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We study the relation between stochastic thermodynamics and nonequilibrium thermodynamics by evaluating
the entropy production and the relation between fluxes and forces in a harmonic system with N particles in
contact with N different reservoirs. We suppose that the system is in a nonequilibrium stationary state in a first
phase and we study the relaxation to equilibrium in a second phase. During this relaxation, we can identify the
linear relation between fluxes and forces satisfying the Onsager reciprocity and we obtain a nonlinear expression
for the entropy production. Only when forces and fluxes are small does the entropic production turn into a
quadratic form in the forces, as predicted by the Onsager theory.
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I. INTRODUCTION

At the beginning of the 19th century, the out-of-
equilibrium statistical mechanics received a major boost
from the experimental observations of the Brownian motion
[1,2] and the membrane hydrodiffusion [3]. The first theo-
ries to explain these phenomena were developed by Einstein
[4,5], Smoluchowski [6], and Langevin [7], which laid the
foundations for the use of stochastic processes in physics.
Importantly, these approaches provided a definitive test of the
atomic hypothesis [8]. Starting from this historical milestone,
the Langevin stochastic equation was widely used and its
properties were studied by introducing the probability density
of the variables involved [9–13], thus developing the modern
Fokker-Planck theory [14–17]. More recently, Sekimoto in-
troduced the concepts of heat and work for a given stochastic
trajectory [18,19], creating a conceptual link between thermo-
dynamics and stochastic evolution of a system. Similarly, the
concepts of entropy (total entropy, entropy flow, and entropy
production) were associated with Langevin trajectories, com-
plementing the aforementioned thermodynamic view [20–22].
This is the birth of the so-called stochastic thermodynam-
ics [23,24]. Subsequently, the introduction of the concepts
of heat, work, and entropy into stochastic dynamics has al-
lowed the principles of thermodynamics to be rediscovered on
the basis of the Langevin and Fokker-Planck methodologies
[25–30]. Furthermore, several fundamental fluctuation theo-
rems have been derived in this context [31–36].

In parallel with the development of stochastic thermody-
namics, the remarkable history of nonequilibrium thermody-
namics must be outlined [37,38]. In this case, the macroscopic
thermodynamics of systems at equilibrium has been extended
to slightly nonequilibrium states. The second principle of
thermodynamics is crucial to this development. In fact, to
generalize thermodynamics to nonequilibrium processes, the
explicit expression for the entropy production is necessary.
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In the early 1930s, Onsager theory predicted that the rate
of entropy production is always given by dSp

dt = ∑N
i=1 JiXi,

where the Xi are the thermodynamic forces and the Ji are
the corresponding fluxes. The theory is completed by the
linearized phenomenological equations Ji = ∑N

j=1 Li jX j ,
where Li j are the phenomenological coefficients. Recipro-
cal relations Li j = L ji have been introduced by Onsager on
the base of the microscopic reversibility [39,40], and have
been extensively experimentally verified (see, for instance,
Ref. [41]). Moreover, in the presence of physical variables
that are odd under time reversal, the Onsager reciprocal re-
lations must be replaced by the Onsager-Casimir generalized
relations [42,43]. The theory has been further extended by de
Groot and Mazur for considering vector and tensor quantities
with applications to heat conduction, diffusion, viscosity, and
electromagnetic phenomena [44,45]. More recent contribu-
tions deal with generalized Onsager reciprocal relations for
states far from the equilibrium [46], and the demonstration
of the Onsager relations with broken time-reversal symmetry
[47].

Today, thermodynamic theories play a crucial role in
the understanding of several nanosystems and physical phe-
nomena, including macromolecular folding and unfolding
[48–50], molecular motors [51,52], muscles behavior [53,54],
adhesion processes [55–57], micro- and nanoheat engines
[58–60], micromagnetism [61–65], and heat transfer in nanos-
tructures [66–68], just to name a few.

For these reasons, in this work we want to further inves-
tigate the explicit relation between the stochastic thermody-
namics described by Langevin and Fokker-Planck equations
and the nonequilibrium thermodynamics defined by the On-
sager formalism. In particular, we want to understand if and
how the thermodynamic fluxes and the entropy production
calculated with stochastic thermodynamics can coincide with
those predicted by Onsager’s theory. That is, we would like
to find the fluxes as a linear function of the thermodynamic
forces (imposed by a given protocol), and the entropy pro-
duction as a quadratic function of the same forces (at least for
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small forces). We would also like both of these functions to be
defined by means of the same phenomenological coefficients,
also satisfying the Onsager reciprocal relations.

As a matter of fact, there are many works in the literature
dealing with the calculation of the entropic production and/or
the Onsager coefficients for stochastic systems of different
types and under different thermodynamic conditions, as dis-
cussed below.

A widely studied situation corresponds to the station-
ary regime. Concerning linear Langevin systems [69,70],
the possible irreversibility of fluctuations in nonequilibrium
steady states was first recognized by Lax [71]. More re-
cently, the reversible and irreversible stationary states of
Ornstein-Uhlenbeck processes have been further investigated
[72], and several expressions for the entropy production have
been elaborated [73]. Importantly, in these expressions both
even and odd variables under time reversal are considered.
Moreover, the meaning of the thermodynamic forces in close-
to-equilibrium media has been recently clarified in Ref. [74],
where the authors considered the structure of the McLennan
steady nonequilibrium ensemble [75]. These approaches have
been generalized to the study of linear quantum systems as
well [76,77]. Also the study of the entropy production for non-
Markovian dynamical systems has been recently addressed
[78,79]. Finally, expressions for the entropy production in
irreversible thermodynamics with friction have been estab-
lished [80–82].

Another complementary line of research concerns the pe-
riodically driven stochastic system [83]. Entropy production,
Onsager coefficients, and efficiency have been determined
for a Brownian Carnot cycle and other periodic micro-
and nanoheat engines [84–86]. Then, a general theory for
the linear stochastic thermodynamics of periodically driven
Markovian systems has been developed by considering all
Fourier components of the involved quantities [87,88]. Also,
systems with spatially periodic potentials or sequentially ex-
posed to different reservoirs have been investigated to better
understand the implications of the Onsager reciprocity rela-
tions [89–91]. Fluctuation theorems have been used to bound
the thermodynamic currents in periodically driven systems
[92,93]. And finally, entropy production, heat capacity, and
heat transport properties are studied in harmonic systems un-
der time-dependent periodic drivings [94,95].

