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Self-organized criticality in cumulus clouds
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The shape of clouds has proven to be essential for classifying them. Our analysis of images from fair
weather cumulus clouds reveals that, in addition to turbulence, they are driven by self-organized criticality.
Our observations yield exponents that support the fact the clouds, when projected to two dimensions, exhibit
conformal symmetry compatible with ¢ = —2 conformal field theory. By using a combination of the Navier-
Stokes equation, diffusion equations, and a coupled map lattice, we successfully simulated cloud formation, and

obtained the same exponents.
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I. INTRODUCTION

The “fractal” or “multifractal” geometry as defined by
Mandelbrot [1] is now well established for clouds by many
experimental and theoretical studies, and provides a powerful
tool to classify them in terms of the circumstances in which
they form. Self-affinity and scaling properties in clouds have
been found from satellite images [2], and in particular in
cumulus clouds [3] on several scales. Various observables
were shown to exhibit scaling behavior, such as the area-
perimeter relation [2-8], the nearest-neighbor spacing [9], the
rainfall time series [10], cloud droplets [11], and the distribu-
tion function of geometrical quantities [12—15]. After these
observations, and considering the multifractality of clouds
[2,3,6,16—19], attempts for classifying clouds into universality
classes were carried out based on cloud field statistics [20-22]
and cloud morphology [23]. The spatial distribution of clouds
and their scale-invariant inhomogeneities on radiative fluxes
and albedo [23-27] has stimulated several theoretical models
about radiative fluxes [28-30], often focusing on the scale-
invariant radiation field from the clouds [31], and also on
long-wave irradiance and albedo in cumulus [24] and stratocu-
mulus [32] clouds.

The models for clouds can be classified into three cate-
gories: turbulence-based models, cellular automata heuristic
ones, and heuristic models. The models based on atmospheric
fluid dynamics [33-36], the scaling (or fractal geometry) in
turbulent flows [6,37,38], large eddy simulations for cumulus
convective transport [39,40], and stochastic models based on
cascade processes [21,41], belong to the first category. On
the other hand, cellular automata [42], and computer graphics
techniques for modeling clouds [43—45] belong to the second
category. Other studies, such as the application of the Kardar-
Parisi-Zhang (KPZ) equation (inspired by the scale-invariant
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roughness of the top of the clouds) [22], the diamond-square
algorithm describing the fractal properties of cloud edges
[46], and also the midpoint displacement algorithm [47] are
heuristic methods which can be incorporated into the third
category. The estimated fractal dimensions emanating from
these models are in fair agreement with the relative turbulent
diffusion model [48].

Despite this huge body of literature, we are yet far from
a complete understanding of cloud dynamics and its statisti-
cal properties. From the above-mentioned observations, one
concludes that clouds are characterized by scaling relations
and exponents, which are robust under most circumstances,
suggesting that clouds organize themselves into critical states
without the need for tuning any parameter. Self-organized
criticality (SOC) in the atmosphere and in clouds was first
detected by Peters et al. by analyzing precipitation [49]. Here,
we uncover the SOC state of clouds directly by analyzing
earth-to-sky images of cumulus clouds under fair-air con-
ditions in the city of Ardabil, especially by analyzing the
cloud boundaries, introducing a threshold to identify indi-
vidual clouds on scales between tens of meters and several
kilometers, i.e., the scale at which the turbulent scaling expo-
nents change (as proposed by Beyer et al. [50]), although other
studies presented evidence for the absence of such a scale
break [51]. The analysis of the level lines of two-dimensional
(2D) cloud fields strongly suggests that the cumulus clouds
under the conditions reported in this paper are in an SOC
state, which is also confirmed by a Schramm-Loewner evo-
lution (SLE) analysis, finding that they belong to the sandpile
universality class, i.e., ¢ = —2 conformal field theory (CFT).
We believe that in order to explain these observations on
cumulus clouds, one needs to consider two ingredients at the
same time: turbulence and SOC. We show that this can be
achieved using the coupled map lattice (CML) which is an
extended cellular automaton, based in our case on solving
the Navier-Stokes (NS) equations along with some diffusion
equations [33], which yields exponents consistent with the
observed ones.

©2021 American Physical Society
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TABLE I. Numerical values of the diffusivity parameter « and
the fractal dimension D obtained by various methods. The values for
the ordinary 2D Bak-Tang-Wiesenfeld (BTW) model are also shown
for comparison.

