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Geometrical frustration and cluster spin glass with random graphs
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We develop a based on a sparse random graph to account for the interplay between geometric frustration
and disorder in cluster magnetism. Our theory allows introduction of the cluster network connectivity as a
controllable parameter. Two types of inner cluster geometry are considered: triangular and tetrahedral. The theory
was developed for general, nonuniform intracluster interactions, but in the present paper the results presented
correspond to uniform, antiferromagnetic (AF) intraclusters interaction J0/J . The clusters are represented by
nodes on a finite connectivity random graph, and the intercluster interactions are randomly Gaussian distributed.
The graph realizations are treated in replica theory using the formalism of order parameter functions, which
allows one to calculate the distribution of local fields and, as a consequence, the relevant observable. In the
case of triangular cluster geometry, there is the onset of a classical spin liquid state at a temperature T ∗/J and
then, a cluster spin glass (CSG) phase at a temperature T/J . The CSG ground state is robust even for very
weak disorder or large negative J0/J . These results does not depend on the network connectivity. Nevertheless,
variations in the connectivity strongly affect the level of frustration fp = −�CW /Tf for large J0/J . In contrast,
for the nonfrustrated tetrahedral cluster geometry, the CSG ground state is suppressed for weak disorder or large
negative J0/J . The CSG boundary phase presents a reentrance which is dependent on the network connectivity.
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I. INTRODUCTION

Magnetism in clusters of spins is a very promising novel
frontier in terms of both fundamental physics and applications
[1]. The starting point is that the spin cluster is a structure
with constituent elements such as inner geometry, chemical
composition, and size, whose combined effects make cluster
magnetism full of possibilities for new magnetic materials.

One of them, still little explored, is the relationship be-
tween cluster magnetism and geometrical frustration (GF) [2].
This concept has been a central topic in condensed matter
physics [3]. More recently, its presence has been understood
as the cornerstone for the existence of exotic states of matter,
such as classical or quantum spin liquids (SLs) [4]. It should
be noted that this relationship may have also technological
interest, since frustration may be behind a significant increase
in the magnetocaloric effect [5,6].

The question is, how does one contact cluster magnetism
with GF? Our answer is based on the assumption that, in
cluster magnetism, the spin lattice is replaced by a spin cluster
network. From that point, if there is disorder also present,
we follow the main assumptions of the cluster mean field
(CMF) theory for spin glasses [7,8]. First, one considers that
spin clusters themselves can interact rather than individual
spins. This is a situation similar to what has already been
proposed for nanomagnetism (see, for instance, [9]). Next, the
problem is separated into intra- and intercluster parts which
are self consistently coupled, leading to the glassy instability.
The effects of the GF can come from the intracluster part
considering, for instance, a suitable inner cluster geometry
with, for instance, antiferromagnetic (AF) interactions.

Indeed, such an approach allowed obtaining nontrivial re-
sults [10–12]. For instance, in the case of Ising spins using
the kagome geometry, a mechanism was introduced to sta-
bilize a cluster spin glass (CSG) phase at low temperature
with much weaker disorder compared to that required for
individual spins. This mechanism is related to the formation
of a region with a classical spin liquid (SL) given by a plateau
in the entropy at lower temperatures which precedes the CSG
instability. We highlight that this behavior is observed in real
systems (see [13–15]).

Nevertheless, the CMF theory assumes that the cluster
network is fully connected. Such assumption may lead to an
inadequate account for the GF within the self-consistent pro-
cedure which couples the intra and inter-cluster parts. Thus,
one should evaluate properly whether and how the variation
in the connectivity of the cluster network can affect the self-
consistency and, therefore, the GF effects in the disordered
cluster magnetism.

In this paper, we propose to study of the CSG state in a
random graph architecture with finite connectivity. The main
reason to adopt this architecture is that, since it allows one
to control the network connectivity, it is more realistic than
the fully connected network mean field approach. We apply
it for triangular and tetrahedral clusters with uniform AF
intracluster interactions, in order to compare results with and
without GF effects.

In order to deal with the realizations of the random
network, we use the replica theory [16,17], that con-
sist of rewriting the replicated partition function in terms
of order parameter functions and then taking the replica
limit. The order parameter functions are then parametrized
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in terms of a local field distribution, which is self-
consistently calculated through a population dynamics al-
gorithm. It is well known that, below the spin glass
transition, replica symmetry is broken. The instability of the
replica symmetry solution is obtained through the two-replica
method [18].