In general, the entropic production rate is defined through
integrals involving the probability currents [see, e.g., Eqs. (15)
and (62), for systems with 1 or N degrees of freedom],
which are difficult to calculate for most physical systems and
nonequilibrium states. However, their calculation becomes
accessible when the system is linear or when we work under
stationary or periodic conditions. In the latter two cases, the
entropic production is opposite to the entropic flow, and there-
fore it can be determined from the heat flows in the system.
These approaches have been largely developed and general-
ized in all the above-mentioned works. Here, as a complement
to previous efforts, we limit our analysis to a linear system
but we work in a nonequilibrium regime, characterized by the
relaxation to the thermodynamic equilibrium. The idea is to
show that we can retrieve the structure of the Onsager theory
during this relaxation. First of all, for pedagogical purpose,
we introduce a very simple linear system with one degree of

FIG. 1. Example of the harmonic system with N = 5 particles
and with interactions described by a complete graph. The elastic con-
stants k0i link each point particle i with the fixed point x0i. Moreover,
the elastic constants ki j = k ji link the point particles i and j. Each
particle is in contact with a reservoir at temperature Ti.

freedom to show the identification of thermodynamic fluxes
and forces with the characteristic quantities of stochastic mod-
els. In a second step, we consider a linear system composed
of N particles described by a harmonic interaction efficiently
represented by a complete graph. The coefficients of the graph
represent the elastic constants and are completely arbitrary.
This means that there is no a priori symmetry in the system.
The particles are in contact with N reservoirs with different
variable temperatures Ti (see Fig. 1). In the initial phase, the
temperatures are constant in time and different from each
other so that the system can reach a nonequilibrium stationary
state (NESS), characterized by constant heat flows among par-
ticles and a continuous entropy production. At a certain point,
the temperatures of the thermal baths are instantaneously set
to the same value T , thus inducing the relaxation of the system
towards equilibrium. It is precisely at this stage that we can
identify the thermodynamic forces and fluxes and observe
whether the structure of Onsager’s theory is respected. For an
arbitrary nonequilibrium regime (namely, arbitrary jumps T −
Ti), we are able to obtain the linear relation between fluxes and
forces, described by symmetric Onsager coefficients. We also
provide an explicit expression of these coefficients in terms of
the elastic constants characterizing the complete graph of the
interactions. Again in the case with arbitrary jumps T − Ti,
we find a rate of entropy production that is nonlinear in
thermodynamic forces (similar to Ref. [77], dealing with open
bosonic Gaussian systems), thus representing a nonlinear gen-
eralization of the Onsager theory. Only when the jumps T − Ti

are sufficiently small, the rate of entropy production becomes
equal to the classical Onsager quadratic form. This analysis
allows a deeper understanding of the mathematical structure
of the Onsager theory with arbitrary forces, and is useful to
elucidate the relation between stochastic thermodynamics and
nonequilibrium thermodynamics.

II. INTRODUCTORY ONE-DIMENSIONAL EXAMPLE

To begin with, we consider a simple example useful to
introduce the idea of relaxation to equilibrium in stochastic

052116-2



ENTROPY PRODUCTION AND ONSAGER RECIPROCAL … PHYSICAL REVIEW E 103, 052116 (2021)

thermodynamics. We suppose to observe the one-dimensional
motion of a particle (of mass m) subjected to an elastic force
(with spring constant k), to an external force f , and embedded
in a Langevin heat bath at temperature T . The equation of
motion can be written in the following form:

ẋ = p

m
, ṗ = −kx + f − βp +

√
kBmβT n(t ), (1)

where x and p are position and momentum of the particle,
respectively. Moreover, β is the friction coefficient (or col-
lision frequency), kB is the Boltzmann constant, and n(t ) is
a Gaussian stochastic process with average value 〈n(t )〉 =
0 ∀t , and correlation 〈n(t1)n(t2)〉 = 2δ(t1 − t2) ∀ t1 and t2
[16,17]. Here, the average values are calculated over the noise
statistics. In order to consider an arbitrary out-of-equilibrium
evolution, we assume arbitrary functions T = T (t ) and f =
f (t ), applied to the system. For the sake of simplicity, and
to minimize nonessential difficulties, we consider an over-
damped system (| ṗ| � β|p|), where the inertial effects can be
neglected as follows:

ẋ = − k

mβ
x + f

mβ
+

√
kBT

mβ
n(t ). (2)

The properties of this first order Langevin equation can be
studied through the associated Fokker-Planck equation, de-
scribing the dynamics of the density probability W (x, t ). In
the overdamped case it is typically named the Smoluchowski
equation and takes the form

∂W

∂t
= ∂

∂x

(
k

mβ
xW

)
− ∂

∂x

(
f

mβ
W

)
+ kBT

mβ

∂2W

∂x2
(3)

or, equivalently,

∂W

∂t
= −∂J

∂x
, (4)

where we introduced the quantity

J = − k

mβ
xW + f

mβ
W − kBT

mβ

∂W

∂x
. (5)

We underline that Eq. (4) represents a one-dimensional
continuity equation for the density probability. Despite the
simplicity of this system, we show now that it is sufficient
to reconstruct the two classical principles of thermodynamics.

We start by describing the first principle, stating the energy
balance for the system. If we look at the underdamped version
in Eq. (1), we can simply define the total internal energy as
E = 1

2 kx2 + 1
2

p2

m . However, if we consider the overdamped
version in Eq. (2), we have to redefine the total energy as
E = 1

2 kx2, where the kinetic energy is not considered because
of the absence of inertia. Consistently, the rate of average
internal energy can be elaborated as follows:

d

dt
〈E〉 = d

dt

〈
1

2
kx2

〉
= d

dt

∫ +∞

−∞

1

2
kx2W dx

=
∫ +∞

−∞

1

2
kx2 ∂W

∂t
dx = −

∫ +∞

−∞

1

2
kx2 ∂J

∂x
dx, (6)

where we can now use an integration by parts in the form∫ +∞

−∞
φ

∂ψ

∂x
dx = −

∫ +∞

−∞
ψ

∂φ

∂x
dx. (7)

In Eq. (6), the average value is calculated with respect to the
density W (x, t ) (we adopted the same symbol but is not the
same average as that of noise n above). So doing, we simply
obtain

d

dt
〈E〉 =

∫ +∞

−∞
Jkx dx

=
∫ +∞

−∞
J (kx − f )dx +

∫ +∞

−∞
J f dx, (8)

where in the last line we added and subtracted the same quan-
tity representing the integral of J f . This quantity corresponds
to the rate of work done on the system by the external force f .
It can be formally proved as follows:∫ +∞

−∞
J f dx =

∫ +∞

−∞

(
− k

mβ
xW + f

mβ
W − kBT

mβ

∂W

∂x

)
f dx

=
(

− k

mβ
〈x〉 + f

mβ

)
f . (9)

Then, by averaging the overdamped Langevin equation stated
in Eq. (2), we get 〈ẋ〉 = 1

mβ
( f − k〈x〉), and therefore we have

that ∫ +∞

−∞
J f dx = f 〈ẋ〉,

which exactly corresponds to the rate of work done on the
system by the force f . Moreover, the first term in the second
line of Eq. (8) represents the heat rate entering the system. We
have finally obtained the first principle of thermodynamics in
the form

d

dt
〈E〉 = d

dt
〈Q〉 + d

dt
〈L〉, (10)

where the heat rate is d
dt 〈Q〉 = ∫ +∞

−∞ J (kx − f )dx and the rate

of work is d
dt 〈L〉 = ∫ +∞

−∞ J f dx = f 〈ẋ〉.
To further substantiate the expression of the heat rate, we

study the time variation of the total entropy of the system,
eventually constructing the second principle. First, we intro-
duce the entropy as follows:

S = −kB

∫ +∞

−∞
W ln W dx, (11)

and we perform its time derivative

dS

dt
= −kB

∫ +∞

−∞

∂W

∂t
ln W dx = kB

∫ +∞

−∞

∂J

∂x
ln W dx

= −kB

∫ +∞

−∞
J
∂ ln W

∂x
dx = −kB

∫ +∞

−∞
J

1

W

∂W

∂x
dx.