Sandbox 20+£0.2 1.248 £+ 0.006 0.4+£0.01
Winding angle 2.14£0.2 1.266 £+ 0.02 0.42 £0.01
SLE (IM) 22402 1.27 £0.02 0.43 £0.02
2D BTW 2 1.25 0.4

II. RESULTS

A. Observations with visible light

During the daylight hours of Ardabil, we took (nearly
vertical) images with a sky imager (a digital 23.6 x 15.6 mm
CMOS sensor camera with a 18-140 mm lens), realizing a
resolution of 6000 x 4000 pixels, under fair-air (small wind,
no precipitation) conditions in June—July 2018. We took the
ground-to-sky images instead of satellite images for the fol-
lowing reasons. The satellite images are not always available
for any required position and time. Also, the length scale of
clouds and the resolutions matter in our analysis, which are
not tunable in the satellite images. The most important reason
is that the satellite images detect mostly the scattered light
from the clouds, whereas the light received on the ground
has information about the thickness of the clouds. An im-
portant quantity in analyzing the images is the distance of
the clouds from the camera since it determines the length
scale on the cloud corresponding to the size of one pixel.
The average distance of the cumulus clouds from the ground
(or more precisely from the see level) is about 2 km, which
can also extend to 3 km. For the fractal cumulus clouds, this
however should not be a problem due to scale invariance (self-
affinity). More precisely, when one zooms into a [(2 4+ 1)-
dimensional] self-affine object (where “2” corresponds to the
projected dimensions, and “1” the vertical dimension, i.e., the
dimension normal to the ground surface), the fractal properties

do not change. Taking the images at different times helps also
to make the samples more of each other. For more details
and the air conditions at the time of capturing the images,
see Table II, and also Figs. 8—10 of the Appendix. We then
converted the images to color triplets, so that each pixel
has three numbers for the strength of red, green, and blue,
called RGB map. The images are converted to scalar fields
(grayscale), low (high) values indicating clear (cloudy) pixels,
and analyzed as correlated landscapes by focusing on the
properties of their contour lines obtained at various thresholds.
The contour lines corresponding to the lower thresholds are
close to the physical boundary of the clouds, which is visible
from the earth [see Figs. 9(e) and 9(f) in the Appendix].
Therefore, we interpret the contour line corresponding to a
low enough threshold as the external perimeter of the cloud,
i.e., the cloud boundary. We observed an abrupt change of
intensity at cloud boundaries making their identification easy.
As in any scalar landscape, for each photograph there exists an
intensity threshold at which the contour line percolates, i.e.,
becomes open, otherwise it is closed. Let I and I,, > I,s be
the intensity of the blue sky and the maximum intensity inside
the cloud, respectively (generally higher intensities are from
the pixels inside the clouds). The percolated contour lines
arise approximately at the relative intensity f‘—“ = 0.5, which
identifies contour lines close to the physical cloud boundaries
[used in Figs. 9(e) and 9(f) in the Appendix]. Hereafter we
call these contour lines the cloud boundary contour lines (Bo-
CLs), which are of crucial importance in this paper. Indeed,
BoCLs (which are open traces) are just the contour lines at
the percolation threshold, which is well known in correlated
landscapes. Changing the relative intensity changes the con-
tour line, but we observed that the variation is minimal in
the interval 0.4 < 5‘—1‘1‘ < 0.6. The contour lines that are out-

side of this range (;‘—“ 2 0.6), called the bulk contour lines
(BuCLs), are closed traces having slightly different statistical
properties [see Figs. 10(a) and 10(b) in the Appendix]. In
terms of self-similar correlated landscapes, the BoCLs which
are contour lines close to the percolation threshold follow a

TABLE II. The weather conditions at which the photographs were taken. « is the angle of the sunlight with respect to the normal vector of

Earth.

Date Temperature Humidity Wind speed Precipitation

(°F) (°F) Dew point (in.) Pressure (in.) (deg) o (2018)
6 June 68-82 43-52 25%—46% 25.7 7-16 mph (WNW) 0.0 15:50-38:20
9 June 63-66 54-57 68%—73% 25.6 12-18 mph (ENE) 0.0 15:40-38:00
10 June 61-70 48-52 50%—72% 25.5 5-20 mph (E) 0.0 15:40-38:00
14 June 64-73 50-54 50%—68% 25.6 9-16 mph (ENE) 0.0 15:30-37:40
17 June 66-77 50-54 41%—-60% 25.5 5-7 mph (WNW) 0.0 15:20-37:30
18 June 70-77 52-57 44%-53% 25.5 12-14 mph (E) 0.0 15:20-37:30
21 June 59-72 41-43 33%-51% 25.7 7-18 mph (NE) 0.0 15:20-37:20
23 June 68-75 37-39 25%-33% 25.6 7-18 mph (E) 0.0 15:20-37:10
24 June 72-77 43-50 31%-39% 25.6 5-14 mph (ENE) 0.0 15:20-37:10
26 June 68-81 46-50 30%—44% 25.6 2-18 mph (ESE) 0.0 15:20-37:10
28 June 70-81 48-50 30%—-46% 25.6 7-10 mph (SE) 0.0 15:40-37:00
30 June 88-91 48-55 24%-35% 25.5 7-14 mph (ENE) 0.0 15:40-37:00
2 July 88-91 43-52 21%-29% 25.7 18-20 mph (ENE) 0.0 15:50-37:00
4 July 88-91 39-43 16%—-20% 25.6 18-20 mph (E) 0.0 16:00-37:20
7 July 70-75 61-70 65%—73% 25.5 12-18 mph (ENE) 0.0 16:20-37:20
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FIG. 1. Three samples of (a) LERW and (b) the boundaries of cumulus clouds.

slightly different statistics with respect to BuCLs which are
the lines that are away from criticality.