There are other methods to deal with a finite connectivity
random network, such as the cavity method [19]. The equa-
tions of the cavity method are written down considering a
unique realization of the network disorder, but it becomes
equivalent to the replica method when the disorder average
is performed. Here, we focus mainly on the replica symmetry
(RS) theory. The development of a replica symmetry breaking
(RSB) theory for a cluster network with finite connectivity, to
deal with geometric frustration effects, is beyond the objective
of this paper.

The paper is organized as follows. In Sec. II we de-
rive the equations for the model using the replica method.
In Sec. III we present the results characterizing the sys-
tem by drawing phase diagrams for the thermodynamic
phases. The conclusions and other remarks are found in
Sec. IV.

II. MODEL AND REPLICA PROCEDURE

We study a system of Ncl interacting clusters. The Ising
spins that belong to each cluster can assume the values
σμi = ± 1

2 , where μ = 1, . . . , Ncl is the cluster index and
i = 1, . . . , p is the intracluster index. The intercluster inter-
action Jμν is chosen from a Gaussian distribution with mean
zero and variance J2. The Hamiltonian of this system is

given by

H (σ ) = − 1√
c

∑
μ<ν

cμνJμνσμσν − θ
∑

μ

σμ +
∑

μ

H0(σμ),

(1)

where σ ≡ {σμi} represents the state of the entire system,
σμ = ∑p

i=1 σμi and σμ are, respectively, total spin and state
vector of cluster μ, and θ is a uniform external field cou-
pled to the total spin of each cluster. The term H0(σμ) =
− 1

2

∑
i �= j Ji jσμiσμ j accounts for the intracluster couplings. It

should be noted that, at this point, no particular choice is made
for Ji j .

The elements of the connectivity matrix between clusters,
cμν , are chosen from a binary probability distribution

p(cμν ) = c

Ncl
δcμν ,1 +

(
1 − c

Ncl

)
δcμν ,0, (2)

where the constant c represents the average connectivity.
The replica method will be used to average over the

quenched disorder. The disorder-averaged free energy can be
written as

f (β ) = − lim
Ncl → ∞

n → 0

1

βnNcl
ln〈Zn〉, (3)

where

Zn =
∑

σ1···σn

e−β
∑

α H (σα ) (4)

is the replicated partition function, with α = 1, . . . , n being
the replica index. Averaging over the connectivity disorder,
this becomes, in the limit c/Ncl → 0,

〈Zn〉 =
∑

σ1···σn

exp

[
− β

∑
αμ

H0
(
σα

μ

) + βθ
∑
αμ

σα
μ + c

2Ncl

∑
μ �=ν

〈
e

β√
c
Jμν

∑
α σα

μ σα
ν − 1

〉
Jμν

]
. (5)

Now we start to reduce to the problem of one cluster. In the following we punctuate only the main steps and refer to Appendix
A for details. The order function in problems with finite connectivity is the probability of finding the replica state vector in a
given state s [16,20],

P(s) = 1

Ncl

∑
μ

δsσμ
. (6)

Introducing Eq. (6) in Eq. (5), the partition function becomes

〈
Zn

〉 =
∫ ∏

s

dP(s)dP̂(s) exp Ncl

{ ∑
s

P̂(s)P(s) + ln
∑

s

exp

[
− β

∑
α

H0(sα )

+ βθ
∑

α

sα − P̂(s)

]
+ c

2

∑
ss′

P(s)P(s′)
〈
e

βJ√
c

∑
α sαs′

α − 1
〉}

, (7)

where P̂(s) is an auxiliary variable and sα = ∑p
i=1 sαi. In the limit Ncl → ∞, the integral in this equation can be solved through

the saddle-point method. Eliminating P̂(s) through the saddle-point equations, the averaged per-cluster free energy becomes

f (β ) = − lim
n→0

1

βn
Extr

{
− c

2

∑
ss′

P(s)P(s′)
〈
e

βJ√
c

∑
α sαs′

α − 1
〉

+ ln
∑

s

exp

[
− β

∑
α

H0(sα ) + βθ
∑

α

sα + c
∑

s′
P(s′)

〈
e

βJ√
c

∑
α sαs′

α − 1
〉]}

. (8)
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where Extr means to take the extreme of the expression between braces relatively to P(s). We look for solutions satisfying the
replica symmetry ansatz (RS), where P(s) remains unchanged under permutation of the replica index. Since we assume that the
clusters interact through their total spin, the RS ansatz can be written in the form

P(s) =
∫

dh W (h)
exp

[ − β
∑

α H0(sα ) + βh · ∑
α M(sα )

]
{∑

s exp
[ − βH0(s) + βh · M(s)

]}n . (9)

Here, h and M(s) ≡ (s, s2, . . . , sp) are vectors with p components, where the superscript in each components amounts to an
exponent. A p-spin cluster has p + 1 total spin states s. The component i of vector h is coupled to si, allowing h to control the
population of the p + 1 states, while the term H0 takes account of the intracluster states.

