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Kapitza thermal resistance in linear and nonlinear chain models: Isotopic defect
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Kapitza resistance in the chain models with internal defects is considered. For the case of the linear chain, the
exact analytic solution for the boundary resistance is derived for arbitrary linear time-independent conservative
inclusion or defect. A simple case of isolated isotopic defects is explored in more detail. Contrary to the bulk
conductivity in the linear chain, the Kapitza resistance is finite. However, the universal thermodynamic limit
does not exist in this case. In other terms, the exact value of the resistance is not uniquely defined, and depends
on the way of approaching the infinite lengths of the chain fragments. By this reason, and also due to the explicit
dependence on the parameters of the thermostats, the resistance cannot be considered as a local property of the
defect. Asymptotic scaling behavior of the heat flux in the case of very heavy defect is explored and compared to
the nonlinear counterparts; similarities in the scaling behavior are revealed. For the lightweight isotopic defect
in the linear chain, one encounters a typical dip of the temperature profile, related to weak excitation of the
localized mode in the attenuation zone. If the nonlinear interactions are included, this dip can still appear at a
relatively short timescale, with subsequent elimination due to the nonlinear interactions. This observation implies
that even in the nonlinear chains, the linear dynamics can predict the main features of the short-time evolution
of the thermal profile if the temperature is low enough.
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I. INTRODUCTION

The history of thermal boundary resistance starts from the
famous work of Kapitza on temperature discontinuity at the
interface between a metal and liquid helium II [1]. Multiple
and versatile experimental results on the boundary thermal
resistance are available in the literature [2–5]. The first at-
tempt to offer a theoretical explanation based on the phonon
transmission coefficient, particularly at low-temperature ex-
periments, was made by Khalatnikov in 1952 [6] and by
Little in 1959 [7], and it is generally known as the acous-
tic mismatch model (AMM). The well-known limitations of
AMM are that, first, it fails to predict the Kapitza resistance
when the contacting structures are similar. Then, it consid-
ers only long-wavelength phonons since the theory has been
developed for low-temperature experiments. The first draw-
back was somewhat corrected by including a multicomponent
phonon distribution functions on each side of the interface
[8]. Additional developments included account of the phonon
scattering at and near the interface [9]. Several other works
were based on transport theory approach, but complexity of
the calculations limited its practical use [10–12]. Sluckin de-
veloped a simple model for the chain of billiard particles and
the results were surprisingly matching with experiments [13].
There were attempts to extend Khalatnikov’s theory to har-
monic systems [14,15]; in Ref. [15] the results were compared
with molecular-dynamics simulations. In 1987, Swartz and
Pohl [16] proposed a diffuse mismatch model to explain the
higher-temperature behavior of thermal boundary resistance
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where the AMM becomes ineffective. This theory considers
other extremes compared to the AMM, that is, all the phonons
are considered as diffusely scattered at the interface, and any
acoustic correlation at the interface is destroyed.

Harmonic crystals are the simplest model to study thermal
properties of dielectrics. It is well known that the dynamics of
homogeneous harmonic chain in modal coordinates reduces to
an assembly of freely moving phonons; therefore, the thermal
conductivity in this model is anomalous. The modern era
studies of the heat transport in harmonic chain started from the
famous work of Rieder-Lebowitz-Lieb (RLL) [17] that pre-
sented the exact solution for one-dimensional homogeneous
chain coupled to Langevin thermostats. It was demonstrated
that the heat flux is proportional to the temperature difference
between the boundaries. Besides, the exponential boundary
layer near the thermostats has been observed. Then the stud-
ies progressed into more complicated problems that involved
various scattering mechanisms by inserting various impurities
like defect mass or defective coupling, or the phonon-phonon
scattering caused by the nonlinearity [18]. In Ref. [19], the
problem of infinite disordered harmonic chain has been ana-
lyzed. It was demonstrated that the heat flux is proportional to
the boundary temperature difference, provided that the spec-
tral measure exhibits an absolutely continuous part. For the
special case of alternating-mass chain, the temperature profile
oscillates through the chain as follows from the exact solu-
tion in Ref. [20]. Somewhat surprisingly, such temperature
oscillations also revealed themselves in the alternate-mass
Fermi-Pasta-Ulam (FPU) model [21].

Thermal transport in the linear chain with isotopic defect
has been extensively studied numerically in Ref. [22]. A re-
cent paper [23] explored numerically the Kapitza resistance in
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FIG. 1. Sketch of the model system.

a variety of benchmark models with isolated isotopic defect.
Current work revisits this problem, and presents exact analytic
solution for the Kapitza resistance in the linear chain with
isolated defect (inclusion) in the limit of infinite chain length.

This exact solution allows comprehensive study of the
boundary resistance in the linear chain, including the near-
field around the defect. Besides, the heat flux exhibits
interesting asymptotic behavior in the limit of large defect
mass. This behavior is compared to numeric data concerning
similar asymptotic limit for β-FPU and Lennard-Jones (LJ)
chains.

If the mass of the inclusion is less than the mass of
other chain particles, the thermal profile exhibits an inter-
esting “dip,” indicating a “cold” point in the chain. Such
behavior is paradoxical, at odds with the second law of
thermodynamics—-the heat flows from the cold point defect
to a hotter part of the chain. Such anomalous behavior is a
well-known artifact of the linear model; similar behavior is
observed also at larger scales [24,25]. It is demonstrated below
that account of the nonlinearity removes this anomaly. More
exactly, when the temperature gradient is imposed, the dip is
initially formed also in the nonlinear chains. Then the dip is
gradually destroyed, ending up with monotonous thermal pro-
file. Possible role of mobile breathers [26,27] in destruction of
the dip is discussed.

The general outline of this paper is as follows. Section II
presents the exact solution for the Kapitza resistance in the
linear chain containing linear time-independent (LTI) inclu-
sion. In Section III, the expressions for special case of the
isotopic defect are derived and asymptotic limit for the heat
flux in the case of very heavy defect is compared to similar
phenomena in β−FPU and LJ models. Section IV addresses
in detail the thermal dip at light defect in the linear model and
its connection to localized mode in the chain spectrum. The
treatment is extended to the β−FPU chain, and disappearance
of the dip is explored numerically. Then, the thermal near
field of the defect in linear model is explored and exponential
convergence to the average temperature is established. The
exponent is related to the defect mass. Section V is devoted
to discussion and concluding remarks.

II. KAPITZA RESISTANCE IN LINEAR CHAIN WITH
INCLUSION: GENERAL TREATMENT

Let us consider a heat transport in a linear chain with LTI
inclusion, with thermostats attached to the terminal particles

at the right and at the left. A general sketch of the model
system is presented in Fig. 1.