Note that the sensor’s size and density, the shutter speed,
the amount of light reaching the sensor, and how sensitive
the camera’s sensor is to light, have an effect on generating
noise to the image processing. This noise is however small in
our analysis because of the good light conditions under which
the shutter speed is high. To test the effect of these noises
on our analysis we reduced the noise in the images using a
2D digital filter in MATLAB with various averaging filters and
found that the effect of this reduction to the fractal properties
of the contour lines (the fractal dimension and the exponents
of distribution functions) is negligible. More precisely, all
results are quite robust against noise.

The statistical properties of the BoCLs resemble those of
the traces of the loop-erased random walk (LERW) [52] (see
the samples depicted in Fig. 1). The projection to two dimen-
sions enables us to use the power of CFT in 2D to characterize
and classify the lines in universality classes.

We performed a fractal analysis for both BoCLs and Bu-
CLs, obtaining the fractal dimension (D) in two ways: the
sandbox method and end-to-end distance statistics. Results
from the sandbox method (for BoCLs) and the [ — r scaling
(for BuCLs) are shown in Figs. 2(b) and 2(c), respectively. For

open traces we used the relation [ ~ (L)’s in which [ is the
length of the curve in a box of length L, which is related to the
correlation length exponent (v) via the relation v = DLf. IfR;is

the end-to-end Euclidean distance between the starting point
and the ith point of the curve, then v is defined by (R?) ~ N?".
For closed traces the fractal dimension is calculated using the
relation (log!) = Ds(logr), where r represents the gyration
radius as defined by

!
1
2 __ § :"._" 2
r-= 7 e (rl rcom) ) (1)

where F.om = %Zf: , 7i is the center of mass of the closed
trace.

The winding angle (9) statistics of the random traces as an
important property of scale invariant loopless paths [53,54] is
explored. We note that the BuCLs are basically closed traces
over the whole sky, making them appropriate to be analyzed
by the so-called “loop Green’s function” [55] (LGF) analysis.
However, since the clouds span over various scales in the sky,
in some rare cases the camera can cover only a part of them,
i.e., the traces touch the image boundaries in these cases. In
these situations, the trace can be interpreted as an open one,
and the standard statistical analysis for open traces can be

(a

(b) (©)

FIG. 2. (a) Illustration of the winding angle statistics of random curves. (b) The box-counting method defining the quantities / and L.

(c) The [ — r scaling method for extracting the closed loops.
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FIG. 3. The fractal properties of clouds from observational data. (a) Log-log plot of trace lengths / in terms of L (the box linear size) for
BoCLs. The dashed line is a linear fit with slope D; = 1.248 £ 0.006. The inset is the end-to-end distance R in terms of N with the exponent
v = 0.81 £ 0.01. (b) Ensemble average of log,, [ in terms of log,, r ({) means the ensemble average) with slope Dy = 1.22 £ 0.02 for BuCLs.
The log-log plot of the distribution functions of / is shown in the inset, with the exponent 7; = 2.38 = 0.02. (c) Semilog plot of the LGF in
terms of 7. The log-log plot of the distribution functions of / is shown in the inset, with exponents 7, = 2.12 4= 0.03. (d) Semilog plot of the
distribution of the winding angle p(6) in terms of # for three BoCLs. (e) (9%) and (#) for both BoCLs and BuCLs. The inset shows the semilog
plot of the variance in terms of / for both cases with slopes 0.42 £ 0.01 and 0.36 % 0.02 for boundary and bulk curves, respectively.

used [56]. The inverse is also true, i.e., although the BoCLs
are often open (percolating) traces, there are some rare cases
where the cloud is small, so that its corresponding BoCL is
nonpercolating. We consider only BoCLs that percolate. We
apply the SLE mapping to BoCLs to numerically estimate the
diffusivity parameter and equivalently the central charge of
CFT which allows determining the CFT class [57].

We have used the least-squares method to estimate the
exponents and the corresponding error bars. The cutoff value
of the power-law dependence is defined by the R? test (i.e.,
coefficient of determination). By increasing the interval of the
fitting, R changes (mostly decreases) in a gentle fashion up to
a cutoff point above which R? falls off rapidly. We considered
the threshold R? = 0.985 to find this cutoff point. We report
the exponents by fitting the curves up to this point.