All the properties of the system are accessible upon knowledge of the vector-field distribution W (h). The RS solution reads

W (h) =
∑

k

Pk

∫ k∏
l=1

dhl W (hl )

〈
p∏

i=1

δ

(
hi −

∑
l

φi(hl , Jl )

)〉
Jl

, (10)

where hi in the right-hand side (r.h.s.) are components of vec-
tor h in the left-hand side (l.h.s.) and φi(hl , Jl ), i = 1, . . . p,
are functions dependent on the size of the cluster. For details
about the development of Eq. (10) and calculation of φi(hl , Jl )
for p = 3 and p = 4, see the Appendices. This equation can be
solved recursively through a population dynamics algorithm,
to be described below.

After obtaining W (h) it is possible to calculate the ob-
servable. For example, the per cluster magnetization, the
spin-glass order parameter and the occupation number are
given, respectively, by

m =
∫

dh W (h)〈s〉, (11)

q =
∫

dh W (h)〈s〉2, (12)

and

Q =
∫

dh W (h)〈s2〉, (13)

where

〈s〉 =
∑

s s exp[−βH0(s) + βh · M(s)]∑
s exp[−βH0(s) + βh · M(s)]

, (14)

and

〈s2〉 =
∑

s s2 exp[−βH0(s) + βh · M(s)]∑
s exp[−βH0(s) + βh · M(s)]

. (15)

To obtain the free-energy density in the RS approach, we
introduce the RS ansatz in the free-energy density, Eq. (8). In
the limit n → 0 this results

f (β ) = c

2β

∫
dh dh′W (h)W (h′)

〈∑
ss′ exp

[ − βH0(s) + βh · M(s) − βH0(s′) + βh′ · M(s′) + β J√
c
ss′]〉

J∑
s exp[−βH0(s) + βh · M(s)]

∑
s′ exp[−βH0(s′) + βh′ · M(s′)]

− 1

β

∑
k

Pk

∫ ∏
l

dhlW (hl ) ln
∑

s

exp[−βH0(s) + βθs]

×
∏

l

〈 ∑
sl

exp
[ − βH0(sl ) + βhl · M(sl ) + β Jl√

c
ssl

]〉
Jl∑

s exp[−βH0(s) + βhl · M(s)]
. (16)

A. Linear magnetic susceptibility

The linear magnetic susceptibility χ = (∂m/∂θ )θ→0 =
−(∂2 f /∂θ2)θ→0 plays a central role in characterizing geomet-
rical frustration [2]. From Eq. (8) we have

∂2 f

∂θ2
= −β

n

∑
s

P(s)

( ∑
α

sα

)2

+ β

n

(∑
s

P(s)
∑

α

sα

)2

.

(17)

In the limit n → 0 the second term vanishes and the first can
be written in terms of q and Q, and then

χ = β(Q − q). (18)

B. Stability of RS solution

The stability of the RS solution was determined by using
the two-replica method [18]. It consistsof solving the saddle-
point equations for two independent systems, only coupled
through the disorder realization. The Hamiltonian for the dou-
ble system reads

H (σ, τ ) = − 1

2
√

c

∑
μ �=ν

cμνJμνσμσν − 1

2
√

c

∑
μ �=ν

cμνJμντμτν

− θ
∑

μ

σμ−θ
∑

μ

τμ+
∑

μ

H0(σμ)+
∑

μ

H0(τμ).

(19)
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FIG. 1. (a) Triangular and (b) tetrahedral clusters.

The self-consistent equation for the two-replica vector field
distribution is

W (h, h′)

=
∑

k

Pk

∫ k∏
l=1

dhl dh′
l W (hl )W (h′

l )

×
〈

p∏
i=1

[
δ

(
hi−

∑
l

φi(hl , Jl )

)
δ

(
h′

i−
∑

l

φi(h′
l , Jl )

)]〉
Jl

,

(20)

which is diagonal, i.e.,

W (h, h′) = W (h)δ(h − h′) (21)

if the RS solution is stable, and nondiagonal otherwise. The
Almeida-Thouless line [21] (AT) is found by calculating the
overlap between two replicas,

q′ =
∫

dh dh′ W (h, h′)〈s〉(h)〈s〉(h′). (22)

From Eqs. (12) and (21), q′ = q if the RS is stable, and the
appearance of a bifurcation signals the AT line.