(12)

Then, we can substitute ∂W
∂x obtained from Eq. (5), and we get

dS

dt
= −kB

∫ +∞

−∞
J

1

W

(
− mβ

kBT
J − k

kBT
xW + f

kBT
W

)
dx

= 1

T

∫ +∞

−∞
J (kx − f )dx + 1

T

∫ +∞

−∞

mβ

W
J2dx, (13)

052116-3



STEFANO GIORDANO PHYSICAL REVIEW E 103, 052116 (2021)

where the first term represents the entropy flow generated by
the heat transfer between thermal bath and system and the
second term represents the entropy production generated by
the irreversible character of the process. We can indeed write

dS

dt
= 1

T

d〈Q〉
dt

+ dSp

dt
, (14)

which represents the second principle of thermodynamics,
where we introduced the entropy production rate as

dSp

dt
= 1

T

∫ +∞

−∞

mβ

W (x, t )
J (x, t )2dx. (15)

The positive character of this quantity is perfectly consistent
with the second principle of thermodynamics. The tech-
nique, here presented for obtaining the two thermodynamic
principles from the Langevin overdamped equation for a one-
dimensional system, has been extended to the underdamped
case with an arbitrary number of particles [26–30], and to
holonomic systems with an arbitrary number of generalized
coordinates as well [96,97].

We define now specific conditions on the system to prove
that the formalism of the stochastic thermodynamics (based
on the Langevin and Fokker-Planck equations and on their
further developments) is able to reproduce the structure of
the classical nonequilibrium thermodynamics (based on the
Onsager theory). We suppose that the system is at ther-
modynamic equilibrium for t < 0 with f = f1 and T = T1.
Then, for t = 0, we suddenly change these values to f = f2

and T = T2, and we observe the relaxation for t � 0 of the
system to the new thermodynamic equilibrium. The math-
ematical analysis of this problem is very simple since the
Langevin equation stated in Eq. (2) is linear and results in an
Ornstein-Uhlenbeck stochastic process [69,70]. In spite of the
simplicity of this problem, we want to stress here that the re-
laxation to the thermodynamic equilibrium can be represented
by the formalism of the classical nonequilibrium thermody-
namics where, in general, the entropy production is given by
dSp

dt = ∑N
i=1 JiXi, where the Xi are the so-called thermo-

dynamic forces and the Ji are the fluxes described by the
linearized phenomenological equations Ji = ∑N

j=1 Li jX j ,
with Li j being the phenomenological coefficients [37]. These
coefficients, in the absence of an external magnetic field,
fulfill the Onsager reciprocal relations Li j = L ji [39,40].
In our case, we deal with a simple linear one-dimensional
system, where forces and fluxes are uncoupled, and therefore
we cannot observe this reciprocal property. However, in a
following section we will discuss an N-dimensional system
with coupled forces and fluxes.

At equilibrium, for t < 0, the average value 〈x〉0 of the
position is simply given as

〈x〉0 = f1

k
, (16)

and its variance �0 = 〈(x − 〈x〉0)2〉 is given by

�0 = kBT1

k
, (17)

as one can easily prove, i.e., by means of the Ornstein-
Uhlenbeck theory [69,70], or by the equilibrium Gibbs

distribution. Since the system is linear, the probability density
is Gaussian and takes the explicit form

W0(x) =
√

k

2πkBT1
e− 1

2 (x− f1
k )2 k

kBT1 , (18)

which is valid for any t < 0. For t � 0, the evolution of 〈x〉
and � = 〈(x − 〈x〉)2〉 is governed by the equations [69,70]

d〈x〉
dt

= − k

mβ
〈x〉 + f2

mβ
, (19)

d�

dt
= − 2k

mβ
� + 2

kBT2

mβ
, (20)

with solutions

〈x〉 = f1 − f2

k
e− k

mβ
t + f2

k
, (21)

� = kB
T1 − T2

k
e− 2k

mβ
t + kBT2

k
. (22)

Of course, also for t � 0, the probability density W (x, t ) is
Gaussian,

W (x, t ) =
√

1

2π�
e− 1

2�
(x−〈x〉)2

, (23)

with average value and variance given in Eqs. (21) and (22).
Of course, we have W (x, 0) = W0(x). The relaxation to the
new thermodynamic equilibrium generated by the values f2

and T2 can be described by the fluxes J1 = d〈x〉
dt and J2 =

d〈Q〉
dt , representing the average velocity of the particle and

the heat rate exchanged with the thermal bath, respectively.
Indeed, the particle must change its position and its average
kinetic energy to attain the new thermodynamic equilibrium.
For t � 0, the first flux is directly obtained from Eq. (21), as
follows:

J1 = d〈x〉
dt

= f2 − f1

mβ
e− k

mβ
t
. (24)

The second flux can be calculated through the expression

J2 = d〈Q〉
dt

=
∫ +∞

−∞
J (kx − f2)dx, (25)

where J is the flux of the Smoluchowski equation

J = − k

mβ
xW + f2

mβ
W − kBT2

mβ

∂W

∂x
. (26)

Here, we considered f2 and T2 in Eq. (5) since we are working
for time t > 0. The substitution of Eq. (26) in Eq. (25) leads
to

J2 = 2
f2k

mβ
〈x〉 − k2

mβ
(� + 〈x〉2) + k

kBT2

mβ
− f 2

2

mβ
, (27)

where we can use Eqs. (21) and (22) to get the final result for
J2 in the form

J2 = d〈Q〉
dt

= k
kB(T2 − T1)

mβ
e− 2k

mβ
t − ( f2 − f1)2

mβ
e− 2k

mβ
t
. (28)

In order to have a complete picture of the system evolution
for t � 0, it is important to obtain an explicit expression for
the quantities entering the second principle of thermodynam-
ics, as stated in Eq. (14). First of all, we consider the total
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entropy and, for the Gaussian distribution defined in Eq. (23),
we have

S = −kB

∫ +∞

−∞
W ln W dx = kB

2
ln(2πe�). (29)

Hence we can calculate the total entropy rate during the relax-
ation to the equilibrium through the following derivative:

dS

dt
= kB

2

1

�

d�

dt
= − k

mβ

kB(T1 − T2)e− 2k
mβ

t

(T1 − T2)e− 2k
mβ

t + T2

, (30)

where we introduced the expression of the variance given
in Eq. (22). The entropy flow is simply given by 1

T
d〈Q〉

dt and
therefore it is sufficient to divide by T the heat flow given
in Eq. (28). To conclude, we consider the entropy production
rate. It can be calculated either by its definition in Eq. (15)
or by using the second principle stated in Eq. (14). Both
procedures lead to the following result:

dSp

dt
= 1

T2

∫ +∞

−∞

mβ

W
J2dx = dS

dt
− 1

T2

d〈Q〉
dt

= k

mβ
kB

(
T2 − T1

T2

)2 e− 4k
mβ

t

1 − T2−T1
T2

e− 2k
mβ

t

+ 1

mβ
( f2 − f1)2 1

T2
e− 2k

mβ
t
. (31)