For open traces (BoCLs) the fractal dimension (Dy) is
defined via the scaling relation between the length ! and
the box size L (I ~ LPs) in the sandbox method, whereas
for closed traces (BuCLs) we used the relation (logl) =
Dy (logr), where r is the gyration radius of the closed trace.
The fractal dimensions of the BoCLs and the BuCLs of the
cloud field are shown in Figs. 3(a) and 3(b), respectively,
where R is the end-to-end distance, N is the number of steps
along the trace, and R = /(R?) « N". The analysis for Bu-
CLs is presented in Fig. 3(b) and the upper inset of Fig. 3(c),
involving the fractal dimension and the distribution functions.
Our analysis shows that D';d = 1.248 £ 0.006 (for the Bo-

CLs) and D?k = 1.22 +0.02 (for the BuCLs). This D?d is

compatible with the numerical estimation of the end-to-end

distance exponent vPd of BoCLs which is 0.81 & 0.01 (:L%).
f

Interestingly, the fractal dimensions of the boundaries of two-

dimensional images of the clouds are very close to the fractal
dimension of LERW traces with Dy = g and v = 0.8 [52].
The LGF [G(7)] is defined as the probability that two points
at a distance 7 belong to the same closed trace [55]. To this
end, one chooses a reference point i on a loop and moves the
second point j over the entire loop and finds 7 as the Euclidean
distance between points i and j. Then, we change the refer-
ence point 7 and again the point j is moved along the loop and
so forth. This is repeated for all loops in the ensemble, giving
us the probability distribution functions (PDFs) of 7 which are
proportional to the LGF [i.e., G(7)]. Similar to the results for
LERW [58,59], one finds logarithmic behavior with 7 as is
seen in Fig. 3(c).

The statistics of the winding angle 6 is an important (in
many cases the most precise) way to characterize fractal ran-
dom curves. For BoCLs which are open traces we can use the
following relation for the variance of 6 [53,54],

D;—1
Var[0] = C + 2L In1,
Dy

©))

where Var[@] is the variance of 6, and C is an irrelevant con-
stant. In the setup shown in Fig. 2(a), 6 is the angle between
the straight line between two points (at distance /) on the curve
and the local slope of the trace. In this setup we fix a point (the
point Q in the figure), let P run over the curve, and then 6 is the
angle between the local slope and the shown line. Figure 3(c)
shows the distribution function of 6 (which is Gaussian), and
Fig. 3(d) shows (A%) and (#) in terms of [ for the BoCLs (blue
circles), revealing that the variances depend logarithmically
on the size L with the prefactor 0.42 4 0.01, to be compared
with the prefactor for the LERW traces which is 0.4. We
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FIG. 4. The schematic representation of the process of generating a curve starting and ending on the horizontal (real) axis.

applied this analysis to BuCLs by cutting the loop horizontally
(at the middle) to have an open trace and apply the algorithm
to a part (one-fourth) of the resulting trace. The green squares
in Fig. 3(d) show that the variance grows logarithmically with
L having a prefactor 0.36 j: O 02 which is compatible with

the fractal dimension, i.e., 2 =0.36 £0.03.

The SLE theory describes the critical behavior of 2D loop-
less paths [58]. These nonintersecting curves which reflect
the status of the system in question are supposed to have
two properties: conformal invariance and the domain Markov
property. Owing to a deep connection between SLE and CFT,
less-known conformally invariant models can be classified
into CFT universality classes by applying the SLE mappings
to interfaces of the model. For a good introductory review,
see Refs. [60,61]. One defines the uniformizing conformal
maps [g;(z)] which are solutions of the stochastic Loewner’s
equation

2
az &)= —F— "> 3
8:(2) P (3)

in which the initial condition is g;(z) = z and the driving
function ¢, is proportional to a one-dimensional Brownian
motion By, i.€., { = 4/kB; in which « is called the diffusivity
parameter, which is the quantity that classifies the conformally
invariant models [61]. The name “uniformizing map” comes
from the fact that g, uniformizes the conformally invariant
trace (defined in the upper half plane) onto the real axis. We
have used the algorithm invented by Bernard et al. [62], which
is appropriate for conformal traces that hit the boundaries of
the system (here the boundaries of the images). According to
this algorithm one discretizes the random trace (therefore the
driving function becomes piecewise constant), and sends the
end point of the curve (x, at which the trace hits the real axis)
to infinity using a simple Mdobius map ¢(z) = x°;” , where
z = x + iy is the complex upper half plane. For details of the
numerical application of the SLE theory, see the Appendix
[the discretized map is Eq. (4)]. For traces that start and end
on different boundaries, we first draw a straight line which
connects the first and last point of the trace, and rotate it
appropriately (by an angle given by this line, and interpreting
the space above this line as the upper half plane) to have a
trace which starts and ends on the real axis. See Fig. 4 where

