for instantaneous elastic moduli of simple fluids predict
their divergence as the limit of hard-sphere (HS) interaction is approached. However, elastic moduli of a true
HS fluid are finite. Here we demonstrate that this paradox reveals the soft-to-hard-sphere crossover in fluid
excitations and thermodynamics. With extensive in silico study of fluids with repulsive power-law interactions
(∝r−n), we locate the crossover at n � 10–20 and develop a simple and accurate model for the HS regime. The
results open prospects to deal with the elasticity and related phenomena in various systems, from simple fluids
to melts and glasses.

DOI: 10.1103/PhysRevE.103.052117

I. INTRODUCTION

Understanding the mechanisms governing elastic moduli
of substances is an important problem [1–5]: Elastic moduli
are directly related to long-wavelength (sound) excitations—
phonons—which play a crucial role in condensed matter,
materials science, and soft matter.

For example, the celebrated Lindemann melting criterion
states [6] that a three-dimensional (3D) solid melts when the
vibrational amplitude of atoms around their equilibrium posi-
tions reaches about ∼0.1 of the interatomic distance. Since
the vibrational amplitude is dominated by long-wavelength
excitations, the melting temperature can be expressed in terms
of the shear and bulk moduli [7,8]. Another example is
the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young
(BKTHNY) theory of two-dimensional (2D) melting [9–14]:
The condition for dislocation unbinding, responsible for crys-
tal melting, can be expressed in terms of the (2D) shear and
bulk moduli. Additionally, there is a possibility to formulate
a 2D Lindemann-like criterion and relate it to the BKTHNY
mechanism [8,15]. The instantaneous bulk and shear moduli
are related to the α relaxation time in the framework of the
shoving model, thus playing an important role in the physics
of glass-forming liquids [16,17]. For instance, the temperature
dependence of the shear viscosity can be expressed via the
instantaneous shear modulus [18]. However, the effect of in-
teraction softness on elastic moduli and collective excitations
of fluids is still poorly understood.

The behavior of elastic moduli in systems with steeply
repulsive interactions has remained a rather controversial
issue for the last 50 years. The conventional (Zwanzig-
Mountain) expressions for the high-frequency (instantaneous)
bulk and shear moduli [19,20] predict their divergence as the
hard-sphere (HS) limit is approached from the side of soft
interactions [21,22]. However, this divergence is inconsistent
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with other observations. The shear and bulk moduli of a true
HS fluid are nonsingular and well defined [23], as well as
elastic moduli of HS solids [24–25] and HS glass [26]. Fi-
nite values of the bulk modulus follow from finite isothermal
and adiabatic sound velocities (evaluated from an appropriate
equation of state) [27]. Finally, the finite shear modu-
lus emerges from the analysis of transverse excitations in
fluids [28].

The origin of this “paradoxical” situation has been at-
tributed to the assumption of no structural relaxation upon
density change [29,30]. The latter is well justified for soft
interactions, but becomes unsuitable in the HS limit, because
of an intrinsic length scale—the HS diameter. Hence, the di-
vergence of the elastic moduli is artificial and the conventional
expressions are just inappropriate in the HS limit. However,
the question regarding where exactly the soft interaction stops
to be soft enough to use the Zwanzig-Mountain expressions
and how the HS limit is approached has remained obscure.

In this paper, we report on theoretical and extensive in
silico studies of crossover from the soft-sphere (SSp) to the
HS limit. Using molecular dynamics (MD) simulations, we
consider a system of particles interacting via the inverse-
power-law (IPL) pair repulsion, ϕ(r) = ε(σ/r)n, where ε and
σ are the energy and length scales, and n is the IPL exponent.
With the methods developed in Ref. [31], we analyze in detail
excitation spectra in dense IPL fluids with n = 8, 12, 20, 50,
100, and 200. We consistently compare the sound velocities
obtained in silico and theoretically using the SSp and HS
models, and discover that the crossover from the SSp to the
HS dynamics occurs in the range n � 10–20. For larger n a
simple theoretical approach is shown to provide good accu-
racy in estimating the elastic moduli.

II. MD SIMULATIONS

The equilibrium state of the IPL system is determined by a
single reduced parameter [32], γn = ρσ 3(ε/T )3/n, where ρ is
the particle density and T is the temperature (in energy units).
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FIG. 1. Phase diagram of the IPL system: The fluid-solid coexis-
tence region is bounded by the solid curves [33,34]; symbols denote
the fluid state points studied in this work.