With the aim of reconciling these results of the stochas-
tic thermodynamics with the known structure of out-of-
equilibrium thermodynamics, we consider a small deviation
between the initial state and the final state. It means that we
assume δT = T2 − T1 and δ f = f2 − f1 as arbitrarily small
quantities, and we rewrite the fluxes J1 and J2 to the first
order in δT and δ f . We simply get

J1 = 1

mβ
δ f e− k

mβ
t
, (32)

J2 = k
kB

mβ
δT e− 2k

mβ
t
. (33)

We observe that the second term in Eq. (28) is not consid-
ered in Eq. (33) since it is of the second order in δ f . This
shows that stochastic thermodynamics can provide higher
order information than nonequilibrium thermodynamics. We
also underline that Eqs. (32) and (33) represent a first form
of the phenomenological equation mapping thermodynamic
fluxes and forces. To better understand the structure of the
nonequilibrium thermodynamics, we rewrite the entropy pro-
duction rate under the same assumptions, as follows:

dSp

dt
= k

mβ
kB

(
δT

T2

)2

e− 4k
mβ

t + 1

mβ
(δ f )2 1

T2
e− 2k

mβ
t

= J1X1 + J2X2, (34)

where we introduced the thermodynamic forces

X1 = δ f

T2
e− k

mβ
t
, (35)

X2 = δT

T 2
2

e− 2k
mβ

t
. (36)

So doing, the linear phenomenological equations for the sys-

tem are in the form J1 = T2
mβ

X1 and J2 = k kBT 2
2

mβ
X2. It

means that L11 = T2
mβ

, L22 = k kBT 2
2

mβ
, and L12 = L21 = 0.

Moreover, the rate of entropy production assumes the clas-
sical quadratic form dSp

dt = L11X 2
1 + L22X 2

2 . We have that
L12 = L21 = 0 since the system is linear. This is a very
simple example but is useful to understand that the expression
of the entropy production rate given in Eq. (15) is perfectly
compatible with the structure of the out-of-equilibrium ther-
modynamics. It is worth noticing that this structure can also be
recognized by simply observing the system for t = 0. Indeed,
the deviations δ f and δT are able to instantaneously generate
thermodynamic forces and the corresponding fluxes, when
applied to the system. It means that it is not necessary to
solve the equations describing average values and covariances
during the relaxation to the equilibrium to identify the phe-
nomenological coefficients. This point is useful to study more
complex systems, as discussed in the next section.

III. OVERDAMPED N-DIMENSIONAL SYSTEM

In this section, we consider a system described by N de-
grees of freedom, which is at NESS for t < 0, and that shows
a relaxation to equilibrium for t � 0. The system is harmonic
and governed by overdamped Langevin equations with N
different thermal baths. This assumption allows us to use the
results of the Ornstein-Uhlenbeck theory. We prove that the
relaxation to the equilibrium can be described by a linear map
between thermodynamic fluxes and forces, with phenomeno-
logical coefficients satisfying the Onsager reciprocal relations.
Moreover, for small forces, the rate of entropy production
can be written as a quadratic form in the thermodynamic
forces, defined through the same set of phenomenological
coefficients.

A. System definition

We consider an elastic network composed of N point par-
ticles with positions �x = (x1, . . . , xN ) ∈ IRN on the x axis and
interacting through the potential energy

V (�x) = 1

2

N∑
i=1

k0i(xi − x0i )
2 + 1

4

N∑
i=1

N∑
j=1

ki j (xi − x j )
2, (37)

stating that each point particle i is connected with all the
others j 	= i and with a fixed point x0i. The elastic constants
k0i > 0 link each point particle i with the fixed point x0i. More-
over, the elastic constants ki j = k ji > 0 (with knn = 0 ∀n =
1, . . . , N) link the point particles i and j over the complete
graph describing the elastic network (see Fig. 1). We underline
that this is the most complex case of elastic interaction among
the N particles. The network, or equivalently the complete
graph, is arbitrarily heterogeneous. In addition, we suppose
that all the point particles have a mass m and that they are
embedded in thermal baths with the same collision frequency
β but with different temperatures Ti. We adopted the same
values m and β for all point particles for the sake of simplicity
but all the following results could also be obtained with het-
erogeneous masses and collisions frequencies. We underline
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that a nonequilibrium thermodynamic approach for complex
networks or graphs is developed in Ref. [98] from a different
point of view. The overdamped dynamics of our system is
described by the following system of stochastic differential
equations:

ẋi = − 1

mβ

∂V (�x)

∂xi
+

√
kBTi

mβ
ni(t ), (38)

where the elastic forces can be determined by deriving the
potential energy

−∂V (�x)

∂xi
= −k0i(xi − x0i ) −

N∑
j=1

ki j (xi − x j ), (39)

and where the noises satisfy the relations 〈ni(t )〉 = 0 and
〈ni(t1)n j (t2)〉 = 2δi jδ(t1 − t2) [16,17]. In this section we study
the temperature-related thermodynamic forces but to simplify

the analysis we ignore the displacement-related thermody-
namic forces. It means that, unlike the previous section, we
do not take into consideration mechanical forces applied to
the particles. This assumption also stems from the fact that in
linear systems the thermal and mechanical effects are uncou-
pled and thus the corresponding Onsager cross coefficients are
zero. Since we are interested in studying Onsager relations in
stochastic thermodynamics, we restrict ourselves to the purely
thermal case.

We first analyze the general properties of the out-of-
equilibrium evolution of the system in the most general case
with arbitrarily time-varying thermostats Ti = Ti(t ). To carry
out this analysis, the main system of equations can be rewrit-
ten in matrix form as follows:

d�x
dt

= − 1

mβ
(K�x − �f0) + G�n(t ), (40)

where we introduced the vectors ( �f0)i = k0ix0i and (�n)i = ni

and the matrices G = diag(
√

kBTi
mβ

) and

K =

⎡
⎢⎢⎢⎣

k01 + ∑
j 	=1 k1 j −k12 −k13 . . .

−k12 k02 + ∑
j 	=2 k2 j −k23 . . .