the situation is shown schematically. In such situations, we
first identify the straight line connecting the start and end point
of the trace, and then cut the trace at the crossing points. The
required trace is then obtained simply by rotating the system,
so that the straight line becomes horizontal. By interpreting
the space above this line as the upper half plane, we can
use the above-mentioned algorithm. Obviously the rotational
invariance and also the reflection symmetry of the system
allow us to consider and analyze all traces resulting from one
cut (noting that each cut gives us more than one curve). More
precisely, using the cut method (one cut per trace), that is
described in Fig. 4, we obtain an appropriate trace. Then we
calculate its driving function (i.e., one time-dependent driving
function for each trace). After obtaining the driving functions
for all samples, we obtain the first and second moments. In the
left panel of Fig. 4 five traces have been created by one cut and
the largest one is shown in the right panel. Figure 5 shows the
variance of the driving function for BoCLs (£2) — (¢)? which
grows as kt, with k =2.2+0.2, and (¢) =0 as required
by conformal symmetry [58]. The fact that the diffusivity
parameter for LERW traces is k = 2 [63], confirms the above-
mentioned hypothesis that the traces of BoCLs have the same

x10*

x10? 00

0

15 20 25 3.0 35
t x10*

500

00 05 10

FIG. 5. The results for the SLE analysis for the BoCLs. The main
panel shows the variance of the driving function in terms of “time,”
with the slope k = 2.2 4+ 0.2. The upper inset shows that the mean
value of the driving function is almost zero, and the lower one shows
the distribution function of 4L at time # = 10*, with a Gaussian fit

. . V2
corresponding to that time.
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symmetry as the LERW traces. We note that the corresponding
fractal dimension calculated by the relation Dy = 1 + ¢ [61]
is 1.27 + 0.02, consistent with the values we obtained before.
The exponents are shown in Table I.

We thus have strong numerical evidence that the external
perimeter of 2D projections of cumulus clouds might belong
to the universality class of LERW traces, which does have a
relation to SOC. Indeed, it has been argued that the external
frontiers of sandpiles (as a prototype example of SOC sys-
tems) are LERW traces [64,65], both of them having the same
central charge ¢ = —2 CFT. Taking into account the recent
finding that the boundaries of two-dimensional projections
(such as the images here) of three-dimensional sandpiles also
seem to belong to the universality class of LERWs [66], we
suggest that SOC is an important ingredient of the evolution
of the cumulus clouds. We confirm this claim by simulating
the system, which is the aim of the next section.

B. Simulation results

Here, we model the evolution of cumulus clouds. These
clouds result from atmospheric convection and form as the
air warms up at the surface and begins to rise, resulting in a
decrease of temperature and a rise of humidity. At a thresh-
old, called the lowest condensation level (LCL), at which the
relative humidity reaches 100%, the condensation to the wet
phase starts, and the released latent heat warms up further the
surrounding air parcels, resulting in convection. The simula-
tion of this complex dynamics requires a substantial reduction
of the degrees of freedom to become feasible to be carried out
on a computer. One needs a simplified reduced model main-
taining the key physics behind the problem in the calculations
such as turbulence and SOC. A coupled map lattice (CML) is
a well-accepted methodology for doing so, keeping some key
phenomena, such as condensation, diffusion, heating of air
parcels due to rising, and Navier-Stokes dynamics as the main
building blocks. In this method, as an extension of a cellular
automaton [33,34], one considers several state variables in
space, discretized on a lattice. This model is based on the
update of the state of “particles” on the lattice, which are
the water vapor particles in the clouds. To be more precise,
we discretize the system, each cell of which contains a huge
number of water vapor particles, described mathematically by
the vapor density in it, having a single (drift) collective veloc-
ity. Avalanches, as the typical ingredients of SOC dynamics,
result from the accumulation of particles on a lattice site,
and subsequent toppling (particle release) beyond a threshold
(the saturation humidity). This is implicitly realized in the
CML model where, beyond this threshold, the accumulated
moist particles transit from the vapor phase into the liquid
phase (and vice versa), reducing the number of particles in
the vapor phase. The particles in the liquid phase then diffuse
to the neighboring sites due to the rise in density. Here, the
saturation humidity plays the role of the threshold beyond
which the particles start to move to neighboring sites. Let us
consider the NS equation

3 1
(—+v.v>v: ——VP + 1V, 4)
ot P

where v is the velocity field, P the pressure, n the viscosity,
and p the density. Along with this equation, we use the in-
compressibility of the atmosphere, which implies V - v =0
(note that, actually the atmosphere is a compressible fluid,
however, for velocities below the speed of sound the density
changes are small enough to consider it as incompressible).
In our CML we consider a L, x L, x L, lattice, for which
we attribute to each site the density of water vapor p,,(x, y, z)
and liquid water p;(x, y, z), the pressure p(x, y, z), the veloc-
ity field v(x,y, z), and the temperature T (x, y, z) which are
updated depending on the variables on the adjacent lattice
sites such as in cellular automata. Initially a bubble of air
is heated from below, which leads to its rise upwards, i.e.,
in the z direction. At each update, we consider four effects:
(1) the velocity update due to Eq. (4), (2) the convection,
for which the fields are updated due to the fluid movement,
(3) the diffusion of water vapor, and (4) the phase transition,
according to which, when the water vapor of a site exceeds the
saturation threshold, it condensates to the liquid phase. Note
that the updates are made in parallel.