All masses and stiffnesses within the chain fragments
beyond the inclusion are set to unity without affecting the
generality. The length of the fragments 1 and 2 is set to N1,2,
respectively. At this stage, the structure of the inclusion, or
the defect, in the chain is left generic. The only assumption is
that the motion of all particles that belong to the inclusion is
described by linear time-independent equations. Beyond the
inclusion and apart from the terminal particles, the chain is
described by common equations of motion:

ün + 2un − un−1 − un+1 = 0. (1)

Traveling waves in this chain obey a well-known disper-
sion relation:

ω = 2 sin (q/2), −π � q � π. (2)

Here ω(q) denotes the frequency of the traveling wave; q
is the wave vector. The system is excited through thermostats
attached to the terminal particles. For this sake, we assume
that both these particles are subject to linear viscous damping
with coefficient γ and excited by stochastic forces. Appropri-
ate equations of motion are written as follows:

ü−N1 + 2u−N1 − u−N1+1 + γ u̇−N1 = ξ+(t )

üN2 + 2uN2 − uN2−1 + γ u̇N2 = ξ−(t ). (3)

At this stage, the forcing functions in Eq. (3) will also
stay generic, under assumption of zero mean and lack of
correlation:

〈ξ±(t )〉 = 0, 〈ξ+(t1)ξ−(t2)〉 = 0. (4)

Moreover, to simplify the expressions, we set ξ+(t ) =
ξ (t ), ξ−(t ) = 0. The care of original problem may be taken
by appropriate superposition.

For sufficiently long chains, one can admit that the heat
flux is realized only by waves that belong to the propagation
zone of the chain. Thus, for fragments of the chain far from
the terminal particles, the displacements of the particles can
be expressed as linear combinations of the waves traveling to
the left and to the right, with the frequencies belonging to the
propagation zone:

un =
∫

P
exp(iωt )(α1(ω) exp(−iqn) + β1(ω) exp(iqn))dω (Fragment 1)

un =
∫

P
exp(iωt )(α2(ω) exp(−iqn) + β2(ω) exp(iqn))dω (Fragment 2). (5)
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In the following, ω- and q dependence of all functions will
be suppressed, where it will not cause the misunderstand-
ing. The temperature is defined as a double average kinetic
energy of the particle. If one assumes absence of phase cor-
relations between the waves, the energy density transported
in the right and left directions in the fragments is evaluated
as ρL(ω) = ω2

2 |αi(ω)|2 and ρR(ω) = ω2

2 |βi(ω)|2, respectively,
i = 1, 2. The energy is transported with group velocity vgr (ω).
Then, with account of dispersion relation (2) and symme-
try ω → −ω, the temperatures of the chain fragments far
enough from the thermostats and the inclusion, and heat fluxes
through the fragments (T1, T2, J1, and J2, respectively) are
expressed as follows:

T1 =
∫ 2

0
ω2(|α1|2 + |β1|2)dω,

J1 =
∫ 2

0
ω2(|α1|2 − |β1|2)|vgr |dω;

T2 =
∫ 2

0
ω2(|α2|2 + |β2|2)dω, (6)

J2 =
∫ 2

0
ω2(|α2|2 − |β2|2)|vgr |dω;

|vgr | =
∣∣∣∣dω

dq

∣∣∣∣ =
∣∣∣∣cos

q

2

∣∣∣∣.
Note that the inclusion can, in principle, include the damp-

ing elements, and therefore the heat fluxes in fragments 1 and
2 are not necessarily equal.

Equations (3) lead to the following boundary conditions for
Fourier components of the heat flux in the propagation zone:

α1 exp(iqN1)c+ + β1 exp(−iqN1)c− = 	

α2 exp(−iqN2)c− + β2 exp(iqN2)c+ = 0 (7)

c± = exp(±iq) + iγω.

Here 	 denotes the Fourier transform of the forcing func-
tion ξ (t ). To close system (7) we recall that the inclusion is
assumed linear and time independent. Therefore, the ampli-
tudes of incoming and outgoing waves in the chain fragments
are related through certain transfer matrix, defined as(

α1

β1

)
= G

(
α2

β2

)
, G =

(
g11 g12

g21 g22

)
. (8)

Then, system (7) is rewritten in the form

α2(g11 exp(iqN1)c+ + g21 exp(−iqN1)c−)

+ β2(g12 exp(iqN1)c+ + g22 exp(−iqN1)c−) = 	

α2 exp(−iqN2)c− + β2 exp(iqN2)c+ = 0. (9)

System (9) is solved straightforwardly:

α2 = 	 exp(iqN2)c+
D

,

β2 = −	 exp(−iqN2)c−
D

,

D = g11 exp(iq(N1 + N2))c2
+ + (g21 exp(iq(N2 − N1)) (10)

− g12 exp(iq(N1 − N2)))c+c−

− g22 exp(−iq(N1 + N2))c2
−.

To achieve certain simplification, it is instructive to explore
the properties of transfer matrix G in more depth. Let us
consider the reciprocal system, in which the forcing is applied
to the right end of the chain. Then, System (9) is substituted
by the following equations:

α̃2(g11 exp(iqN1)c+ + g21 exp(−iqN1)c−)

+ β̃2(g12 exp(iqN1)c+
+ g22 exp(−iqN1)c−) = 0

α̃2 exp(−iqN2)c− + β̃2 exp(iqN2)c+ = 	 (11)

According to Raleigh reciprocity theorem [28], the dis-
placement of the rightmost particle according to system (9)
is equal to the displacement of the leftmost particle according
to system (11):

α2 exp(−iqN2) + β2 exp(iqN2)

= α̃1 exp(iqN1) + β̃1 exp(−iqN1); (12)(
α̃1

β̃1

)
= G

(
α̃2

β̃2

)
.

From (10)–(12), after some simple algebra, one obtains

g11g22 − g12g21 = det G = 1. (13)

This conclusion is valid, even if the inclusion is not
symmetric and contains the damping elements, i.e., is not
conservative. Further simplification is achieved if one assumes
that the inclusion is conservative. In this case, due to the
energy conservation, in the stationary regime the heat fluxes
through fragments 1 and 2 are equal. Then, for any forcing
configuration the relationship

|α1|2 − |β1|2 = |α2|2 − |β2|2 (14)

must hold identically. Therefore, the elements of the transfer
matrix obey the following relationships:

|g11|2 − |g21|2 = 1;

|g22|2 − |g12|2 = 1; (15)

g11g∗
12 = g21g∗

22.