III. RESULTS AND DISCUSSIONS

Two types of cluster geometry are considered: the equi-
lateral triangle, p = 3, and the regular tetrahedron, p = 4, as
shown in Figs. 1(a) and 1(b), respectively. For simplicity, the
inner couplings J0/J are uniform, although the theoretical
framework allows one to consider nonuniform couplings as

well. Our analysis focuses in the interplay between the two
geometries, and the intracluster couplings J/J and how it is
affected by the connectivity c. Due to frustration effects, the
most interesting is the region J0/J < 0. The standard devi-
ation of the Gaussian distributed intercluster couplings J is
adopted as the energy scale.

The relevant observables are obtained upon the solution of
the self-consistent saddle point Eq. (10) through a population
dynamics algorithm [19,22], as follows. Initially, a population
of size N of p-dimensional vector fields is created with a
certain starting guess. In each iteration, a number k is chosen
from a Poisson distribution of mean c; k vector fields hl

and couplings Jl , l = 1, . . . , k, are randomly chosen; the l
summation in each Dirac δ function in Eq. (10) is calculated.
Finally, another field is randomly chosen from the population
and to each of its components is assigned the corresponding
l summation. This procedure is repeated till the population of
vector fields converges.

To visualize a vector-field distribution, it is convenient to
use marginal distributions,

w(hi) =
∫ ∏

j �=i

dh j W (h), (23)

where j runs over all fields but i. Examples of the marginal
distributions for triangular clusters are drawn in Fig. 2, where
the system is in a CSG phase with q > 0 and Q > 0. When-
ever q > 0, q′ �= q, so the RS solution is unstable into the CSG
phase and, as a consequence, the AT line coincides with the
CSG phase boundary.

Next, to provide a better discussion, we present the results
for each cluster geometry in two separate subsections.

A. Triangular clusters

The macroscopic state is determined by calculating the
order parameters q and Q through Eqs. (12) and (13), re-
spectively, for a set of chosen values of c and a proper range
of J0/J . To show how this unfolds, Fig. 3 shows the phase
diagram T/J versus J0/J for several values of c. There, two
types of magnetic states are observed. At high temperature,
a paramagnetic (PM) phase with Q > 0 and q = 0 is found.
Then, decreasing the temperature, there is a continuous tran-
sition to a CSG phase, with Q > 0 and q > 0, at the freezing
temperature Tf /J . Moreover, as will be discussed below, in
a region with strong AF couplings, and therefore strong GF,
there appears a crossover from the PM phase to a classical SL
state with temperature T ∗/J , at a temperature above the onset
of the CSG. In particular, for J0/J < −3.0, Tf /J becomes
independent of J0/J , while T ∗/J becomes linearly dependent
on it. Concerning the role of c, the phase diagram can be
divided in three regions, depending on J0/J . In the first region,
with J0/J � −1.5, Tf /J increases as c increases. In a second
region, −2.5 � J0/J � −1.5, Tf /J decreases as c increases.
Finally, for J0/J � −2.5, Tf /J returns to increase with in-
creasing c. It is worth mentioning that, in the range that was
investigated, Tf /J is weakly dependent on c, and it converges
to the infinite connectivity behavior beyond c � 12.

To proceed with our analysis, the entropy per cluster s =
−∂ f /∂T and the magnetic specific heat Cm = −T ∂2 f /∂T 2

were calculated. In Fig. 4(a) s and Cm are drawn for two
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FIG. 2. Marginal distributions for each component of a triangular cluster, for T/J = 0.1, c = 4, and J0/J = −5.0, where there are strong
frustration effects (see discussion below). N = 105 is the size of the population of fields. (a) Marginal along the h1 field, (b) marginal along
the h2 field, and (c) marginal along the h3 field.

representative values of J0/J . The entropy plateau prior the
CSG phase transition leads to a Cm showing a two-maxima
structure. There is a low temperature maximum that is relative
to the loss in degrees of freedom close to the CSG transition.
As the temperature continues to increase, there is a second,
less pronounced maximum in Cm, at T ∗/J . Its position varies
linearly with J0/J , as shown by the thin line in the phase
diagram in Fig. 3. Strictly speaking, there is no thermody-
namic transition at T ∗/J , since no order parameters are going
to zero there. In fact, the interval Tf /J < T/J < T ∗/J has
always q = 0. Nevertheless, the high temperature maximum
suggests that, in between the two maxima, a different param-
agnetic order settles in, where internal to the clusters degrees
of freedom dominate. This region corresponds to the classical
SL displayed in Fig. 3. Thus, we consider T ∗/J as the tem-
perature crossover between the PM phase and the classical
SL [23].