Instead of solving equations listed in Eq. (4), in the
CML method one considers some other approximate mod-
els [33,34]. To get rid of the difficulties of handling the
equation V - v =0, in the CML method one uses V(V - v),
which replaces the gradient of pressure by a phenomeno-
logical proportionality constant k,, called the coefficient of
pressure [33,34]. This avoids the complications of model-
ing the pressure, the mass conservation equation, and the
incompressibility. Denoting V;(x, y, z) = V;(x, y, z;t) (the ith
component the velocity ‘7) and V;(x, v2)=Vix,y, z;t + 1)
(the velocity at the next time step), the update of velocity is

Vi(x, v, 2) = Vi(x, v, 2) + b, VVi(x, 3, 2) + K, V(V - V)i, (5)

where k, is the viscosity ratio, and k, is the coefficient of
the pressure effect. In reality, &k, and k, (having dimension
of L?) are related to the environmental conditions, such as
pressure and temperature, and determine the LCL. In simu-
lations they are used to tune the LCL point, and according
to our observations, they do not have any decisive role in the
pattern of clouds after LCL. In the simulations we consider
k, =5.73 x 1072 and k, = 5.73 x 1072 [67,68], for which
the LCL forms at z; ¢, & 50. Using the discretized Laplacian
and for V(V - \7),-, we update the velocities [33,34] (see the
Appendix for more information). The physics of advection (as
the second step) is implemented by transporting the state val-
ues at the lattice point (x, y, z) to a new position (x + V., y +
Vi,z+ V) = (i +dx, j + 8y, k + 6z), where i, j, and k are
the integer part and §,, d,, and §; are the fractional portions.
The variables are updated according to the “weights” received
from adjacent sites in the previous step. These weights are
actually the fraction of particles that are leaving a site. We
notice that for the stability of the solution, we should have
Vi, V3, V. < 1.0, otherwise we should use Stam’s method [69]
to make it stable. We observed that our simulation is stable and
does not require this stabilization. In the third part we consider
the diffusion of water vapor p,,(x, y, z) which is implemented
by using a discrete version of the diffusion equation

Pu(X, ¥, 2) = pu(x, ¥, 2) + k' V200 (x, , 2), (©6)
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(b)

FIG. 6. (a) 2D image of cloud simulation and (b) its contours.

where k,, is the diffusion coefficient for water vapor and
V2 pw(x, y, 7) is the Laplacian of the density that is calculated
in the same way as Eq. (5). Just as k, and k,, k,, (as well as
a and B to be defined in the following) affects only the LCL,
and we set it as k,, = 0.3 following Refs. [67,68,70].

As a last part of the simulation we implement the physics
of the phase transition. For this end let us consider ppax as
the maximum amount of water vapor density that can exist at
temperature 7' [33] which is estimated to be

4303.4
19.482—~ 7729.5]

217.0el
/)max(T) =

T (7

The density of water vapor py(x,y,z), the water liquid
pi(x,y,2), and the temperature 7 (x,y,z) at the next step
change due to the phase transition as follows,

Ibl =p+ Ol(pl - pmax)» (8)
Pw = Puw — a(0y — Pmax) 9
T=T- B(Pow — Pmax)s (10)

where « and B are the phase transition rate and adiabatic
expansion rate, respectively, which are set to o = f = 1072
[67,68]. Some simulated samples are shown in Fig. 6.

We set p;(x, y, z;t = 0) = 0 where the air parcels start to
rise from the bottom of the lattice. We start the simulation
at t = 0 by setting random values for p,(x,y,z;¢t =0) on
the x-y plane, and also setting the velocities V,(x, y, z;t = 0)

and V,(x, y, z;t = 0) randomly in the range between —1 and
1 for each site that has p,(x,y,z;¢ = 0) % 0. This choice
assures that the particles move symmetrically to the right and
left. To assure that the particles ascend in the z direction,
we consider at the beginning V. (x, y, z;¢ = 0) randomly and
uncorrelated in the range (0,1). We set the temperature to
300 K in the x-y plane (z = 0) and decrease it linearly in
the z direction. We considered L, = L, = 150 and L, = 70,
and start with a random density of water vapor on the bottom,
with (uncorrelated) random velocities in the x and y directions.
Then we let the system evolve, forming cumulus clouds. The
ensemble averages have been taken over 10* samples. We
fix the temperature at 300 K on the x-y plane at z = 0, and
decrease it linearly with increasing altitude, as an acceptable
approximation for the known temperature profile [33].