It is easy to derive that the most generic transfer matrix that
respects conditions (13) and (15) may be represented with the
help of the following convenient parametrization:

G =
(

cosh x exp(iθ1) sinh x exp(−iθ2)
sinh x exp(iθ2) cosh x exp(−iθ1)

)
;

x ∈ [0,∞), θ1, θ2 ∈ [−π, π ). (16)

For further derivations, we will assume that the inclu-
sion does not contain the damping elements, and therefore
the transfer matrix is described by parametrization (16).
It is interesting to note that from Eq. (15) one can de-
rive that |det G| = 1, but cannot obtain stronger condition
(13). With account of solution (10) and parametrization
(16), expressions (6) for the temperatures and the heat
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flux in the case of conservative inclusion are presented as follows:

J =
∫

P
ω2|	|2|vgr | |c+|2 − |c−|2

|D|2 dω;

T1 =
∫

P

ω2|	|2
|D|2 [(cosh2x + sinh2x)(|c+|2 + |c−|2) − sinh 2x(c+c∗

− exp i(θ1 + θ2 + 2qN2) + c∗
+c− exp i(−θ1 − θ2 − 2qN2))]dω;

T2 =
∫

P
ω2|	|2 |c+|2 + |c−|2

|D|2 dω;

D = cosh x exp i(q(N1 + N2) + θ1)c2
+ + sinh xc+c−(exp i(q(N2 − N1) + θ2)

− exp i(q(N1 − N2) − θ2)) − cosh x exp i(−θ1 − 2q(N1 + N2))c2
−. (17)

The limit of infinite system N1,2 → ∞ involves averaging over rapidly oscillating phases ϕ1,2 = qN1,2 in the exponents for
fixed values of the wave number. However, the presence of two not necessarily equal chain fragments leads to a mathematical
peculiarity absent in homogeneous systems [17–19]. The universal thermodynamic limit of the infinite system size does not exist.
The reason is that in order to perform the averaging, one should specify the ratio r = lim N1→∞

N2→∞
(N1/N2). If r is irrational, zero,

or infinite, the averaging over the two rapidly oscillating phases for all functions including these variables can be performed
independently, and for arbitrary integrable function F is defined as

〈F (exp(iϕ1), exp(iϕ2))〉N1→∞
N2→∞

= 1

4π2

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2F (exp(iϕ1), exp(iϕ2)). (18)

We refer to this case as nonresonant. For the considered system, details of the straightforward but somewhat awkward
evaluation (17) and (18) are presented in Appendix A. The average heat flux and temperatures in the nonresonant case are
expressed as follows:

J =
∫

P

ω2|	|2|vgr |dω

cosh2x
√

(|c+|2 + |c−|2)
2 − 4tanh2x|c+|2|c−|2

T2 =
∫

P

ω2|	|2(|c+|2 + |c−|2)dω

cosh2x(|c+|2 − |c−|2)
√

(|c+|2 + |c−|2)
2 − 4tanh2x|c+|2|c−|2

(19)

T1 = T − T2.

If the ratio r is rational, we denote r = m/n, where m,n are integers without the common divisors. This case is re-
ferred to as m : n resonance. The averaging over two rapidly oscillating phases is not independent, since these phases are
locked:

〈F (exp(iϕ1), exp(iϕ2))〉N1→∞
N2→∞

= 1

2π

∫ 2π

0
dψF (exp(imψ ), exp(inψ )), ψ = ϕ2/n. (20)

This latter case yields, generally, more complicated integrals. Still, for the simplest case of 1:1 resonance, the averaging
(20) can be performed explicitly. The heat flux and the average temperatures at both sides of the inclusion are presented in the
following general form (see Appendix A for the derivation details):

J =
∫

P
ω2|	|2|vgr | |c+|2 + |c−|2

cosh2x(|c+|4 + |c−|4 + 2|c+|2|c−|2(1 − 2tanh2xsin2θ2))
dω;

T1 =
∫

P
ω2|	|2 (cosh2x + sinh2x)(|c+|2 + |c−|2)

2 − 8|c+|2|c−|2sinh2xsin2θ2

cosh2x(|c+|2 − |c−|2)(|c+|4 + |c−|4 + 2|c+|2|c−|2(1 − 2tanh2xsin2θ2))
dω; (21)

T2 =
∫

P
ω2|	|2 (|c+|2 + |c−|2)

2

cosh2x(|c+|2 − |c−|2)(|c+|4 + |c−|4 + 2|c+|2|c−|2(1 − 2tanh2xsin2θ2))
dω; .
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Below we refer to this case of 1:1 case simply as resonant,
and specify other resonances if necessary.

Let us adopt, in addition, that the forcing function in Eq. (3)
corresponds to white Gaussian noise, i.e., the self-correlations
obey the well-known relations

〈ξ±(t1)ξ±(t2)〉 = 2γ T±δ(t1 − t2). (22)

Then one sets T+ = T, T− = 0, |	|2 = γ T
π

. For the trivial
case of the homogeneous chain the transfer matrix is unit;
therefore x = 0, and from Eqs. (19) and (21) one obtains the
following well-known results [17]:

T1 = T2 = T/2

Jh = T

4γ 3
(1 + 2γ 2 −

√
1 + 4γ 2). (23)

As one can expect, for the system without defect there is no
difference between the resonant and non-resonant cases. Fur-
ther treatment requires one to specify the considered inclusion
or defect. In the next Section we consider the case of a single
isotopic defect in the chain.

III. KAPITZA RESISTANCE IN THE CASE OF A SINGLE
ISOTOPIC DEFECT

A. Linear chain

Assume that the only inhomogeneity in the chain is the
single isotopic defect—a particle with mass m �= 1 at the
site n = 0. The chain (beyond the thermostats) is therefore
described by the following equations:

(1 + δno(m − 1))ün + 2un − un−1 − un+1 = 0. (24)

Then, fragment 1 corresponds to all particles with n < 0,
and fragment 2—to all particles with n > 0.

Substituting expansions (5) into (24), one obtains the following relationships:

α1 + β1 = α2 + β2

exp(iq)α1 + exp(−iq)β1 = (2 − mω2 − exp(−iq))α2 + (2 − mω2 − exp(iq))β2. (25)

Therefore, the transfer matrix is expressed as follows:

G =
(

1 1
eiq e−iq

)−1(
1 1

2 − mω2 − e−iq 2 − mω2 − eiq

)

= i

2 sin q

(
(m − 1)ω2 − 2i sin q (m − 1)ω2

−(m − 1)ω2 −2i sin q − (m − 1)ω2

)
. (26)

The values necessary for evaluation of integrals (19) and (21) are expressed as

sinh2x = (m − 1)2ω4

4sin2q
= (m − 1)2ω2

4 − ω2
, θ2 = −π

2
sgn

(
m − 1

sin q

)
. (27)

Substituting (27) into integrals (19) and denoting z = ω/2, one obtains the following expressions for the nonresonant case:

J = 8γ T

π

∫ 1

0

z2(1 − z2)dz√
1 + z2((m − 1)2 − 1)

√
(1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6

T2 = T

π

∫ 1

0

(1 + 4γ 2z2)dz√
1 + z2((m − 1)2 − 1)

√
(1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6

(28)

T1 = T − T2.

For the resonant case, one obtains from (21) and (27):

J = 8γ T

π

∫ 1

0

z2
√

1 − z2(1 + 4γ 2z2)dz

(1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6

T1 = T

π

∫ 1

0

((1 + 4γ 2z2)2 + 128(m − 1)2γ 2z6)dz

((1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6)
√

1 − z2

= T

2
+ 64(m − 1)2γ 2T

π

∫ 1

0

z6dz

((1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6)
√

1 − z2
(29)

T2 = T

π

∫ 1

0

(1 + 4γ 2z2)2
dz

((1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6)
√

1 − z2

= T

2
− 64(m − 1)2γ 2T

π

∫ 1

0

z6dz

((1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6)
√

1 − z2
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FIG. 2. The Kapitza resistance for various positions of the
isotopic defect in the chain with fixed length. Horizontal line cor-
responds to the nonresonant background value according to (28),
T = 1, m = 2, γ = 1, N = 1001.