The phase diagram of the IPL family is sketched in Fig. 1,
using available data [33,34]. In the HS limit, the phase state
is determined by the packing fraction, η = (π/6)ρσ 3, with
the freezing (melting) point at η f � 0.494 (ηm � 0.545) [35].
The symbols in Fig. 1 (cases A and B) denote the state points
studied in this work.

We performed MD simulations of N = 10 648 particles in
the canonical (NV T ) ensemble with Nosé-Hoover thermostat
and periodic boundary conditions in three dimensions. We
used dimensionless units of energy, length, and mass (ε = 1,
σ = 1, and m = 1), a cutoff radius rc = 7.5, and a numerical
time step 
t = 5 × 10−3√0.4/T . All simulations were per-
formed for 2 × 106 time steps, using the LAMMPS package
[36]. The first 5 × 105 steps were used for equilibration and
the following steps for the analysis.

The excitation spectra were obtained using the procedures
described in Refs. [31,37–40]. First, we calculated the veloc-
ity current spectra [31,41]:

CL,T (q, ω) =
∫

dt eiωt Re〈 jL,T (q, t ) jL,T (−q, 0)〉, (1)

where q and ω are the wave vector and the fre-
quency; jL = q(q · j)/q2 and jT = j − jL are the longitu-
dinal and transverse components of the current j(q, t ) =
N−1 ∑

s vs(t ) exp(iqrs(t )); and vs(t ) = ṙs(t ) is the velocity of
the sth particle. In isotropic fluids the directional dependence
vanishes: CL,T (q, ω) ≡ CL,T (q, ω). The total current spectra
C(q, ω) = CL(q, ω) + 2CT (q, ω) were fitted at each q value
with the two-oscillator model [31]:

C(q, ω) ∝ �hf

(ω − ωhf )2 + �2
hf

+ �hf

(ω + ωhf )2 + �2
hf

+ 2�lf

(ω − ωlf )2 + �2
lf

+ 2�lf

(ω + ωlf )2 + �2
lf

, (2)

where ωhf,lf and �hf,lf are the frequencies and damping rates
of the high- and low-frequency branches.

III. RESULTS

The excitation spectra in fluids are shown in Figs. 2(a)–
2(c) and 2(d)–2(f), for the state points of cases A and B in
Fig. 1. The low- and high-frequency dispersion curves shown
in Figs. 2(a) and 2(d) behave similarly to those reported in
Refs. [31,38–40]. In the long-wavelength limit, as usual, these
branches are attributed to the longitudinal and transverse col-
lective modes [31,40]. Remarkably, the branch ωlf behaves
quasiuniversally (in reduced units), being almost independent

FIG. 2. Collective excitation spectra in dense IPL fluids: The results are shown for state points of (a–c) case A and (d–f) case B in Fig. 1.
The high- and low-frequency branches in (a) and (d) correspond to the longitudinal and transverse modes in the long-wavelength limit. Here
vT = √

T/m is the thermal velocity and a = (4πρ/3)−1/3 is the Wigner-Seitz radius. Panels (b) and (c) and panels (e) and (f) show the ratios of
the oscillation frequency to the damping rate for the high- and low-frequency branches, respectively. Below the grey dashed lines ω/� = 1/

√
3,

the branches become overdamped [31].
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of the IPL exponent, in contrast to ωhf . Here, the reduced
maximum frequency increases with n, demonstrating clear
positive sound dispersion for n � 20.

In Figs. 2(b), 2(c), 2(e), and 2(f), the ratios ω/� of the
real frequency to the damping rate for the high- and low-
frequency branches are shown to illustrate the quality factor
of the oscillations. The horizontal dashed lines correspond to
ω/� = 1/

√
3, below which even oscillating modes with ω 	=

0 become overdamped [31,37]; ω/� = 0 corresponds to the
gapped excitations of the low-frequency (transverse) branch.
The ratio ω/� grows monotonically for transverse excitations
in the intermediate q regime and is systematically larger for
softer potentials (smaller n). On the contrary, the factor ω/�

of the high-frequency branch has a maximum in the vicinity of
qa � 1.1 in the SSp regime (the position of the maximum cor-
relates with the transition from the hydrodynamic regime to
the limit of individual particles [31]), but drops monotonously
with qa in the HS regime (n � 20). The qualitative changes
in the excitation spectra at n � 20, highlighted in Fig. 2,
point to a crossover from soft- to hard-sphere fluid collective
dynamics.