−k13 −k23 k03 + ∑
j 	=2 k3 j . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦. (41)

Here, diag(ai ) represents a diagonal matrix with the elements
ai on the main diagonal (i = 1, . . . , N ). This is a standard
Ornstein-Uhlenbeck process [69,70], and therefore the aver-
age value of positions 〈�x〉 and the covariance matrix Σ =
〈(�x − 〈�x〉)(�x − 〈�x〉)T 〉 are described by the following relations:

d〈�x〉
dt

= − 1

mβ
(K〈�x〉 − �f0), (42)

dΣ

dt
= − 1

mβ
(KΣ + ΣK) + 2GGT . (43)

We observe that in a possible NESS regime we have 〈�x〉 =
K−1 �f0 and then we define �xss = K−1 �f0. We remark that the
NESS can be attained only if all the thermal bath temper-
atures are constant over time. Nevertheless, we can always
define �xss = K−1 �f0 or �f0 = K�xss. Anyway, the Fokker-Planck
methodology can be applied to Eq. (40) and yields the fol-
lowing Smoluchovski equation for the overdamped problem
under investigation:

∂W

∂t
= 1

mβ

∂

∂�x [(K�x − �f0)W ] + ∂

∂�x
(

GGT ∂W

∂�x
)

. (44)

By the introduction of the flux

�J = − 1

mβ
(K�x − �f0)W − GGT ∂W

∂�x , (45)

the Smoluchovski equation can be rewritten as

∂W

∂t
= −∂ �J

∂�x , (46)

which represents a standard continuity equation. As it is
well known in the theory of the Ornstein-Ulhenbeck theory

[69,70], the general solution of Eq. (44) can be obtained in
the following Gaussian form:

W (�x, t ) = 1√
(2π )N det Σ

exp

[
−1

2
(�x − 〈�x〉)T Σ−1(�x − 〈�x〉)

]
,

(47)

completely defined by the average value 〈�x〉 and by the covari-
ance matrix Σ, described by Eqs. (42) and (43).

B. Thermodynamic principles

We determine now the mathematical form of the two ther-
modynamic principles for the system under investigation.

Concerning the first principle we observe that the total
energy of the system is simply constituted by the potential
energy because of the overdamped motion assumption, as
discussed in Sec. II. Therefore, we can directly obtain the
expression

d

dt
〈E〉 = d

dt
〈V 〉 =

∫
IRN

V
∂W

∂t
d�x

= −
∫

IRN
V

∂ �J
∂�x d�x =

∫
IRN

�J · ∂V

∂�x d�x. (48)

Since in this case we have no external forces applied to the
system, the right hand side of Eq. (48) must correspond to the
total heat rate entering the system. Hence we can write

d

dt
〈E〉 = d

dt
〈Q〉 =

N∑
i=1

d

dt
〈Qi〉, (49)

052116-6



ENTROPY PRODUCTION AND ONSAGER RECIPROCAL … PHYSICAL REVIEW E 103, 052116 (2021)

where we can calculate the heat rate pertaining to the point
particle i through the expression

d〈Qi〉
dt

=
∫

IRN
Ji

∂V

∂xi
d�x, (50)

without implicit sum over the index i.
This result can be further confirmed by developing the

second principle of thermodynamics, as follows. We define
the entropy through the natural generalization of Eq. (11),
i.e., by the expression S = −kB

∫
IRN W ln W d�x, and then, by

performing straightforward calculations as in Eq. (12), we find

dS

dt
= −kB

∫
IRN

1

W
�J · ∂W

∂�x d�x. (51)

Here, we can substitute ∂W
∂xi

obtained from Eq. (45), i.e.,

∂W

∂xi
= − mβ

kBTi

(
Ji + 1

mβ
W

∂V

∂xi

)
, (52)

finally obtaining the second principle in the form

dS

dt
=

N∑
i=1

1

Ti

∫
IRN

Ji
∂V

∂xi
d�x +

N∑
i=1

mβ

Ti

∫
IRN

J2
i

W
d�x, (53)

or, in the more classical form,

dS

dt
=

N∑
i=1

1

Ti

d〈Qi〉
dt

+ dSp

dt
, (54)

where the first sum represents the entropy flow associated to
the heat fluxes [see also Eq. (50)] and the second term the
entropy production related to the irreversible character of the
process.

For later use, we determine a specific expression for the
three terms entering the second principle for the system under
investigation. Let us start with the first one, dS

dt , representing
the total entropy rate during the system evolution. By con-
sidering again the definition S = −kB

∫
IRN W ln W d�x, we can

take into account the Gaussian distribution stated in Eq. (47)
and we get

S = kB

2
ln [det(2πeΣ)]. (55)

Then, we can perform the time derivative and we obtain

dS

dt
= kB

2

1

det Σ

d det Σ

dt
= kB

2
tr

(
Σ−1 dΣ

dt

)
, (56)

where we have used the standard matrix property d det Σ
dt =

det Σtr(Σ−1 dΣ
dt ), holding for any nonsingular matrix Σ. Since

the covariance matrix is governed by Eq. (43) (Ornstein-
Uhlenbeck theory), we find the total entropy rate as

dS

dt
= kBtr

(
Σ−1GGT − 1

mβ
K

)

= − kB

mβ

N∑
i=1

Kii + kB

mβ

N∑
i=1

kBTi(Σ
−1)ii. (57)

The second term entering the second principle represents
the entropy flow

∑N
i=1

1
Ti

d〈Qi〉
dt , which depends directly on the

heat rates d〈Qi〉
dt . These quantities can be naturally calculated by

means of Eq. (50). With the help of the Smoluchosky fluxes,
written in the form

Ji = − 1

mβ

∂V

∂xi
W − kBTi

mβ

∂W

∂xi
, (58)

we easily derive this practical expression for the heat rate
associated to each particle

d〈Qi〉
dt

= − 1

mβ

〈(
∂V

∂xi

)2〉
+ kBTi

mβ

〈
∂2V

∂x2
i

〉
. (59)

Here, the quadratic form of the potential energy V (�x) allows a
direct calculation yielding the result

d〈Qi〉
dt

= − 1

mβ
{K[Σ + (〈�x〉 − �xss)(〈�x〉 − �xss)T ]K}ii

+ kBTi

mβ
Kii, (60)

representing the heat rate for any point particle. These expres-
sions can be combined to give the entropy flow for the whole
system:

N∑
i=1

1

Ti

d〈Qi〉
dt

= kB

mβ

N∑
i=1

Kii − 1

mβ

N∑
i=1

1

Ti
{K[Σ

+ (〈�x〉 − �xss)(〈�x〉 − �xss)T ]K}ii. (61)

Please note that Eqs. (60) and (61) are valid for an arbitrary
out-of-equilibrium evolution of the system and the presence
of quantity �xss does not mean that we are in a steady state. We
have simply adopted the definition �xss = K−1 �f0, as previously
discussed.

The third and final term entering the second principle is
represented by the entropy production dSp

dt , defined as

dSp

dt
=

N∑
i=1

mβ

Ti

∫
IRN

Ji(�x, t )2

W (�x, t )
d�x. (62)

In order to develop an explicit expression for this contribution,
we use Eq. (58) combined with the formula ∂V

∂xi
= Kisxs −

( �f0)i and with the property ∂W
∂xi

= W [Σ−1(�x − 〈�x〉)]i [directly
coming from Eq. (47)]. Straightforward calculations lead to
the result

dSp

dt
= −2

kB

mβ

N∑
i=1

Kii + kB

mβ

N∑
i=1

kBTi(Σ
−1)ii

+ 1

mβ

N∑
i=1

1

Ti
{K[Σ + (〈�x〉 − �xss)(〈�x〉 − �xss)T ]K}ii.