Integrals in Eq. (29) can be explicitly evaluated since the
denominators contain a cubic polynomial with respect to z2.
The details of somewhat awkward calculation are given in
Appendix B.

Now we illustrate numerically the effect of various reso-
nances on the value of the Kapitza resistance. In all cases, the
latter is evaluated as

RK = T1 − T2

J
. (30)

To this end, the heat flux in the linear chain with N =
1001 particles and single isotopic defect at different sites is
evaluated by numerical solution of the RLL problem [17,22].
The dependence of the resistance on the defect placement is
depicted in Fig. 2.

One can observe that for most placements of the defect the
measured value of the Kapitza resistance is very close to the
background nonresonant value defined by expressions (28).
There are some outliers for “strong” resonances (1:3, 2:3); the
strongest is the case of 1:1 resonance. Variation of the value of
Kapitza resistance due to the resonances achieves about 20%
in this particular case.

Dependency of the Kapitza resistance (30) on the defect
mass is presented in Fig. 3, and on the coupling friction in
Fig. 4.

Figure 3 indicates that, contrary to the bulk conductivity,
the Kapitza resistance is finite even in the linear chain. From
Figs 2–4, one learns that the resistance is not local property
of the defect—it depends on particular way of taking the ther-
modynamic limit, and strongly, and even nonmonotonously
depends on the friction coefficient in the thermostats. There-
fore, one requires nonlinear models to get in line with basic
physical intuition concerning the locality of the boundary
resistance [23].

FIG. 3. Analytical results of Kapitza resistance plotted by vary-
ing the defect mass. Marker 1 shows the resonant case and marker 2
shows the nonresonant case. T = 1, γ = 1.

B. Asymptotic behavior of the boundary resistance

It is instructive to explore asymptotic behavior of the heat
flux and the Kapitza resistance in the special cases of weak
and heavy isotopic defects. The case of weak defect is defined
as |m−1| 
 1, γ 
 1. In this limit, for the nonresonant case,
expressions (28), (30) yield

T1 − T2 ≈ 2T

π
|m − 1|;

J ≈ 1

2
γ T ; (31)

RK ≈ 4|m − 1|
πγ

.

Therefore, the dependence is nonanalytic as |m−1| → 0,
similarly to the behavior observed in Fig. 3. For the resonant

FIG. 4. Analytical results of Kapitza resistance plotted by vary-
ing the coupling friction. Marker 1 shows the resonant case and
marker 2 shows the nonresonant case. T = 1, m = 1.2.
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FIG. 5. Heat flux variation with the chain temperature and de-
fect mass for β−FPU chain at γ 
 1, |m−1|γ � 1. Here N =
501, β = 0.1, γ = 0.1.

case, expressions (29), (30) yield

T1 − T2 ≈ 20γ 2(m − 1)2T ;

J ≈ 1/2γ T ; (32)

RK ≈ 40γ (m − 1)2.

One observes that in the resonant case the resistance ana-
lytically depends on the mass mismatch (cf. Fig. 3). Thus, the
resonant and nonresonant cases exhibit qualitatively different
asymptotic behavior.

The case of heavy isotopic defect is defined as γ 

1, |m−1|γ � 1. For the nonresonant case, denoting ẑ = mz,
one obtains the following estimation:

J ≈ 8γ T

πm3

∫ m

0

ẑ2

√
1 + ẑ2

dẑ = 4γ

π

T

m
. (33)

However, for the resonant case, denoting ẑ = 8(m−1)γ z3,
a simple expansion yields very different expression for the
heat flux:

J ≈ T

3πm

∫ ∞

0

dẑ

1 + ẑ2
= T

6m
. (34)

For the resonant case, it is somewhat surprising that
the heat flux in the basic approximation does not depend
on the friction in this limit case. For comparison, we ex-
plored the similar limit in β−FPU, and Lennard-Jones chains
with nearest-neighbor interaction. The β−FPU potential and
Lennard-Jones are given by

V (u) = 1

2
u2 + β

4
u4, V (u) = 4ε̄

[(
σ̄

u

)6

− 1

2

]2

, (35)

where β, ε̄, and σ̄ are constants.
As one can expect, the nonlinearity has significant ef-

fect. Still, for constant γ , it is possible to observe that the
data for both nonlinear models collapse on the curves some-
what similar to the expressions (33) and (34) (see Figs. 5
and Fig. 6).

FIG. 6. Heat flux variation with the chain temperature and de-
fect mass for Lennard-Jones chain at m � 1, γ 
 1, |m−1|γ � 1.
Here N = 501, γ = 0.1, ε̄ = 1/72, σ̄ = 2−(1/6).

One can conjecture that in the case of very heavy inclusion
only long-wave phonons can significantly contribute to the
heat flux through the defect, and thus the asymptotic behavior
for linear and weakly nonlinear regimes is somewhat similar.
The exponents from Figs. 5 and 6 require more detailed ex-
ploration.

IV. TEMPERATURE DISTRIBUTION AT AND NEAR THE
DEFECT. THERMAL DIP IN LINEAR AND NONLINEAR

MODELS

In previous sections global properties of the heat flux and
temperature drop were addressed. Here we consider the de-
tails of temperature distribution at the defect site and nearby.
The detailed results are presented for the resonant case; the
nonresonant case exhibits very similar local behavior of the
thermal profile.

According to (5) and (6) the local temperature at each chain
site beyond the defect is expressed as

Tn<0 =
∫ 2

0
ω2|α1exp(inq) + β1exp(−inq) |2dω

Tn>0 =
∫ 2

0
ω2|α2exp(−inq) + β2exp(inq) |2dω. (36)

After expanding the inner part of the integral, one obtains

|α1exp(inq) + β1exp(−inq) |2

= |α1|2 + |β1|2 + α1β
∗
1 exp(2inq) + α∗

1β1exp(−2inq)

|α2exp(−inq) + β2exp(inq) |2

= |α2|2 + |β2|2 + α2β
∗
2 exp(−2inq) + α∗

2β2exp(2inq).
(37)
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Straightforward simplification of (36) yields the following set of equations:

Tn<0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
π

∫ 1
0

⎛
⎜⎜⎜⎜⎜⎝

(1+4γ 2z2 )2+128(m−1)2γ 2z6

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

−
√

(1−z2 )+(m−1)2z2128(m−1)γ 2z5 sin(θ1−2nq)

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

+ |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1−2nq)√
(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )

√
1−z2

⎞
⎟⎟⎟⎟⎟⎠dz, if m < 1

T
π

∫ 1
0

⎛
⎜⎜⎜⎜⎜⎝

(1+4γ 2z2 )2+128(m−1)2γ 2z6

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

−
√

(1−z2 )+(m−1)2z2128(m−1)γ 2z5 sin (θ1−2nq)

