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Entropy scaling close to criticality: From simple to metallic systems
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Entropy has recently drawn considerable interest both as a marker to detect the onset of phase transitions and
as a reaction coordinate, or collective variable, to span phase transition pathways. We focus here on the behavior
of entropy along the vapor-liquid phase coexistence and identify how the difference in entropy between the two
coexisting phases vary in ideal and metallic systems along the coexistence curve. Using flat-histogram simu-
lations, we determine the thermodynamic conditions of coexistence, critical parameters, including the critical
entropy, and entropies along the binodal. We then apply our analysis to a series of systems that increasingly
depart from ideality and adopt a metal-like character, through the gradual onset of the Friedel oscillation in an
effective pair potential, and for a series of transition metals modeled with a many-body embedded-atoms force
field. Projections of the phase boundary on the entropy-pressure and entropy-temperature planes exhibit two
qualitatively different behaviors. While all systems modeled with an effective pair potential lead to an ideal-like
behavior, the onset of many-body effects results in a departure from ideality and a markedly greater exponent for
the variation of the entropy of vaporization with temperature away from the critical temperature.
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I. INTRODUCTION

Scaling laws are often used to determine the critical tem-
perature Tc of a system [1–5]. For instance, Tc can be obtained
by fitting an Ising scaling law for an order parameter defined
as the difference between the liquid and vapor densities at co-
existence (ρl − ρv ). This approach has been used extensively
and has been shown to hold for a wide range of atomic and
molecular systems. This has proved to be extremely useful
in the case of metals since critical temperatures are generally
extremely high [6], require advanced experimental techniques
[7], and often exhibit large uncertainties with for instance,
for Al, estimates ranging from around Tc = 5500 K to Tc =
9600 K [8]. On the other hand, the determination of other
critical properties often relies on the use of empirical laws
such as, e.g., the law of rectilinear diameter [9,10] for the
critical density. This law, which assumes a linear behavior
for the diameter ρm of the liquid-vapor coexistence curve as
a function of temperature, with ρm = 0.5(ρl + ρv ). However,
several systems [11–13] exhibit strong departures from this
law. For instance, for alkali metals such as Cs and Rb, experi-
ments showed that the two branches of the coexistence curves
were strongly asymmetric and the law of rectilinear diameter
was found to break down over a large temperature range [14].
As a result, this law breaks down for metals [6,14,15] as a re-
sult of many-body effects [16]. Alternative methods have been
developed in recent years to find ρc via extrapolation, through
power series law for the diameter [6] or novel symmetrized
equations for the vapor-liquid coexistence curve [17–19].

In recent years, entropy has become increasingly key to
our understanding of phase transitions, self-assembly, and of
the pathways underlying such processes. This has sparked

a number of studies aiming at the determination of entropy
and at a deeper understanding of its behavior along phase
transition curves. Scaling theory [20] provides an equation
for the variation of the entropy density S = s/V along the
vapor-liquid coexistence curve as the system approaches crit-
icality. Scaling theory predicts that the entropy density of
vaporization �S , as well as the density change upon the
phase transition �ρ = (ρl − ρv ), vary with the temperature
T as (Tc − T )β , in which β = 0.326 is the corresponding
3D-Ising critical exponent. Here we focus on entropy, rather
than on entropy density, and identify how entropy varies along
the coexistence curve, how data for the entropies of the two
coexisting phases can be used to estimate the critical entropy,
and on whether entropy exhibits the same behavior for ideal
systems and metallic systems. To address these questions, we
carry out flat histogram simulations to determine the ther-
modynamic locus for coexistence, as well as the entropy for
the two coexisting phases. We apply this approach to model
systems, using an effective potential that encompasses both
ideal, Lennard-Jones-like behavior and metallic behavior, and
to real systems, modeled with a many-body potential. More
specifically, for the effective potential, the onset of the first
Friedel oscillation [21–23] is controlled through a switching
parameter. This allows us to assess systematically the impact
of the increase in metallic character in the system on entropy
and its behavior along the vapor-liquid transition. For real
systems, we use the quantum corrected Sutton-Chen embed-
ded atoms model (qSC-EAM) and analyze the impact of the
many-body interactions on entropy.