(63)

As a check on the developed procedure, we can immediately
observe that the three contributions obtained in Eqs. (57),
(61), and (63) identically satisfy the second principle stated
in Eq. (54). It is important to observe that the time evolution
of the three terms directly depends on the dynamics of the
average value 〈�x〉 and of the covariance Σ.
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C. Relaxation to equilibrium

We introduce now a particular evolution of the temper-
atures Ti(t ), useful to investigate the relation between the
stochastic thermodynamics and the nonequilibrium thermo-
dynamics. This is the most important conceptual point of this
work. We suppose that the system is at NESS for t < 0 with
constant temperatures Ti(t ) = Ti over time t < 0 (Ti 	= Tj for
i 	= j). Then, we assume that all the temperatures instanta-
neously change to the value T for t � 0. It means that Ti(t ) =
T ∀i for t � 0. So doing, we can observe a relaxation to the
thermodynamic equilibrium for t � 0 and it is important to
verify that the stochastic thermodynamic is able to give the
classical results based on thermodynamic forces and fluxes.

From the one hand, for t < 0, the NESS regime is attained
and therefore d〈�x〉

dt = 0 and dΣ
dt = 0. Hence, by using Eqs. (42)

and (43) for t � 0, we have

〈�x〉 = �xss with �xss = K−1 �f0, (64)

Σ = Σss with KΣss + ΣssK = 2mβGGT , (65)

where G = diag(
√

kBTi
mβ

) and K is given in Eq. (41). Of course,

in this stationary regime, for t < 0, we have d
dt 〈E〉 = 0, dS

dt =
0, and

∑N
i=1

d〈Qi〉
dt = 0, as can be easily verified. Moreover,

the rate of entropy flow is opposed to the rate of entropy
production to satisfy the second principle of thermodynamics.

On the other hand, for t � 0, the system evolves to perform
the relaxation to the equilibrium thermodynamics at temper-
ature T [indeed, Ti(t ) = T ∀i, ∀t � 0]. In this situation, for
t � 0, the average value 〈�x〉 remains constantly equal to �xss,
as can be easily deduced from Eq. (42) with the initial con-
dition 〈�x〉(0) = �xss. Moreover, the covariance matrix evolves
from the initial value Σ = Σss for t = 0 [defined by Eq. (65)]
to the equilibrium value Σ = kBT K−1 for t → ∞. Indeed,
the asymptotic solution of Eq. (43) for t → ∞ with Ti(t ) =
T ∀i, ∀t � 0 is exactly given by Σ = kBT K−1 for t → ∞.
Consistently, we remark that the covariance Σ = kBT K−1 cor-
responds to the Gibbs distribution of the equilibrium statistical
mechanics.

We are interested in studying the mathematical form of
the heat fluxes and the rate of entropy production dur-
ing the relaxation to equilibrium. It is worth understanding
whether stochastic thermodynamics is consistent with On-
sager’s nonequilibrium theory. For t � 0, the heat fluxes are
given by Eq. (60), where we substitute 〈�x〉 = �xss and Ti(t ) =
T ∀i, ∀t � 0. We get

d〈Qi〉
dt

= − 1

mβ
{KΣK}ii + kBT

mβ
Kii

= − 1

mβ
{KΣK − kBT K}ii. (66)

Similarly, again for t � 0, the rate of entropy production is
given by Eq. (63) with 〈�x〉 = �xss and Ti(t ) = T ∀i, ∀t � 0.
We have

dSp

dt
= −2

kB

mβ

N∑
i=1

Kii + k2
BT

mβ

N∑
i=1

(Σ−1)ii+ 1

mβT

N∑
i=1

{KΣK}ii

= 1

mβT
tr
{
KΣK − 2kBT K + k2

BT 2Σ−1
}
. (67)

We wish to prove that Eqs. (66) and (67) are consistent with
the formalism of the nonequilibrium thermodynamics. As it
is well known, the formalism of nonequilibrium thermody-
namics is valid for small deviations from equilibrium. This
suggests representing the covariance matrix Σ as a perturba-
tion of its asymptotic equilibrium value kBT K−1. Hence we
define

Σ = kBT K−1 + kBΔ, (68)

where Δ represents the perturbation (i.e., Δ = 0 at equi-
librium, for t → ∞). With this representation, Eq. (66)
immediately delivers

d〈Qi〉
dt

= − kB

mβ
{KΔK}ii. (69)

As discussed in Sec. II, in order to investigate the structure of
the nonequilibrium thermodynamics, it is sufficient to observe
the beginning of the relaxation for t = 0. As a matter of fact,
the temperature jumps T − Ti are able to instantaneously gen-
erate the thermodynamic forces and the corresponding fluxes,
which drive the system to the equilibrium. It means that we
can analyze the quantities

Ji = d〈Qi〉
dt

∣∣∣∣
t=0

= − kB

mβ
{KΔssK}ii, (70)

where Δss = Δ|t=0 is defined by Σss = kBT K−1 + kBΔss and
Σss by Eq. (65), which characterize the NESS regime. These
quantities represent the heat flux at the initial time of the
relaxation towards equilibrium. Therefore, they should be pro-
portional to the temperature jumps δTi = T − Ti. Indeed, by
substituting Σss = kBT K−1 + kBΔss in Eq. (65), we obtain

KΔss + ΔssK = −2 diag(δTi ), (71)

showing that the perturbation Δss effectively depends on the
temperature jumps δTi = Ti − T . We can usefully decompose
Δss as

Δss =
N∑

j=1

Δss
j δTj, (72)

so that any matrix Δss
j is a solution of the simpler equation

KΔss
j + Δss

j K = −2E j, (73)

where E j is the elementary matrix with only one element
equal to one in the diagonal position ( j, j), and all other
elements being zero. In other words, we have that {E j}nm =
δ jnδ jm. The validity of Eq. (73) can be easily proved by
observing that diag(δTi ) = ∑N

j=1 δTjE j . The importance of
Eq. (73) lies in the fact that it can be solved explicitly in
the following way. Since the matrix equation AX + XA = C
(sometimes called the Sylvester or Lyapunov equation; see,
e.g., Refs. [99–101]) has the unique solution

X = −
∫ +∞

0
eAξC eAξ dξ, (74)

if A has all eigenvalues with negative real part, we can write
the explicit solution of Eq. (73) as

Δss
j = −2

∫ +∞

0
e−KξE je

−Kξ dξ . (75)
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The matrix K is in fact positive-definite, being at the
origin of the quadratic form that defines the potential en-
ergy of an asymptotically stable mechanical system. Now,
Eqs. (72) and (75) can be replaced into Eq. (70) to deter-
mine the thermodynamic fluxes in terms of the temperature
jumps

Ji = − kB

mβ

N∑
j=1

{
KΔss

j K
}

ii
δTj

= 2kB

mβ

N∑
j=1

∫ +∞

0
{K e−KξE je

−KξK}iidξ δTj . (76)

We remark that the fluxes are given by a linear combination
of the temperature jumps δTj . To write these expressions in
the standard way used in nonequilibrium thermodynamics, we
define the thermodynamic forces Xi = δTi

T 2 and we directly
identify the phenomenological coefficients

Li j = −kBT 2

mβ

{
KΔss

j K
}

ii

= 2kBT 2

mβ

∫ +∞

0
{K e−KξE je

−KξK}iidξ, (77)

describing the linear relationships Ji = ∑N
j=1 Li jX j . For

our harmonic system, the linearity between fluxes and forces
is retrieved without any additional assumptions. We can
now prove the symmetry of Li j by means of two distinct
methods.