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

− |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1−2nq)√
(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )

√
1−z2

⎞
⎟⎟⎟⎟⎟⎠dz, if m > 1

Tn>0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
π

∫ 1
0

⎛
⎜⎝

(1+4γ 2z2 )2

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

+ |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1+2nq)√
(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )

√
1−z2

⎞
⎟⎠dz, if m < 1

T
π

∫ 1
0

⎛
⎜⎝

(1+4γ 2z2 )2

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

− |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1+2nq)√
(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )

√
1−z2

⎞
⎟⎠dz, if m > 1

. (38)

Here

θ1 = arcsin

(
(m − 1)z√

(1 − z2) + (m − 1)2z2

)
and q = 2 arcsin (z) (39)

At the defect site itself, the temperature is expressed as

Tn=0 =

⎧⎪⎨
⎪⎩

mT
π

∫ 1
0

(1+4γ 2z2 )2

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2
+ |m−1|(m−1)((1+4γ 2z2 )2−64γ 2z4(1−z2 ))z2

((1−z2 )+(m−1)2z2 )((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2
dz, if m < 1

mT
π

∫ 1
0

(1+4γ 2z2 )2

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2
− |m−1|(m−1)((1+4γ 2z2 )2−64γ 2z4(1−z2 ))z2

((1−z2 )+(m−1)2z2 )((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2
dz, if m > 1

. (40)

For m � 1 one obtains from (40) Tn=0 = T/2. For the case of very small negative mass detuning, the expression for the
temperature is reduced to

Tn=0 = mT

π

∫ 1

0

(
1√

1 − z2
+ |m − 1|(m − 1)z2

((m − 1)2 − 1)
(
z2 + 1

(m−1)2−1

)√
1 − z2

)
dz, 1 − m 
 1 (41)

Finally, these expressions simplify to

Tn=0 =
{

T/2, m � 1
T (m − 1/2) + O((m − 1)2), m < 1

. (42)

This peculiar nonanalytic dependence of the defect temper-
ature on m calls for closer exploration. In Fig. 7, T1, T2, and
Tn=0 are presented versus the defect mass m.

It is clear from Fig. 7 that for the case m < 1 (lighter
isotopic impurity), the temperature of the defect is less than
T2, therefore the temperature profile exhibits a thermal dip at
the light defect. Such dips are apparently inconsistent with
the second law of thermodynamics, since the heat flows from
cold defect to hotter part of the chain [24,25]. To explain
the appearance of the dip, one notes that for 0 < m < 1, the
spectrum of the chain with defect contains a localized mode in
the attenuation zone. For chain long enough, the thermostats
cannot excite this localized mode, thus causing the dip. In the
linear chain the modes do not exchange energy, therefore there
are no mechanisms for achieving the thermal equilibrium.
By this reason, the dip in the linear chain is persistent. To

illustrate this point, we simulate the modal energy distribution
[29] for rather short chain with N = 51 and light isotopic
defect placed at the middle or close to one of the thermostats.
The results are presented in Fig. 8.

In Fig. 8, when the defect is at the middle of the chain,
the localized mode, is almost not excited. As the defect is
closer to the thermostat, a peak replaces the dip. In this case,
the localized mode is strongly excited. This latter case is
not described by the previous analytic treatment, since the
transition to the infinite chain length is irrelevant here.

The aforementioned anomalies of the thermal profile are
caused by peculiarities of the frequency spectrum and by
lack of interaction between the modes in the linear system.
Thus, one can expect that the nonlinearity will remove, or, at
least, significantly modify the temperature distribution at the
defect. To check this assumption, we simulated the β−FPU
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FIG. 7. T1 (marker 1), T2 (marker 2), and Tn=0 (marker 3) vs m
(T = 1, γ = 1). T1 and T2 are symmetric to both sides of m = 1,
whereas Tn=0 is not and it is less than T2 (thermal dip) for m < 1.

chain [30] with the light isotopic defect. Time dynamics of
the thermal profile in this system is presented in Fig. 9 and T±
represents the hot and cold thermostats at the boundaries.

Figure 9 demonstrates that at relatively short timescale
the dip is observed even in the nonlinear chain. As the
simulation evolves, the dip gets gradually destroyed and
the defect particle temperature gets lifted close to the av-
erage chain temperature. Simple explanation is that as the
nonlinearity is relatively small, the initial thermal profile is
established through approximately linear dynamics (see also
Refs. [31,32]). Nonlinearity reveals itself at higher timescale,
related to the temperature. For lower temperatures, the process
of the dip elimination is expected to take more time. In the

FIG. 8. The temperature profile (a) and (b) and the energy spec-
trum (c) and (d). The isotopic defect is placed at the middle of the
chain at n = 26 (a) and (c) and near the hot thermostat at n = 7 (b)
and (d), N = 51, T+ = 1.1, T− = 0.9, γ = 1, m = 0.5.

FIG. 9. Destruction of the dip in the temperature profile in the
β−FPU chain. Each plot shows temperature profile after 106 time
steps (a), 107 time steps (b), 108 time steps (c), and 109 time steps
(d), respectively, N = 51, T± = 1 ± 0.1, γ = 1, m = 0.5, β= 0.1.

FPU chain one can discuss two possible basic mechanisms
of the dip elimination—-resonance of the renormalized waves
and excitation of the defect by mobile discrete breathers,
existing in the frequency range of the localized mode [26,27].
Detailed analysis of these mechanisms is beyond the scope
of this paper. We report some numeric observations related
to the dip elimination in two different settings—-in the chain
with only one thermostat (equilibrium simulation), and with
temperature gradient and nonzero heat flux (nonequilibrium).
In both settings, initially the dip exists, and is gradually elimi-
nated; however, the dynamics of this elimination demonstrates
substantial differences.

The easy way to observe the breather is to observe the
spatiotemporal profile for the frequency range of interest.
Such picture is obtained by filtering out all unnecessary fre-
quencies from the time history of the system. We consider a
one-dimensional chain of length N with light isotopic defect
at the middle. As it was mentioned above, two systems are
considered: the nonequilibrium system with N = 51, fixed
boundary and thermostats at each boundary, and the equilib-
rium system with N = 50, periodic boundary conditions and
one thermostat in the closed chain. The Langevin thermostat
with a coupling friction γ = 1, temperature T = 1 is consid-
ered, according to (4). To improve the visibility, rather light
defect with m = 0.05 is taken. The system is run initially with
β = 0 [linear, see (35)] for 107 steps, and subsequently the
nonlinearity is switched on with β = 0.1. Immediately from
the first step, for all particles, the particle-position history
is recorded for 105 steps. Then, Fourier transform is taken
for these data and all frequency components other than in
the range of linear localized mode are filtered out. Here, the
linear frequency of the localized mode is equal to 6.4 and
the filtering range is 6 � ω � 7. After filtering, the inverse
Fourier transform is taken.
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FIG. 10. Breather starts from the thermostat and excites the de-
fect particle in the nonequilibrium system. Frequency filtering range
6 � ω � 7, m = 0.05, T± = 1 ± 0.1, β = 0.1.