In this paper we consider BoCLs and compare the results
with the BoCLs of observational clouds. In Fig. 7(a) we show
the results for the fractal dimension of the external perimeter
of the clouds for two-dimensional projections, as defined via
the scaling relation between the loop length / and the gyration
radius . We find the fractal dimension Dy = 1.247 £ 0.016
which is in agreement with the observed fractal dimension
for real clouds. In the insets of Figs. 7(a) and 7(b) the dis-
tribution functions for / and r are shown with exponents
71 = 2.14 £ 0.05 and 7, = 2.35 % 0.06, which agree with the
observational data. These results, along with the observation
that the Green’s function is found to be logarithmic [Fig. 7(b)],
support the validity of our model based on the CML method.

1072
(a) < (b) 1.00 _X "\6~\ = (C) 06
10 [P ) Mg 10° O)%am»
p(l) R 110 | 0750 g 10 _‘p r ‘T%%é I,
Ul 2 -
~— 0.50 3 10 ]
° N 14
| N | 1030
0.00 & 1 N 0.8 'Ooooooooooooooooooooo
100 300 1020 30 40
(logy ) F .

FIG. 7. The results of simulations of clouds using the CML method. (a) (log, /) in terms of (log, r) with the slope Dy = 1.247 £ 0.016.
The inset shows the log-log plot of the distribution functions of / with exponent 7; = 2.14 & 0.05. (b) Semilog plot of the LGF in terms of 7.
The inset shows the log-log plot of the distribution functions of » with exponent t, = 2.35 4 0.06. (c) Variance of 6 and its average, where the

inset shows the semilogarithmic graph with slope 0.506 £ 0.015.
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FIG. 8. RGB and gray maps of an image that was taken from cumulus clouds. The color bars show the intensity of light of each color.

To be more precise we analyzed the winding angle statis-
tics of the boundaries of 2D projections, presented in Fig. 7(c).
Here, 6 is the local change of slope, and the variance is taken
over a box of linear length L. Using the fact that Dy = 1 + ¢
and [ ~ LPs, and also Eq. (2), one can easily show that

Var[f] = ¢ + ZlnL, (11)

where ¢’ is an unimportant constant [71]. By a linear least-
squares fitting of the semilogarithmic plot in Fig. 7(c) we
found that the corresponding diffusivity parameter is x =
2.024 £ 0.06. Given that Egs. (2) and (11) result from confor-
mal invariance, this finding shows that the resulting traces are
conformally invariant, and compatible with a CFT universality
class with ¢ = —2, in agreement with the results presented for
observational clouds.

Summarizing, we showed that the two-dimensional projec-
tion of cumulus clouds under conditions that we reported in
Table II in the Appendix forms fractal borders with a fractal
dimension consistent with 5/4 and fulfills the conditions of
the SLE mapping and the winding angle, pointing towards a
CFT with a central charge ¢ = —2 which would be in the uni-
versality class of the loop-erased random walk. Interestingly,
this is not the universality class of level sets in 2D turbulence,
for which the central charge is ¢ = 0. We formulated a model
for cumulus clouds based on fluid dynamics and SOC which
could reproduce the results obtained from the image analysis.
In the future it would be interesting to also verify with our
model other properties of cumulus clouds, such as their three-
dimensional shape, their spatiotemporal evolution, and their
size distribution, which will, however, require substantially
more computer time.
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APPENDIX: STATISTICAL ANALYSIS OF THE
OBSERVATIONAL DATA

The weather conditions under which the photographs were
taken have been gathered in Table II. Some photographs fo-
cused only on a part of a cloud, since the clouds were very
large, spanning most of the sky. Each photograph consists of
three matrices showing the intensity of red (R matrix), green
(G matrix), and blue (B matrix), called an RGB map. To
simplify our analysis we use a gray map instead of the RGB
map, i.e., the mean of the RGB (see Fig. 8). Figures 9(a)-9(d)
show some samples, and two samples of boundary contour
lines (BoCLs) are shown in Figs. 9(e) and 9(f). The bulk
contour lines (BuCLs) are shown in Figs. 10(a) and 10(b),
which are closed traces.

1. SLE

Schramm-Loewner evolution (SLE) theory describes the
critical behavior of 2D statistical models by focusing on their
geometrical features such as their interfaces. SLE is the can-
didate to analyze these random curves by classifying them to
one-parameter classes SLE,.. There are three kinds of SLEs:
chordal SLE in which the random curve starts from zero and
ends at infinity, dipolar SLE in which the curve starts from
the boundary, and ends also at the boundary, and radial SLE
in which the curve starts from the boundary and ends in the
bulk. In this paper we deal with chordal and dipolar SLEs.