The first demonstration starts with the simple observation
that one element aii on the diagonal of a matrix A can be writ-
ten as aii = tr{EiA}. Hence the phenomenological coefficients
can be rewritten as

Li j = −kBT 2

mβ
tr
{
EiKΔss

j K
}
, (78)

where we considered the first line of Eq. (77). Now, the matrix
Ei can be written as − 1

2 [KΔss
i + Δss

i K] by using Eq. (73), thus
obtaining

Li j = kBT 2

2mβ
tr
{[

KΔss
i + Δss

i K
]
KΔss

j K
}
. (79)

Further, the last term Δss
j K can be substituted by −KΔss

j − 2E j ,
exploiting again Eq. (73). We elaborate the expression of Li j

as follows:

Li j = −kBT 2

2mβ
tr
{[

KΔss
i + Δss

i K
]
K
[
KΔss

j + 2E j
]}

= −kBT 2

2mβ
tr
{
KΔss

i K2Δss
j + Δss

i K3Δss
j

+ 2KΔss
i KE j + 2Δss

i K2E j
}

= −kBT 2

2mβ
tr
{
Δss

i K2Δss
j K + Δss

i K3Δss
j

+ 2E jKΔss
i K + 2Δss

i K2E j
}

= −kBT 2

mβ
tr

{
Δss

i K2

[
1

2
Δss

j K + 1

2
KΔss

j + E j

]

+ E jKΔss
i K

}

= −kBT 2

mβ
tr
{
E jKΔss

i K
} = L ji, (80)

where we used the cyclic property of the trace stating that the
trace of a product is invariant under cyclic permutations of
the arguments, and Eq. (73) several times. This demonstration
is simply based on Eq. (73) and does not require its explicit
solution given in Eq. (75).

In contrast, the second demonstration is based on Eq. (75)
and is useful since it provides an explicit form of the phe-
nomenological coefficients that is manifestly symmetric. The
second line in Eq. (77) can be rewritten as

Li j = 2kBT 2

mβ

∫ +∞

0
{K e−Kξ }in{E j}nm{e−KξK}midξ, (81)

where we introduced the implicit sums over n and m. The
definition of E j leads to

Li j = 2kBT 2

mβ

∫ +∞

0
{K e−Kξ }inδ jnδ jm{e−KξK}midξ

= 2kBT 2

mβ

∫ +∞

0
{K e−Kξ }i j{e−KξK} jidξ

= 2kBT 2

mβ

∫ +∞

0
{K e−Kξ }i j{K e−Kξ } jidξ, (82)

since K commutes with the matrix exponential e−Kξ for any
value of ξ . Given that the two quantities {K e−Kξ }i j and
{K e−Kξ } ji are scalars, their product commutes and therefore
the symmetry of Li j is evident. As a matter of course, Eq. (82)
provides an explicit and practical form for the phenomenolog-
ical coefficients for the system under consideration.

The complete structure of the nonequilibrium thermody-
namic is retrieved only if we are able to prove that the
entropy production rate given by Eq. (67) can be written as
a quadratic form in the thermodynamic forces, defined by
the phenomenological coefficients, as dSp

dt = ∑N
i=1 JiXi =∑N

i=1

∑N
j=1 Li jXiX j . As before, we investigate the mathe-

matical form of the rate of entropy production for t = 0, i.e.,
at the beginning of the relaxation to the equilibrium. Hence
Eq. (67) can be rewritten as

dSp

dt

∣∣∣∣
t=0

= 1

mβT
tr
{
KΣssK − 2kBT K + k2

BT 2[Σss]−1}
, (83)

where Σss is the value of Σ for t = 0, corresponding to the
NESS regime. Now, as before, we can write this covari-
ance matrix in terms of its perturbation in the form Σss =
kBT K−1 + kBΔss. Then, the initial rate of entropy production
becomes

dSp

dt

∣∣∣∣
t=0

= kB

mβ
tr

{
K

Δss

T
K − K +

[
K−1 + Δss

T

]−1}
. (84)

Up to this point, we have not applied any approximation
based on the hypothesis of small thermodynamic forces.
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Nevertheless, the relationship between fluxes and forces was
automatically linear [see, for instance, Eq. (76)], without ap-
plying any approximation. Now, if we look at Eq. (84), we
notice that it can be quadratic in the perturbation Δss only
thanks to the inverse matrix [K−1 + Δss/T ]−1. However, the
calculation of this inverse matrix surely involves a set of
higher order terms in the perturbation Δss. In this sense, we can
say that the Onsager entropy production emerges in our devel-
opment in the form of a nonlinear expression valid arbitrarily
far from equilibrium. For this reason, Eq. (84) is an important
achievement of this work since it goes beyond Onsager’s
theory by considering higher order terms. A similar result
can be found in Ref. [77], where the authors considered the
thermodynamic of an open bosonic Gaussian system, in a state
far from equilibrium. Interestingly, recent techniques allow
for the experimental measurements of the entropy production
rate in quantum systems such as micromechanical resonators
or Bose-Einstein condensates, allowing the systematic assess-
ment of these theories [102]. In addition to the exact nonlinear
expression given in Eq. (84), it is important to show how it is
possible to retrieve the classical linearized Onsager theory. It
means that the nonlinear function in Eq. (84) should reduce
to the usual quadratic form close to equilibrium. To prove this
point, we have to calculate the inverse of a perturbed matrix,
namely [K−1 + Δss/T ]−1. For this purpose, we consider the
simple matrix property

[A + B]−1 = A−1 − A−1B[A + B]−1, (85)

which is valid if A + B and A are nonsingular. It can be di-
rectly proved by multiplying both sides on the right by A + B.
This relation can be used recursively, eventually obtaining

[A + B]−1 = A−1

[+∞∑
k=0

(−1)k (BA−1)k

]

= A−1 − A−1BA−1 + A−1BA−1BA−1 − · · · .