In Fig. 10, the interaction between a moving breather and
the defect particle is clearly observed for the nonequilibrium
simulation. The energy of the defect particle increases after
the interaction with the breather.

In the case of single thermostat (equilibrium simulation)
the breather propagation has not been observed. We can
conjecture that in the conditions of directed heat flux the prob-
ability of excitation of the mobile breather is higher than in the
conditions of stationary temperature distribution, without the
directed heat flux. This difference is reflected in different time
required to destroy the dip in these two settings, as presented
below.

To quantify the dynamics of the dip elimination, the
normalized temperature of the defect particle is defined as

FIG. 11. Normalized defect temperature for the nonequilibrium
simulations, for 20 different defect masses, m = 0.70−0.13, T± =
1 ± 0.1, β = 0.1.

FIG. 12. Normalized defect temperature for the equilibrium sim-
ulations, for 20 different defect masses, m = 0.70−0.13, T± = 1 ±
0.1, β = 0.1.

follows:

T ∗ = TAve − TDef

(TAve − TDef )max
. (43)

TAve is the average temperature of the system and TDef is
the temperature of the defect particle, as functions of time.
First, the nonequilibrium case is considered. To suppress the
fluctuations, the average of 1800 realizations is taken. The
excitation profile is studied for 20 different cases of the de-
fect mass. The latter were chosen to yield particular linear
localized frequencies, selected between 2.1 � ωloc � 4, with
0.1 increment. The time series for T ∗ in the case of the
nonequilibrium simulation are presented in Fig. 11 and for
the equilibrium simulation in Fig. 12. In general, these time
series have three regions. The first region is almost horizontal,
where the nonlinearity almost does not reveal itself. Then one

FIG. 13. Normalized defect temperature for the equilibrium sim-
ulations in temperature interval T = 0.1−2. As in Fig. 12, the
excitation profile follows linear trend. m = 0.05, β = 0.1.
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observes the excitation region where the defect particle re-
ceives energy as the time progresses. In the third region, the
defect particle reaches a steady state at which T ∗ starts fluc-
tuating around positive and negative values. One can observe
that in the nonequilibrium case the temperature dip is removed
at shorter timescale. It is possible to conjecture that the pro-
cess is expedited by interaction of the defect with mobile
breathers created at the thermostats. For the equilibrium case,
the excitation profile shows linear trend with the evolution
time for all simulated values of defect masses (cf. Fig. 12)
and temperatures (cf. Fig. 13).

It is well known [17] that in linear chains the temperature
profile near the thermostats exponentially achieve the average

values. This transient occurs due to the waves irradiated by
the thermostat, with frequencies belonging to the attenuation
zone of the chain. In the present case, in the vicinity of the
isolated defect, one also observes the transient to the constant
temperature (see, e.g., Fig. 8), despite the fact that in the case
of very long chain all frequencies active in this region belong
to the propagation zone.

To explain this peculiarity of the temperature profile
around the defect site, one defines

Tn<0 = T1 + �Tn<0; Tn>0 = T2 + �Tn>0. (44)

Then, with account of (38), it is easy to obtain

�Tn<0 =

⎧⎪⎪⎨
⎪⎪⎩

T
π

∫ 1
0

(
−

√
(1−z2 )+(m−1)2z2128(m−1)γ 2z5 sin (θ1−2nq)

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2
+ |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1−2nq)√

(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

)
dz, if m < 1

T
π

∫ 1
0

(
−

√
(1−z2 )+(m−1)2z2128(m−1)γ 2z5 sin (θ1−2nq)

((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2
− |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1−2nq)√

(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

)
dz, if m > 1

�Tn>0 =

⎧⎪⎪⎨
⎪⎪⎩

T
π

∫ 1
0

(
+ |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1+2nq)√

(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

)
dz, if m < 1

T
π

∫ 1
0

(
− |m−1|z((1+4γ 2z2 )2−64γ 2z4(1−z2 )) sin (θ1+2nq)√

(1−z2 )+(m−1)2z2((1+4γ 2z2 )2+64(m−1)2γ 2z6 )
√

1−z2

)
dz, if m > 1

. (45)

We consider the case n > 0, m < 1, with trivial generalization for other cases. To proceed with the analytic evaluation, one
assumes |m−1| 
 1, γ 
 1 and obtains

�Tn ≈ T

π

∫ 1

0

( |m − 1|εz2

((1 − z2) + (m − 1)2z2)
√

1 − z2
cos (4n arcsin (z)) + |m − 1|z

(1 − z2) + (m − 1)2z2
sin (4n arcsin (z))

)
dz. (46)

We denote ε = m−1 and z = sin(q/2), and obtain

�Tn ≈ T

2π

∫ π

0

⎛
⎝ |ε|εsin2(q/2)

(1−sin2 (q/2))+ε2sin2(q/2)
cos (2nq)+

+ |ε| sin (q/2) cos (q/2)
(1−sin2(q/2))+ε2sin2(q/2)

sin (2nq)

⎞
⎠dq

= T

4π (1 + ε2)

∫ 2π

0

⎛
⎝ |ε|ε(1−cos q) cos(2nq)

1+υ cos q +
+|ε| sin q sin (2nq)

1+υ cos q

⎞
⎠dq. (47)

Here υ = 1−ε2

1+ε2 . Then, Eq. (47) is transferred to the complex plane by substituting κ = exp(iθ ), and then reduced to the form

�Tn ≈ −iT

8πυ(1 + ε2)

∮
|κ|=1

(
Re

( |ε|ε(2κ2n − κ2n+1 − κ2n−1

κ2 + 2/υ κ + 1

)
+ Im

( |ε|(κ2n−1 − κ2n+1)

κ2 + 2/υ κ + 1

))
dκ. (48)

The poles in Eq. (48) are − 1
υ

±
√

1
υ2 − 1 and the one which is inside the unit circle is − 1

υ
+

√
1
υ2 − 1; then the expression

simplifies to

�Tn ≈ T

4
√

1 − υ2(1 + ε2)

(
|ε|ε

(
2

(
− 1

υ
+

√
1

υ2
− 1

)2n

−
(

− 1

υ
+

√
1

υ2
− 1

)2n+1

−
(

− 1

υ
+

√
1

υ2
− 1

)2n−1)

+|ε|
((

− 1

υ
+

√
1

υ2
− 1

)2n−1

−
(

− 1

υ
+

√
1

υ2
− 1

)2n+1))
. (49)

The result means that the near field of the defect follows
staggering exponential convergence to the average value. In-
terestingly, the exponent is governed solely by the mass of
defect. In Fig. 14, the exponential decay to the average tem-
perature is illustrated by the numerical integration of (45).

V. CONCLUDING REMARKS

For linear chain with arbitrary local conservative LTI de-
fect, one can derive the explicit exact expressions for the heat
flux and the temperature drop. The expressions are generic,
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FIG. 14. The absolute value of �Tn vs particle number, semilog-
arithmic scale. T = 1, γ = 1.2, m = 1.6.

and illustrated by a simple case of the isolated isotopic defect.
For more complex inclusions, the expression for the transfer
matrix will also become more complicated, but still will be at
least in principle derivable by linear algebra.