The paper is organized as follows. We first present
the models and simulation methods used in this work. In
particular, we discuss how our simulation approaches allow
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for the determination of the conditions for coexistence and
of the thermodynamic properties along the vapor-liquid equi-
libria, including the entropy of the two coexisting phases. We
then analyze the symmetry of the coexistence curve in the T -S
and P-S planes and characterize the impact of an increasing
metallic character, focusing first on model systems and then
on the realistic models for metals. We finally draw the main
conclusion of this work in the last section.

II. SIMULATION FRAMEWORK

A. Models

To understand the impact of the metallic nature of the
system, we use two different types of force fields. First, we
model the interactions between metal atoms via an effective
pair potential that account for the onset of the first Friedel
oscillation that arises in metals. We achieve this through the
combination of a Lennard-Jones (LJ) functional form and
of a Dzugutov (DZ) pair potential [22,24], which has been
shown to favor the formation of quasicrystalline [25–29] and
crystalline σ phases [30]. While previous work has focused
on the determination of phase boundaries for the liquid-solid
[22,23] and vapor-liquid equilibria [31], there has not been, to
our knowledge, any study on the behavior of entropy along the
phase envelope. The resulting effective potential is given by

u(r) = XφLJ(r) + (1 − X )φDZ(r) (1)

with

φLJ(r) = 4

[(
1

r

)12

−
(

1

r

)6]
(2)

and

φDZ(r) = φ1(r) + φ2(r),
φ1(r) = A(rm − B) exp

[
c

r−a

]
, r � a,

= 0, r > a,

φ2(r) = B exp
[

d
r−b

]
, r � b,

= 0, r > b

(3)

in which X is a switching parameter (0 � X � 1), m =
16, A = 5.82, C = 1.1, a = 1.87, B = 1.28, d = 0.27, and
b = 1.94. The switching parameter controls the transition
from an ideal-like system (X = 1) to a metallic system
(X < 1), and provide insight into the transition from an ideal,
corresponding-states behavior to a metallic behavior.

Second, to take into account many-body effects, we use a
many-body force field, known as the qSC-EAM, to model the
interactions between metal atoms. In this case, the potential
energy for a system of N metal atoms is equal to

U = 1

2

N∑
i=1

∑
j �=i

ε

(
a

ri j

)n

− εC
N∑

i=1

√
ρ i (4)

in which ri j is the distance between two atoms i and j and the
density term ρi is given by

ρi =
∑
j �=i

(
a

ri j

)m

. (5)

We give in Table I the qSC-EAM potential parameters for the
metals considered in this work. As in previous work [32–35],
the cutoff distance to evaluate the interactions is set to twice

TABLE I. Parameters of the qSC-EAM potential for Ag, Pd, Ni,
and Ir.

a (Å) ε (10−2 eV) c m n

Ag 4.06910 0.39450 96.524 6 11
Pd 3.8813 0.32864 148.205 6 12
Ni 3.5157 0.73767 84.745 5 10
Ir 3.83440 0.37674 224.815 6 13

the parameter a. The qSC-EAM force field has been shown
to perform well for a broad range of thermodynamic [32,36]
and transport properties [37,38] of metals. For the solid phase,
the qSC-EAM potential has been shown to provide results in
very good agreement with the experimental data for elastic
constants, cohesive energy, and surface energy [39], as well as
for the melting points of pure metals [32] and alloys [40]. In
the liquid phase, this model performs very well for the density
and viscosity of liquid metals [37,38,41]. Finally, the qSC-
EAM force field has also been shown to accurately predict
the vapor pressure and critical properties [42] and the boiling
points for transition metals [43,44].

B. Simulation methods

To identify the conditions for coexistence and the prop-
erties of the coexisting phases, we perform a flat-histogram
sampling simulation approach known as expanded Wang-
Landau (EWL) simulations [45–47]. We briefly describe
the simulation method here (more details may be found in
Refs. [45–47]). EWL simulations rely on the Wang-Landau
(WL) scheme to sample extensively all possible configura-
tions of the system [48–54]. The EWL approach is the Monte
Carlo (MC) method implemented within the grand-canonical
(μ,V, T ) ensemble, meaning that, in this case, the WL sam-
pling is applied to sample evenly all possible numbers of
atoms and determine Q(N,V, T ) for all N values and the
grand-canonical partition function of the system as

�(μ,V, T ) =
∞∑

N=0

Q(N,V, T ) exp(βμN ). (6)