To investigate the connectivity dependence on T ∗/J , plots
of Cm vs T/J for two representative values of c are shown
in Fig. 4(b) . For c = 8, the first Cm maximum gets higher

and is horizontally dislocated. This is consistent with a similar
effect on Tf /J . Moreover, a further decrease on c makes this
maximum eventually disappear at the percolation limit c = 1.
The second maximum is marginally modified by changing c.
This means that T ∗/J does not depend on the random network
connectivity.

The interplay between of c and J0/J is also investigated
regarding the level of GF given by the parameter fp =
|�CW |/Tf [2], where �CW is the Curie-Weiss temperature. We
show in Fig. 5(a) the inverse of susceptibility χ−1 displaying
a cusp at Tf /J , which is characteristic of a spin-glass-like
transition. χ−1 is plotted for c ranging from 2 to 12. For
T/J � Tf /J , the behavior of χ−1 does not change with an
increase in c. However, as can be noted in Fig. 5(b), �CW /J
is highly influenced by changing J0/J . �CW /J was estimated
through the Curie-Weiss law χ (T ) = C/(T − �CW ), from the
linear region of the χ−1 vs T/J curves. For J0/J = −3.0,
the obtained value is �CW /J ≈ −1.84 for all c. For c = 4,
we obtain fp ≈ 9.46, thus indicating a moderately frustrated
scenario. As can be observed, �CW /J strongly depends on
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FIG. 3. T/J versus J0/J phase diagrams in clusters of equilateral
triangles. The thin line represents the SL to PM crossover tempera-
ture T ∗/J .

J0/J , but fp is also a function of Tf /J which, in turn, is
influenced by c.

To visualize how the interplay between c and J0/J reflects
on the level of frustration, curves of fp vs c−1 for three values
of J0/J are presented in Fig. 6. This allows us to identify
important differences in the behavior of fp, as follows. For
J0/J = −2.0, fp is relatively weakly affected by the variation
of c, but it is important to remark that there is a minimum
of frustration at c ≈ 3. This interesting point deserves further
investigation for an explanation. In strong contrast, for J0/J =
−5.0, fp presents fast growth as c decreases. This behavior (as
for J0/J = −3.0) is consistent with the development of a SL
region obtained in the phase diagram of Fig. 3. We could not
go further beyond c−1 ≈ 0.7 in Fig. 6 because the freezing
temperature Tf /J approaches zero as c → 1, causing numeri-
cal instability. Anyway, since �CW /J is nearly c independent,
the fp parameter should diverge in this limit.

B. Tetrahedral clusters

There are two major differences relative to the triangular
clusters. First, the cluster is not prone to geometrical frustra-
tion. Second, the cluster can be fully compensated, i.e., there
exist states where the total spin of the cluster Q is zero. For in-
stance, for J0/J 
 0 the full compensation is favored, as will
be discussed below. Another consequence is that, in contrast
to triangular clusters, discontinuous transitions do appear for
sufficiently large c. We refer to Fig. 7 as an example of the
curves for Q and q versus J0/J in the vicinity of a first-order
CSG-PM transition, for c = 8. The free energy f , that allows
one to localize the first-order transition, is also shown.

The general behavior of tetrahedral clusters can be seen
in the phase diagram of Fig. 8 . The most interesting
regime is J0/J < 0. For J0/J > 0 the clusters become frozen
at their maximum Q value. As stated above, for J0/J 
 0, the
fundamental state is fully compensated. This means that the
total cluster spin assumes the state s = 0, favoring a nonmag-
netic state, with q = 0 = Q. As J0/J become less negative,

FIG. 4. (a) Specific heat Cm vs T/J for intracluster couplings
J0/J = −5.0 and J0/J = −3.0, for c = 4. The inset shows the cor-
responding entropy. (b) Specific heat Cm versus T/J for c = 4 and
c = 8, for J0/J = −3.0.

the ground state becomes the CSG phase. This occurs at
J0/J � −1.95 and is due to the increase in relevance of the
long range random interactions.

As shown in Fig. 8, there is a remarkable influence of
the connectivity between clusters on the phase diagrams. For
low connectivity, as c = 4, the PM → CSG phase transition
is always continuous. In contrast, already for c = 8 a more
complex picture appears, with a low-temperature discontinu-
ous transition, a high-temperature continuous transition, and
a tricritical point between them. For c = 8 and c = 12, the
tricritical points are located at Tc/J = 0.18 and Tc/J = 0.24,
respectively.