Let us denote the upper half plane by H and y, as the SLE
trace grown up to time f. SLE, is a growth process defined
via conformal maps which are solutions of the stochastic
Loewner’s equation

2
0:8:(2) = — (AD)

@ —&’

in which the initial condition is g,(z) = z and the driving func-
tion &, is proportional to a one-dimensional Brownian motion
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© (d)

FIG. 9. (a)—(d) are four sample pictures from cumulus clouds. (¢) and (f) are the boundaries of two samples of cumulus clouds in a gray
map.

B, i.e., & = /KB, in which « is the diffusivity parameter. 7, is  the lattice constant tends to zero, it might touch itself (in the
defined as the time for which for fixed z, g;(z) = &. Although ~ dense phase 4 < « < 8), so that some points that are not on
a trace cannot intersect itself, in the continuum limit where  the curve are separated from infinity, meaning that they are

(b

FIG. 10. (a) and (b) are inner contour lines of cumulus clouds.
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not reachable from infinity without crossing the SLE trace.
The union of the set of such points, together with the SLE
trace itself, is called hull K;. Another way to define this is the
complement of the connected component of {z € H : 7, < t},
which includes infinity, itself denoted by H, := H\K,. The
map g;(z) is well defined up to time t,. This map is the unique
conformal mapping H;, — H with g,(z) =z + % + O(Z%) as
z — 0o known as hydrodynamical normalization.

2. The discretization algorithm

Consider a curve that starts from the origin and ends at
a point on the real axis (x,). The function h, = $0G 00!
describes chordal SLE in which ¢(z) = ;;Lf sends the end
point of the curve to infinity, and o represents the composition

of maps. The equation governing G, (z) is
2
¢'(GIP(G) — &1

whose solution for piecewise constant ¢ is

P(g-v-xOOv Z)
ooQ(é-sxOOa Z)’
P(CsXOOv Z) = ﬂxoo(xoo - Z) + Q({v-xooy Z)7

0T, oo, 2) = 3 (e = M2 + 41 (o0 — 22000 — M2
n=¢"©). (A3)

To extract the driving function it is necessary to uniformize
the discrete curve zo = 0, 71, 22, ..., 2y (with length [ = N)
step by step. To uniformize the first point, we consider ¢ to be
(piecewise) constant in the interval (0, #;) by the factors 19 =

-1 __ lmG)Px
o7 (o) and 11 = e T

point is chosen to be uniformized.

Apparently not all traces start and end on the same bound-
ary of the system. Using the rotation shown in Fig. 2 of the
paper, we identify the straight line connecting the start and
end point of the trace, and then cut the trace at the crossing
points.

0:G:(2) =

(A2)

G(z)=x

. Next, the transformed

As a final point, we write here the explicit expression for
the discretized Laplacian,

VVix,y.2) = ¢ [Vix + 1,y,2) + Vilx — 1, . 2)
+‘/l(-xsy+ ],Z)+‘/i(-x3y_ 171)
+Vit,y,z+ D)+ Vilx,y, 2= 1)

—6Vi(x,y, 2)1, (A4)

and the third term (for i = x) is

V(V-V)e = 3Vilx + 1y, 2) + Valx — 1,3, 2)
=2V, y, D]+ 3 [Vic + 1,y 4+ 1,2)
+Vix—-1,y-1,2)-V(x—-1,y+1,2)
-Vie+Ly—-1,20+V.x+1,y,z+1)
+V.z-Lyz—1D—-V.(x—1,y,z+1)
—V.x+1,y,z— D] (AS5)

The y and z components are calculated in a similar way.
Concerning the definition of weights, let us consider the lattice
point (x,y,z) whose content is transported to a new po-
sition (x + V., y + V), 2+ V,) = (i + 8x, j + 8y, k + 6z) after
updating the velocity, where i, j, and k are the integer parts
and 4y, &, and 8, are the fractional portions. The adjacent sites
are (ix1,j,k), (i,j£1,k), (i, j,kx1), G£1,jE1, k),
(Gx1,j,k£1), (,j£1l,kx1l),and (i x1,jE£1, k1),
and 6x as the distance between the new position and site
(i, j, k) in the x direction, and for the y and z directions we
have 8y and §z. The weights are distributed between these 27
sites (each site has 26 adjacent sites), i.e., the variables are
updated according to the weights at the sites. For the positive
velocities (8x, 8y, 8z > 0, for which only eight sites should
be considered) the weights are (1 — dx)(1 — 8y)(1 — 8z),
3x(1 — 8y)(1 —8z), (1 —68x)8y(1 — 8z), (1 —8x)(1 — 8y)dz,
8x8y(1 — 8z), 6x(1 — 8y)dz, (1 —8x)6ydz, and 6xydz, re-
spectively.
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