To analyze this crossover in detail, consider the long-
wavelength excitations in Fig. 2. The longitudinal (bulk) and
transverse (shear) sound velocities are evaluated from

cs = lim
q→0

∂ωhf

∂q
, ct = lim

q→qg+0

∂ωlf

∂q
, (3)

where ct is calculated near the gap in reciprocal space (q gap),
corresponding to the minimum wave number qg, below which
ωlf = 0, and where typically ωlf � ct (q − qg) [31]. With the
linear fitting (3) of the MD excitation spectra (Fig. 2), we have
obtained the sound velocities.

The sound velocities deduced from MD simulation contain
information about the instantaneous bulk and shear moduli
[29] via the relations K∞ = mρc2

s and G∞ = mρc2
t , respec-

tively. For repulsive interactions, including the HS limit, the
instantaneous and adiabatic moduli are numerically close
[29,30,42], and we do not distinguish between them in the
following. In the conventional SSp paradigm, the moduli are
expressed via the pair potential ϕ(r) and the radial distribution
function (RDF) g(r) [19,20]:

G∞ = ρT + 2πρ2

15

∫ ∞

0
drr3g(r)[rϕ′′(r) + 4ϕ′(r)],

K∞ = 5

3
ρT + 2πρ2

9

∫ ∞

0
drr3g(r)[rϕ′′(r) − 2ϕ′(r)]. (4)

The first terms in expressions for G∞ and K∞ correspond to
the kinetic (ideal gas) contribution, while the second ones are
the configurational (excess) contribution, Gex and Kex, which
are dominant in dense fluids. In IPL fluids Gex and Kex are di-
rectly related to the excess pressure Pex as Gex = (n − 3)Pex/5
and Kex = (n + 3)Pex/3.

The paradoxical divergence of elastic moduli now becomes
particularly clear: As n increases, Gex and Kex diverge as ∝n,
because Pex remains finite in the HS limit. The spectra in
Fig. 2, however, evidence that this is not the case and the
actual elastic moduli (∝c2

s and c2
t ) are finite. This proves that

the SSp expressions (4) become unsuitable at large n. But
where exactly do soft spheres become not so soft any more?

To answer the question, we have constructed a simple HS
asymptotic model for elastic moduli at large n. We start with
the Carnahan-Starling (CS) equation of state [43] of the HS
fluid. The pressure is written as

P(ρ, T ) = ρT Z (η), Z (η) = 1 + η + η2 − η3

(1 − η)3
, (5)

where Z (η) is the CS compressibility, and the effective HS
packing fraction η depends on the effective HS diameter
deff specified below. The adiabatic bulk modulus Ks follows
straightforwardly from the factor Z [27,44]:

Ks = ρT
[
Z (η) + ηdZ (η)/dη + 2

3 Z2(η)
]
. (6)

For the shear modulus, we combine the expression for G∞
derived by Miller [23,30] with the approximation for g′(1)
reported in Ref. [45]:

G∞ = ρT

[
1 − 8

5
ηg′(1)

]
, g′(1) = −9η(1 + η)

2(1 − η)4
, (7)

where g′(1) denotes the reduced derivative at contact, g′(1) =
limε→0 [dg(x)/dx]x=1+ε with x = r/d .

The final step is to determine the effective HS diameter deff .
Several approximations have been proposed over the years;
among the most familiar are those by Rowlinson, Barker and
Henderson, and Stillinger [46–49]. For the IPL potential they
result in the generic condition

deff = Aσ (ε/T )1/n, (8)

where A is a numerical factor, which tends to unity as n →
∞, but appears approximation dependent at finite n. In the
considered case the Rowlinson and Barker and Henderson
(RBH) approximations coincide and we get A = �(1 − 1/n).
The Stillinger approximation yields A = (1/ ln 2)1/n. Yet an-
other approximation, which appears particularly suitable for
the problem at hand, results from equating the potential in-
teraction energy at deff to the average kinetic energy 3T/2,