Associated with the discontinuous PM → CSG transitions,
Fig. 8 shows a reentrant region. At the transition, the CSG
phase coexists with the PM phase with small Q [24]. In the
reentrant region the system passes from PM to CSG and then
to PM. This reentrance is similar to the unusual inverse freez-
ing phase transition observed in non-Ising classical models
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FIG. 5. (a) Inverse susceptibility χ−1 versus T/J profiles for
fixed intracluster couplings J0/J = −5.0 and connectivity values
c = 2, c = 4, c = 8, and c = 12. The inset shows the cusps in detail.
(b) Inverse susceptibility χ−1 vs T/J profiles for fixed c = 8 and two
values of the intracluster couplings: J0/J = −3.0 and J0/J = −5.0.
The inset shows the cusps in detail. The thin straight lines represent
the fit of the Curie-Weiss law to the linear region of χ−1.

[25,26], and is related to the full compensation of the total
cluster spin at large negative J0/J . At low temperature, the
fully compensated, nonmagnetic cluster state is favored. This
becomes no longer true when thermal fluctuations increase,
and the long range, disordered interaction acts to stabilize a
CSG phase. Since this is a collective effect, it depends on the
connectivity. Despite the reentrance, the principle of mono-
tonic increase of entropy with temperature is not violated,
since the small Q phase has lower entropy than the CSG one
that is at higher temperature.

IV. CONCLUDING REMARKS

In this paper, we developed a theoretical framework to take
into account geometric frustration effects within the cluster
magnetism with disorder in a sparse random network, where
the connectivity between clusters is a controllable parameter.

FIG. 6. Frustration parameter fp vs c−1.

FIG. 7. (a) Total spin of the cluster Q, CSG order parameter q,
and free energy f vs J0/J for T/J = 0.10 and c = 8. (b) The same,
but for T/J = 0.15. Solid (dashed) lines indicate heating (cooling).
The arrows indicate the loci of the discontinuous transitions.
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FIG. 8. T/J vs J0/J phase diagrams in clusters of regular tetra-
hedrons for c = 4, c = 8, and c = 12. Thin lines represent first-order
phase transitions.

We have used a triangle and a tetrahedron for choices of the
inner cluster structure. The intracluster interaction for both
cases is antiferromagnetic (AF).

Our results show that, for the triangular cluster geometry,
the cluster spin glass ground state appears even for very small
disorder. Most importantly, such a result does not depend
on the cluster network connectivity. Furthermore, geometric
frustration effects lead to a classical spin-liquid region which
is dependent on the strength of intracluster AF interaction

J0/J but is very weakly dependent on the connectivity. On the
other hand, variations in the connectivity strongly affect the
level of frustration fp = −�CW /Tf for larger value of J0/J .
This behavior is particularly intense for larger values of J0/J .
Thus, the increase of fp is consistent with the development of
the SL region.

In the case of the tetragonal cluster geometry there appears,
at low temperature, the unusual phase transition known as
inverse freezing [25], that is similar to those results already
obtained for a fully connected network of clusters (see, for
instance, Ref. [24]). Our results show that, in the case of a low
connectivity, the inverse freezing disappears, which indicates
that this unusual phase transition is connectivity dependent.

To summarize, the relationship between cluster magnetism,
disorder, and geometric frustration was studied. For this pur-
pose, we introduced a methodology in which the cluster
network connectivity is a controllable parameter of the theory.
We investigate two particular types of cluster geometry. How-
ever, we do believe that the method can be extended to other
kinds of cluster geometry, for instance the kagome one. We
are currently investigating this point. Furthermore, although in
this paper the intracluster couplings were uniform, the theory
can be applied to the nonuniform case.
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APPENDIX A: DERIVATION OF THE SADDLE-POINT EQUATIONS

In order to reduce to the problem of one cluster, the first step is to withdraw the total spin of the clusters from the inner
exponential in Eq. (5), using the identity

1 =
∑

s

n∏
α=1

p∏
i=1

δsα
i σα

μi
=

∑
s

δsσμ
, (A1)

where δsσ is the Kronecker delta and s ≡ {sα
i } is an auxiliary spin vector.