The Kapitza resistance in the linear chain, albeit finite, is
not a local property of the defect and its close surrounding.
This lack of locality is expressed in two main ways. The
first one is the dependence of the results on exact way of
approaching the thermodynamic limit. In fact, the universal
limit of the infinite system size for the resistance does not
exist. The analysis reveals clear distinction between the res-
onant and nonresonant cases, both in the observed values of
the resistance and in the asymptotic dependence on the mass
mismatch. Besides, the resistance value strongly depends on
the thermostat characteristics.

The analysis presented in the paper is suitable for one-
dimensional setting. 2D and 3D settings offer much more
possibilities for shapes of the inclusions; therefore, the
problem of the thermal resistance should include detailed
specification of the geometry. At the same time, our treatment
is based on ideas and methods of the linear response theory

that are not bounded to one dimension. So, in principle, the
solution for multidimensional model may be formulated based
on the same ideas. From the other side, the transition to the
thermodynamic limit will be even more tricky, and the result
will depend on it. Besides, one can also expect the dependence
of the resistance on the thermostat properties, similarly to the
1D case.

Another salient feature of the linear model is the thermal
dip at the light defect site, related to insufficient excitation
of the localized mode by the thermostat, and by lack of the
intermodal interactions. When the nonlinearity is switched
on, the dip gradually disappears, thus repairing the apparent
violation of the second law of thermodynamics. Of course, it
does not mean that the thermal resistance in the “repaired”
nonlinear system will be normal in all aspects [23]. Time
dynamics of the dip removal is different in the equilibrium
and nonequilibrium simulations. We conjecture that the dif-
ference is related to creation of propagating breathers in the
nonequilibrium system, that can interact with the defect and
further excite it. Intrinsic dynamics of this process of the dip
removal requires further exploration.

It is important to mention that the dip appears in the
temperature profile even for the nonlinear system, although
for relatively short time. This timescale is governed by the
system size and the defect mass, as the linear substructure is
nondimensional and normalized. The timescale necessary to
reveal the nonlinearity strongly depends on the temperature.
Thus, if the temperature is low enough, the initial response of
the system to the imposed thermal gradient will be governed
by the linear dynamics. In other terms, the linear dynamics
may be useful to understand the short-time response of more
realistic nonlinear models. This latter conclusion points to
the fundamental difference between the steady-state thermal
resistance and the short-time response. For the steady state,
one encounters qualitative differences between the linear and
nonlinear models [23], e.g., the strong size dependence of the
resistance.
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APPENDIX A: AVERAGING IN THE LIMIT OF THE INFINITE CHAIN LENGTH

1. The nonresonant case

From Eqs. (17) and (18), one obtains

〈
1

|D|2
〉

N1→∞
N2→∞

= 1

4π2

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

× 1

|cosh xei(ϕ1+ϕ2+θ1 )c2+ + sinh xc+c−(ei(ϕ2−ϕ1+θ2 ) − e−i(ϕ2−ϕ1+θ2 ) ) − cosh xe−i(ϕ1+ϕ2+θ1 )c2−|2 ζ1=ϕ1+ θ1−θ2
2

ζ2=ϕ2+ θ1+θ2
2

= 1

4π2

∫ 2π

0
dζ1

∫ 2π

0
dζ2

1

(Aeiζ1 − Be−iζ1 )(A∗e−iζ1 − B∗eiζ1 )
= 1

2π

∫ 2π

0

dζ2

||A|2 − |B|2|
A = cosh xeiζ 2 c2

+ − sinh xc+c−e−iζ2 , B = cosh xe−ζ2 c2
− − sinh xc+c−eiζ2 . (A1)
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Further integration yields

1

2π

∫ 2π

0

dζ2

||A|2 − |B|2|
=

j = exp(2iζ2)
−i

2π (|c+|2 − |c−|2)

∮
| j|=1

d j

j(Q − P j − P∗/ j)
= 1

(|c+|2 − |c−|2)
√

Q2 − 4PP∗

Q = (|c+|2 + |c−|2)cosh2x, P = sinh x cosh xc+c∗
−. (A2)

Similarly, for evaluation of T1 in Eq. (17) one obtains〈
exp(i(2ϕ2 + θ1 + θ2)

|D|2
〉

N1→∞
N2→∞

= 1

4π2

∫ 2π

0
dζ1

∫ 2π

0
dζ2

exp(2iζ2)

(Aeiζ1 − Be−iζ1 )(A∗e−iζ1 − B∗eiζ1 )

= 1

2π

∫ 2π

0

exp(2iζ2)dζ2

||A|2 − |B|2| = −i

2π (|c+|2 − |c−|2)

∮
| j|=1

jd j

j(Q − P j − P∗/ j)

= Q −
√

Q2 − 4PP∗

2P(|c+|2 − |c−|2)
√

Q2 − 4PP∗ . (A3)

Expressions (19) and (28) follow from (A2) and (A3).

2. The case of 1:1 resonance

We denote 2qN = ϕ and obtain〈
1

|D|2
〉

N→∞
= 1

2π

∫ 2π

0

dϕ[
(cosh xeiϕeiθ1 c2

+ + 2i sinh x sin θ2c+c− − cosh xe−iϕe−iθ1 c2
−)

(cosh xe−iϕe−iθ1 c∗2
+ − 2i sinh x sin θ2c∗

+c∗
− − cosh xeiϕeiθ1 c∗2

− )

]
=

j = exp(iϕ)
−i

2πcosh2x|c+|4
∮

| j|=1

jd j

( j − j1)( j − j2)( j j∗1 − 1)( j j∗2 − 1)
. (A4)

In Eq. (A4) j1,2 are the roots of polynomial P( j) = cosh xeiθ1 c2
+ j2 + 2i sinh x sin θ2c+c− j− cosh xe−iθ1 c2

−:

j1,2 = c−
c+

−i sinh x sin θ2 ±
√

cosh2x − sinh2xsin2θ2

cosh x exp(iθ1)
. (A5)

It is easy to demonstrate that both roots lie inside or at the boundary of the unit circle:

| j1,2|2 =
∣∣∣∣c−
c+

∣∣∣∣
2

= 1 + γ 2ω2 − 2γω sin q

1 + γ 2ω2 + 2γω sin q
� 1. (A6)

Therefore, only these two roots contribute to the integral in Eq. (A1); two others lie outside the unit circle. Thus, one obtains〈
1

|D|2
〉

N→∞
= 1

cosh2x|c+|4
(

j1
( j1 − j2)(| j1|2 − 1)( j1 j∗2 − 1)

+ j2
( j2 − j1)( j2 j∗1 − 1)(| j1|2 − 1)

)

= |c+|2 + |c−|2
cosh2x(|c+|2 − |c−|2)(|c+|4 + |c−|4 + 2|c+|2|c−|2(1 − 2tanh2xsin2θ2))

. (A7)