FIG. 3. Reduced longitudinal sound velocity cs/vT versus the
softness parameter s = 1/n of the IPL fluids for (a) case A and
(b) case B. Symbols correspond to results from MD simulation. The
dashed and solid curves correspond to the SSp and the best HS
asymptote, Eqs. (4) and (6), respectively. Two additional dash-dotted
curves in the HS regime correspond to the effective HS diameters
estimated using RBH (upper) and Stillinger (lower) approaches.
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FIG. 4. Reduced transverse sound velocity ct/vT versus the soft-
ness parameter of the IPL fluid. The HS asymptotes are calculated
using Eq. (7). Other notation is the same as in Fig. 3.

resulting in A = (2/3)1/n. For a given effective HS diameter,
the sound velocities are evaluated from cs = √

Ks/ρm and
ct = √

G∞/ρm using Eqs. (6) and (7).
The theoretical and MD results are compared in Figs. 3

and 4, showing our main result. Here, the sound velocities
expressed in units of the thermal velocity vT = √

T/m, are
plotted. The dashed curves correspond to SSp (Zwanzig-
Mountain) expressions, illustrating their range of suitability.
The SSp description fails at n � 20, if judged from cs in
Fig. 3 and at n � 10 if considering ct in Fig. 4. The red solid
curves correspond to the HS asymptote with the effective HS
diameter evaluated from Eq. (8) with A = (2/3)1/n (other ap-
proaches converge to the same result at n → ∞, but somewhat
overestimate elastic moduli at finite n).

IV. DISCUSSION

Our results can be useful to better understand a broad range
of previous studies and to suggest future research directions,
and are not limited to modeling IPL fluids. In dense fluids,
the motion of an atom is dominated by repulsion from its
nearest neighbors. Hence, the system properties are mainly
governed by the shape of the interaction potential in a rela-
tively narrow range of distances, near the average interparticle
separation [50,51]. In this region, the (extended) IPL potential
can accurately fit the actual potential [52]. The fit defines an
effective IPL exponent neff , regulating the effective softness
of the actual interaction.

For example, the typical effective IPL exponent for the
Lennard-Jones (LJ) potential, describing liquified noble gases,
is neff � 18 (at moderate densities) [53]: This might appear
to be surprising, but the reason is that the attractive (∝r−6)
term of the LJ potential makes its repulsive short-range branch

considerably steeper than just the ∝r−12 repulsive term. Only
at high densities does neff approach 12 [52]. This should be
kept in mind when analyzing instantaneous elastic moduli (in
particular, the shear modulus) in liquified noble gases [54].
The same obviously applies to generalized LJ m-n potentials,
in particular at m > 12.

In many liquid metals, the interactions can be approx-
imated by the IPL potential. Extensive density functional
theory (DFT) calculations of 58 liquid elements at their triple
points demonstrate that most metallic elements exhibit strong
correlations between virial and potential energy and thus obey
“hidden scale invariance” even at these relatively low densities
[55]. The structure and phase diagrams of many such elements
are consistent with the IPL model. Typical DFT computed
density scaling exponents yield neff � 10. However, in some
cases neff are quite large. For instance, for Rh, Cd, Os, Ir, and
Pt we observe neff � 15 with an extreme value neff � 23.7
for Au [55]. A careful account of elastic properties of these
systems is warranted.

Recently, a microscopic model for the temperature depen-
dence of the shear viscosity and fragile-strong behavior of
liquid metals in the supercooled regime has been developed by
combining the shoving model with the SSp expression for G∞
[18]. The repulsion steepness of the interaction potential has
emerged as the crucial parameter governing the glass fragility,
which has been shown to increase monotonously with the
repulsion steepness. This result is heavily based on the SSp
expression for G∞, and can be naturally tested with a more
appropriate expression for G∞ in the regime of steep HS-like
interactions.

V. CONCLUSION

To conclude, the comprehensive analysis of different
approximations for classical liquids, considered from macro-
scopic (elastic properties) and microscopic (excitation spec-
tra) points of view, clearly reveals when soft spheres become
hard spheres. The results have allowed us to unravel the para-
doxical divergences of classical Zwanzig-Mountain formulas
and to determine the range of their suitability, providing a
useful input for future studies of fluids and glasses, from
atomic to macromolecular systems.
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