The replicated partition function becomes

〈Zn〉 =
∑

σ1···σn

exp

[
− β

∑
αμ

H0
(
σα

μ

) + βθ
∑
αμ

σα
μ + c

2Ncl

∑
μ �=ν

∑
ss′

δsσμ
δs′σν

〈
e

βJ√
c

∑
α sαs′

α − 1
〉
J

]
, (A2)

where sα = ∑p
i=1 sα

i .
The order function, Eq. (6), is introduced in Eq. (5) through a Dirac delta function and then, using the integral representation

for the Dirac delta function, the replicated partition function becomes

〈
Zn

〉 =
∑

σ1···σn

∫ ∏
s

dP(s)dP̂(s) exp

{
− β

∑
αμ

H0
(
σα

μ

) + βθ
∑
αμ

σα
μ +

∑
s

P̂(s)P(s)

− 1

Ncl

∑
s

P̂(s)
∑

μ

δsσμ
+ cNcl

2

∑
ss′

P(s)P(s′)
〈
e

βJ√
c

∑
α sαs′

α − 1
〉
J

}
. (A3)
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The summation over the spin variables σα
μ = (σα

μ1, . . . , σ
α
μp) concerns the factor

% =
∑

σ1···σn

exp

[
− β

∑
αμ

H0
(
σα

μ

) + βθ
∑
αμ

σα
μ − 1

Ncl

∑
s

P̂(s)
∑

μ

δsσμ

]
. (A4)

Summing over s in the second term of the exponential and rearranging terms, this becomes

% =
∏
μ

∑
σμ

exp

[
− β

∑
α

H0
(
σα

μ

) + βθ
∑

α

σα
μ − 1

Ncl
P̂(σμ)

]
. (A5)

Since the clusters are decoupled, this reduces to the problem of one cluster, and can be expressed as

% = exp Ncl ln
∑

s

exp

[
− β

∑
α

H0(sα ) + βθ
∑

α

sα − 1

Ncl
P̂(s)

]
. (A6)

Changing variables P̂ → Ncl P̂, we obtain Eq. (7).
Introducing Eq. (7) in Eq. (3), the averaged per-cluster free energy reads

f (β ) = − lim
n→0

1

βn
Extr

{∑
s

P̂(s)P(s) + ln
∑

s

exp

[
− β

∑
α

H0(sα ) + βθ
∑

α

sα − P̂(s)

]

+ c

2

∑
ss′

P(s)P(s′)
〈
e

βJ√
c

∑
α sαs′

α − 1
〉}

, (A7)

where Extr means to take the extreme of the expression between braces relatively to variables P̂(s) and P(s). This is imposed by
the saddle-point equations

∂ f (β )

∂P̂(s)
= 0 = ∂ f (β )

∂P(s)
, (A8)

which are written as

P(s) = exp
[ − β

∑
α H0(sα ) + βθ

∑
α sα − P̂(s)

]
∑

s′ exp
[ − β

∑
α H0(s′α ) + βθ

∑
α s′

α − P̂(s′)
] (A9)

and

P̂(s) = −c
∑

s′
P(s′)

〈
e

βJ√
c

∑
α sαs′

α − 1
〉
. (A10)

Eliminating P̂(s) in Eq. (A9), we obtain a self-consistent equation for P(s):

P(s) = exp
[ − β

∑
α H0(sα ) + βθ

∑
α sα + c

∑
s′ P(s′)

〈
e

βJ√
c

∑
α sαs′

α − 1
〉]

∑
s′ exp

[ − β
∑

α H0(s′α ) + βθ
∑

α s′
α + c

∑
s′′ P(s′′)

〈
e

βJ√
c

∑
α s′

αs′′
α − 1

〉] . (A11)

Introducing Eqs. (A10) and (A11) in Eq. (A7), we obtain the per cluster free energy, Eq. (8).
To obtain the vector local-field distribution, Eq. (10), we introduce the RS ansatz, Eq. (9), in the saddle-point equation,

Eq. (A11). Since P(s) is a probability, the denominator on the r.h.s. of Eq. (A11) is equal to 1. Expanding the exponential in the
numerator, we have

P(s) = exp

[
− β

∑
α

H0(sα ) + βθ
∑

α

sα

] ∑
k

Pk

k∏
l=1

∑
sl

∫
dhl W (hl )

×
〈
exp

[ − β
∑

α H0
(
sα

l

) + βhl · ∑
α M(sαl ) + β Jl√

c

∑
α sαsαl

]〉
Jl{∑

s exp
[ − βH0(s) + βhl · M(s)

]}n , (A12)

where Pk = ∑
k e−cck/k! is a Poissonian weight. Rearranging terms, this can be rewritten as

P(s) = exp

[
− β

∑
α

H0(sα ) + βθ
∑

α

sα

]∑
k

Pk

∫ k∏
l=1

dhl W (hl )

〈
exp

∑
α

∑
s δssα

ln χs(hl , Jl )
〉
Jl

χn
0 (hl , 0)

, (A13)
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where

χs(h, J ) =
∑

s′
exp

[
− βH0(s′) + βh · M(s′) + β

J√
c

ss′
]
, (A14)

and the Kroenecker delta was introduced to factorize the replica index α. If s and sα are p + 1-state spin variables, δssα
is

a symmetric polynomial in powers of s and sα . Introducing the corresponding Kroenecker delta and summing over the spin
variables s, Eq. (A13) can be written in the form