The other auxiliary expression is evaluated in a similar way:〈
e−2iqN

|D|2
〉

N→∞
= 1

2π

∫ 2π

0

e−iϕdϕ[
(cosh xeiϕe−iθ1 c2

+ − 2i sinh x sin θ2c+c− − cosh xe−iϕeiθ1 c2
−)

(cosh xe−iϕeiθ1 c∗2
+ + 2i sinh x sin θ2c∗

+c∗
− − cosh xeiϕe−iθ1 c∗2

− )

]
=

j = exp(iϕ)
−i

2πcosh2x|c+|4
∮

| j|=1

d j

( j − j1)( j − j2)( j j∗1 − 1)( j j∗2 − 1)

= j∗1 j2 − j1 j∗2
cosh2x

(∣∣ c−
c+

∣∣2 − 1
)
( j1 − j2)(|c+|4 + |c−|4 + 2|c+|2|c−|2(1 − 2tanh2xsin2θ2))

= −2ic+c∗
− exp(iθ1) tanh x sin θ2

cosh2x(|c+|2 − |c−|2)(|c+|4 + |c−|4 + 2|c+|2|c−|2(1 − 2tanh2xsin2θ2))
. (A8)
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APPENDIX B: EXACT VALUES OF INTEGRALS IN EQ. (25)

Let us consider the following part from (25) containing polynomial in the denominator:

I = 1

(1 + 4γ 2z2)2 + 64(m − 1)2γ 2z6
. (B1)

Put σ = z2:

I = 1

64(m − 1)2γ 2
(
σ 3 + γ 2

4(m−1)2 σ 2 + γ

8(m−1)2 σ + 1
64(m−1)2γ 2

) . (B2)

If σ0, σ1, σ2 are the roots of the polynomial in the denominator of (B2), then

I = 1

64(m − 1)2γ 2(σ − σ0)(σ − σ1)(σ − σ2)
. (B3)

Let us write the depressed cubic equation by introducing the variable r,

σ = r − γ 2

12(m − 1)2 , (B4)

I = 1

64(m − 1)2γ 2
(
r3 + r

(
1

8(m−1)2 − 3
(

γ 2

12(m−1)2

)2) + (
2
(

γ 2

12(m−1)2

)3 − γ 2

96(m−1)4 + 1
64(m−1)2γ 2

)) . (B5)

If we define

p̄ = 1

8(m − 1)2 − 3

(
γ 2

12(m − 1)2

)2

, q̄ = 2

(
γ 2

12(m − 1)2

)3

− γ 2

96(m − 1)4 + 1

64(m − 1)2γ 2
, (B6)

then one root of the cubic equation can be written as trigonometric and hyperbolic solutions.

σ0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− γ 2

12(m−1)2 − 2
√

p̄
3 sinh

[
1
3 arcsin h

[ 3q̄
2 p̄

√
3
p̄

]]
, if 4 p̄3 + 27q̄2> 0 and p̄ > 0

− γ 2

12(m−1)2 − 2 |q̄|
q̄

√
− p̄

3 cosh
[

1
3 arccos h

[−3|q̄|
2 p̄

√
−3
p̄

]]
, if 4 p̄3 + 27q̄2> 0 and p̄ < 0

− γ 2

12(m−1)2 + 2
√

− p̄
3 cos

[
1
3 arccos

[ 3q̄
2 p̄

√
−3
p̄

]]
, if 4 p̄3 + 27q̄2 < 0

. (B7)

Then the remaining roots can be found as follows:

I = 1

64(m − 1)2γ 2(σ − σ0)(σ 2 + bσ + c)

b = γ 2

4(m − 1)2 + σ0, c = −1

64(m − 1)2γ 2σ0
, σ1 = (−b + √

b2 − 4c)

2
, σ2 = (−b − √

b2 − 4c)

2
. (B8)

Now, it is easy to do the partial fraction following the exact integration.

I = 1

64(m − 1)2γ 2

(
1

(σ1 − σ2)(σ1 − σ0)(σ − σ1)
+ 1

(σ1 − σ2)(σ0 − σ2)(σ − σ2)
+ 1

(σ0 − σ1)(σ0 − σ2)(σ − σ0)

)
. (B9)

Putting (B9) back into (25) yields

J = 8γ T

π

1

64(m−1)2γ 2

∫ 1

0

(
z2

√
1 − z2(1 + 4γ 2z2)

(σ1 − σ2)(σ1 − σ0)(z2 − σ1)
+ z2

√
1−z2(1+4γ 2z2)

(σ1 − σ2)(σ0 − σ2)(z2 − σ2)
+ z2

√
1−z2(1 + 4γ 2z2)

(σ0 − σ1)(σ0 − σ2)(z2 − σ0)

)
dz,

(B10)

J = T

32(m − 1)2γ

(
1

(σ1 − σ2)(σ1 − σ0)
(1 + 2

√
σ1 − 1

√
σ1 − 2σ1) + 1

(σ1 − σ2)(σ0 − σ2)
(1 + 2

√
σ2 − 1

√
σ2 − 2σ2)

+ 1

(σ0 − σ1)(σ0 − σ2)

(
1 + 2

√
σ0 − 1

√
σ0 − 2σ0

))

+ T γ

32(m − 1)2

(
1

(σ1 − σ2)(σ1 − σ0)

(
1 + 4σ1 + 8

√
σ1 − 1σ

3/2
1 − 8σ 2

1

)

+ 1

(σ1 − σ2)(σ0 − σ2)

(
1 + 4σ2 + 8

√
σ2 − 1σ

3/2
2 − 8σ 2

2

) + 1

(σ0 − σ1)(σ0 − σ2)

(
1 + 4σ0 + 8

√
σ0 − 1σ

3/2
0 − 8σ 2

0

))
.

(B11)
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Similarly, we can calculate T1 and T2:

T1 = T

2
+ T

16

(
1

(σ1 − σ2)(σ1 − σ0)

(
3 + 4σ1 + 8σ 2

1 − 8σ
5/2
1√

σ1 − 1

)
+ 1

(σ1 − σ2)(σ0 − σ2)

(
3 + 4σ2 + 8σ 2

2 − 8σ
5/2
2√

σ2 − 1

)

+ 1

(σ0 − σ1)(σ0 − σ2)

(
3 + 4σ0 + 8σ 2

0 − 8σ
5/2
0√

σ0 − 1

))
, (B12)

T2 = T

2
− T

16

(
1

(σ1 − σ2)(σ1 − σ0)

(
3 + 4σ1 + 8σ 2

1 − 8σ
5/2
1√

σ1 − 1

)
+ 1

(σ1 − σ2)(σ0 − σ2)

(
3 + 4σ2 + 8σ 2

2 − 8σ
5/2
2√

σ2 − 1

)

+ 1

(σ0 − σ1)(σ0 − σ2)

(
3 + 4σ0 + 8σ 2

0 − 8σ
5/2
0√

σ0 − 1

))
. (B13)

Equations (B11)–(B13) give the exact solutions to evaluate Kapitza resistance given in Eq. (26).
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