(86)

As an example, in the second line of Eq. (86) we stopped the
series at the second order in B. We apply this approximation
to Eq. (84) and, thanks to the identifications A = K−1 and B =
Δss/T , we get

dSp

dt

∣∣∣∣
t=0

= kB

mβT 2
tr{KΔssKΔssK}, (87)

where we find only a second order term in the perturbation, as
expected. Indeed, it should be noted that the first order terms
in the perturbation are completely eliminated in the result.
Again, by using the decomposition in Eq. (72), we have the
quadratic form

dSp

dt

∣∣∣∣
t=0

= kB

mβT 2

N∑
i=1

N∑
j=1

tr
{
KΔss

i KΔss
j K

}
δTiδTj

= kBT 2

mβ

N∑
i=1

N∑
j=1

tr
{
KΔss

i KΔss
j K

}
XiX j, (88)

where we introduced the thermodynamic forces Xi = δTi
T 2 , as

before. Now, we have obtained the rate of entropy production

as a quadratic form in the forces Xi, as requested by the
linearized Onsager theory, but unfortunately this quadratic
form is defined by a new set of coefficients Hi j , which do
not exhibit the same expression of the coefficients Li j . More
explicitly, we obtained

dSp

dt

∣∣∣∣
t=0

=
N∑

i=1

N∑
j=1

Hi jXiX j, (89)

where

Hi j = kBT 2

mβ
tr
{
KΔss

i KΔss
j K

}
, (90)

while we previously proved that

Li j = −kBT 2

mβ
tr
{
EiKΔss

j K
}
. (91)

To find a solution to this apparent difficulty, we can rewrite
Eq. (89) in the form

dSp

dt

∣∣∣∣
t=0

=
N∑

i=1

N∑
j=1

[(Hi j − Li j ) + Li j]XiX j, (92)

where we have adopted the expedient of adding and sub-
tracting Li j to Hi j . If we are able to prove that the
coefficients Ai j = Hi j − Li j are skew symmetric, i.e., that
Ai j = −A ji, we can accept that Hi j 	= Li j because it remains
true that

∑N
i=1

∑N
j=1 Hi jXiX j = ∑N

i=1

∑N
j=1 Li jXiX j . In-

deed, a quadratic form that is constructed using a
skew-symmetric matrix always takes the value zero, i.e.,∑N

i=1

∑N
j=1 Ai jXiX j = 0 ∀Xi if Ai j = −A ji. At this point,

we must therefore try to prove that Ai j is skew symmetric. We
start with its definition

Ai j = kBT 2

mβ
tr
{
KΔss

i KΔss
j K + EiKΔss

j K
}
, (93)

where we used the expressions for Hi j and Li j given in
Eqs. (90) and (91). Now, in the first product we exchange the
order of the two groups of factors KΔss

i and KΔss
j K. Then, we

get

Ai j = kBT 2

mβ
tr
{
KΔss

j KKΔss
i + EiKΔss

j K
}
. (94)

Further, in the first product the last term KΔss
i can be substi-

tuted by −Δss
i K − 2Ei, using Eq. (73). We obtain

Ai j = kBT 2

mβ
tr
{−KΔss

j KΔss
i K − 2KΔss

j KEi + EiKΔss
j K

}

= kBT 2

mβ
tr
{−KΔss

j KΔss
i K − EiKΔss

j K
}
. (95)

Here, we can apply the Onsager reciprocal relations, proved
in Eq. (80), to the second term, eventually obtaining

Ai j = kBT 2

mβ
tr
{−KΔss

j KΔss
i K − E jKΔss

i K
}
. (96)

If we now draw a comparison between Eq. (93) and Eq. (96),
we immediatly deduce that Ai j = −A ji, as we wanted to
demonstrate. Finally, the fact that Ai j is skew symmetric
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allows us to conclude that the rate of entropy production can
be written as

dSp

dt

∣∣∣∣
t=0

=
N∑

i=1

N∑
j=1

Li jXiX j, (97)

with the same phenomenological coefficient describing the
relation between fluxes and forces, i.e.,

Ji =
N∑

j=1

Li jX j, (98)

where the Onsager reciprocal relations Li j = L ji are sat-
isfied. We finally proved that both the heat fluxes and
the entropy production obtained through the formalism of
the stochastic thermodynamics are perfectly consistent with
the Onsager theory during the relaxation to the equilib-
rium. We remark that the structure of the nonequilibrium
thermodynamics summed up by Eqs. (97) and (98) is only
an approximation of the general nonlinear results obtained
through the stochastic thermodynamics, valid for arbitrary
values of the jumps δTi or, equivalently, for states far from
equilibrium. More precisely, we remember that the relation
between fluxes and forces is linear also for states arbitrarily far
from equilibrium, while the rate of entropy production shows
a nonlinear form if we consider the result of the stochastic
thermodynamics without linearization. This calculation thus
shows in a deeper way the structure of the Onsager theory
when treating systems arbitrarily far from equilibrium. It also
proves that the mathematical structure of the Onsager theory
is not easily and directly deducible from the formalism of
stochastic thermodynamics even in the case in which weak
thermodynamic forces are assumed. Interestingly enough, we
presented here the analysis of the overdamped system, but we
carefully verified that all the results can also be demonstrated
with the underdamped version of the same system, accepting
however some more mathematical complications. We have
chosen to present only the overdamped version because it
contains all the essential elements, which are crucial for the
understanding of the underlying physics.

IV. CONCLUSIONS

In this work, we presented two examples through which
we discussed the relation between stochastic thermodynam-
ics and nonequilibrium thermodynamics. In both cases, we
observed the approach to equilibrium in given harmonic sys-
tems and we identified the thermodynamic fluxes and forces,
characteristic of the Onsager theory. While the first example
considers a system with one degree of freedom, the second
one deals with N degrees of freedom, coupled with the most
general harmonic interaction. It means that the elastic con-

stants can be assigned to the edges of a complete graph,
describing the interactions between the particles. Since the
elastic constants are arbitrary, no a priori symmetry defines
the system. The idea is to consider a system simple enough
to be examined analytically but sufficiently complex to have
no symmetries and to be described by an arbitrary number
of degrees of freedom. We identified thermodynamic forces
and fluxes describing the system during the relaxation to
equilibrium and we proved that they are linked through a
linear map, also for states arbitrarily far from equilibrium.
This linear map is characterized by coefficients satisfying
the Onsagar reciprocal relations, for which we provided an
ad hoc demonstration. We also presented an explicit integral
expression of such Onsager coefficients, which can be ap-
plied to most of the linear systems. On the other hand, the
entropy production is found in general as a complex nonlinear
function of the thermodynamic forces, and the classical On-
sager quadratic form is retrieved only for small values of the
forces, consistent with the assumption of the nonequilibrium
thermodynamics. We gave an explicit demonstration that this
quadratic form is based on the same set of coefficients de-
scribing the linear map between forces and fluxes, as stated
within the nonequilibrium thermodynamics. Since this work
is oriented to explain the relationship between stochastic ther-
modynamics and nonequilibrium thermodynamics, the type
of system considered is rather abstract but we can say that
the results obtained are valid for any physical linear system,
which can also be found by linearization of an arbitrarily
nonlinear system around a given work point. This means that,
for example, the adopted system is suitable to represent the
approach to the equilibrium of a solid or a fluid, which is
composed of a collection of atoms connected by linear springs
in the harmonic limit and subjected to an initial heterogeneous
temperature. And it is not difficult to extend this procedure to
other physical systems of interest. Although our analysis is
restricted to the specific case of harmonic systems, the non-
linear form of the entropy production provides an example of
particular complex behavior, which emerges when a system is
driven arbitrarily far from equilibrium. As mentioned above,
we recall that we presented the analysis for an overdamped
system but similar results were also demonstrated for the
underdamped case. Further generalizations will be considered
and concern the three-dimensional extension, the application
of arbitrary forces, and the presence of an external magnetic
field.
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