P(s) =
∑

k

Pk

∫ k∏
l=1

dhl W (hl )

×
〈
exp

[ − β
∑

α H0(sα ) + βn
∑

l φ0(hl , Jl ) + β
∑

l φ(hl , Jl ) · ∑
α M(sα )

]〉
Jl

χn
0 (hl , 0)

. (A15)

Here, φ(h, J ) denotes a p-component vector whose components are the functions φi(h, J ). The zeroth component need not be
calculated, since at the end we will take the limit n → 0. A detailed calculation, as well as the derivation of the vector φ(h, J )
for triangular and tetragonal lattices will be shown in Appendices B and C, respectively. Introducing the RS ansatz in the l.h.s.
and considering that the denominator in the r.h.s. goes to 1, Eq. (A15) becomes∫

dh W (h) exp

[
− β

∑
α

H0(sα ) + βh ·
∑

α

M(sα )

]
=

∑
k

Pk

∫ k∏
l=1

dhl W (hl )

〈
exp

[
− β

∑
α

H0(sα )

+ β
∑

l

φ(hl , Jl ) ·
∑

α

M(sα )

]〉
Jl

. (A16)

Introducing a Dirac delta function for each component of the field vector h in the r.h.s. of Eq. (A16), we have∫
dh W (h) exp

[
− β

∑
α

H0(sα ) + βh ·
∑

α

M(sα )

]
=

∫
dh

∑
k

Pk

∫ k∏
l=1

dhl W (hl )

〈
p∏

i=1

δ

(
hi −

∑
l

φi(hl , Jl )

)〉
Jl

× exp

[
− β

∑
α

H0(sα ) + βh ·
∑

α

M(sα )

]
. (A17)

Comparing both sides of Eq. (A17) we obtain Eq. (10).

APPENDIX B: THREE-SPIN CLUSTERS

The cluster spin assumes four states: −3/2,−1/2, 1/2, 3/2. The four-state Kroenecker delta reads

δssα
= 41

64
− 5

16

(
s2 + s2

α

) + 365

144
ssα − 41

36

(
s3sα + ss3

α

) + 1

4
s2s2

α + 5

9
s3s3

α. (B1)

Introducing Eq. (B1) in Eq. (A13), summing over s, and rearranging terms, we obtain Eq. (A15), with

βφ1(h, J ) = θ

k
+ 27

24
ln

χ 1
2
(h, J )

χ− 1
2
(h, J )

− 1

24
ln

χ 3
2
(h, J )

χ− 3
2
(h, J )

, (B2)

βφ2(h, J ) = −1

4
ln χ 1

2
(h, J )χ− 1

2
(h, J ) + 1

4
ln χ 3

2
(h, J )χ− 3

2
(h, J ), (B3)

and

βφ3(h, J ) = −1

2
ln

χ 1
2
(h, J )

χ− 1
2
(h, J )

+ 1

6
ln

χ 3
2
(h, J )

χ− 3
2
(h, J )

. (B4)

APPENDIX C: FOUR-SPIN CLUSTERS

The cluster spin assumes five states: −2,−1, 0, 1, 2. The five-state Kroenecker delta reads

δssα
= 1 − 5

4

(
s2 + s2

α

) + 65

72
ssα + 1

4

(
s4 + s4

α

) − 17

72

(
s3sα + ss3

α

)
+ 707

288
s2s2

α − 155

288

(
s4s2

α + s2s4
α

) + 5

72
s3s3

α + 35

288
s4s4

α. (C1)
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Introducing Eq. (C1) in Eq. (A13), summing over s, and rearranging terms, we obtain Eq. (A15), with

βφ1(h, J ) = θ

k
− 1

12
ln

χ+2(h, J )

χ−2(h, J )
+ 2

3
ln

χ+1(h, J )

χ−1(h, J )
, (C2)

βφ2(h, J ) = − 1

24
ln χ+2(h, J )χ−2(h, J ) + 2

3
ln χ+1(h, J )χ−1(h, J ) − 5

4
ln χ0(h, J ), (C3)

βφ3(h, J ) = 1

12
ln

χ+2(h, J )

χ−2(h, J )
− 1

6
ln

χ+1(h, J )

χ−1(h, J )
, (C4)

βφ4(h, J ) = 1

24
ln χ+2(h, J )χ−2(h, J ) − 1

6
ln χ+1(h, J )χ−1(h, J ) + 1

4
ln χ0(h, J ). (C5)
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