As shown in previous work [45], an accurate determination of
the partition function hinges on high acceptance rates of the
MC steps leading to changes in the number of atoms. Since,
for instance, the random insertion of additional metal atoms in
dense liquid phases is often associated with a low acceptance
rate, we combine the WL sampling with an expanded ensem-
ble approach [55–62]. Thus, we split the insertion (or deletion)
of entire atoms into M stages and gradually grow (shrink)
the extra atom to be inserted (deleted). In other words, at all
times, the system contains N atoms and a fractional particle at
stage l (with 0 � l < M ). Throughout the EWL simulations,
histograms for Q(N,V, T, l ) are continuously updated every
time a configuration with a given set of (N, l ) is visited. When
the simulation has converged, we gather the canonical parti-
tion functions obtained for all systems with a void fractional
particle (l = 0) and calculate the grand-canonical partition
function through Eq. (6). Once the partition functions have
been determined, all thermodynamic properties, including the
entropy, can be determined for a wide range of conditions.
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FIG. 1. Argon: Behavior for the entropy density S (top left), for
the entropy density of vaporization �S (top right), for the entropy
S, and for the entropy of vaporization �S. Results obtained for the
entropy density are shown in black, while results for the entropy are
shown in blue. Experimental data are shown as squares [65], while
dashed lines show fits to the data using a scaling law with the 3D-
Ising exponent β = 0.326 and the solid lines are obtained with an
exponent of 0.47.

C. Simulation details

We perform EWL simulations for systems modeled with
the effective pair potential (LJ + DZ) and for Ag, Pd, Ni,

and Ir using the qSC-EAM many-body force field. More
specifically, we implement the EWL approach within a MC
framework, with 75% of attempted moves allocated to random
translations of a randomly chosen particle (either an atom or a
fractional particle) and the remaining 25% of attempted moves
allocated to changes in (N, l ) values. The number of stages is
set to M = 100, the initial value for the convergence factor
f is set to e, and the minimum number of visits for each
(N, l ) set is fixed to 1000. Once all possible (N, l ) sets have
been visited at least 1000 times, the convergence factor is set
to f → √

f and we initialize the histogram for the number
of visits to 0. This is repeated until f < 10−8. Throughout
the simulations, the histograms for the canonical partition
functions are collected allowing for the determination of the
thermodynamic properties for the system. In the rest of the
paper, the results are given in units reduced with respect to the
LJ parameters,i.e., using σ as the unit of length, ε as the unit
of energy, and by setting the de Broglie wavelength 
 = 1 for
the property calculations, for the (LJ + DZ) potential and in
real units for Ag, Pd, Ni, and Ir. In addition, results obtained
for the entropy at coexistence for Cu using the grand-isobaric
adiabatic ensemble [63] are also presented. The interactions
are calculated using a spherical cutoff (rc = 3σ ) for the (LJ +
DZ) potential, with the usual tail corrections applied beyond
the cutoff distance [64], and with a spherical cutoff of 2a for
the qSC-EAM potential.

III. RESULTS AND DISCUSSION

We first examine the behavior of entropy along the vapor-
liquid coexistence curve in an ideal system using, as a
reference, the available experimental data on argon [65]. Start-
ing from the results of scaling theory [20], the density of the
two coexisting phases ρ± is predicted to behave as

ρ± = ρc{1 + A2β |t |2β + A1−α|t |1−α + A1t + · · · + A5|t |β+θ5 + · · · ± B|t |β[1 + bθ |t |θ + b2β |t |2β + · · · ]} (7)

in which ρc is the critical density, t = 1 − T/Tc, β is a critical exponent equal to 0.326 and α, θ , θ5, A2β , A1−α , bθ , and b2β are
additional critical exponents and parameters (see Kim et al. for more details [20]). Turning to the difference between the two
densities at coexistence �ρ = ρ+ − ρ−, most terms cancel out and the following result is obtained:

�ρ = 2ρc{B|t |β[1 + bθ |t |θ + b2β |t |2β + · · · ]}. (8)

The top panel in Fig. 1 confirms that the experimental data on argon can be fitted accurately by the functional form �ρ =
2ρcB|t |β with β = 0.326, showing that the series of terms between brackets in Eq. (8) can be estimated to be equal to 1 and
leading to a value of 2ρcB = 1800.55 kg/m3.

Similarly, for the entropy density S = s/V of the two coexisting phases, scaling theory gives

S± = ρckB{k0 + S2β |t |2β + S1−α|t |1−α + S1t + · · · + S5|t |β+θ5 + · · · ± BS |t |β[1 + dθ |t |θ + d2β |t |2β + · · · ]}. (9)

This leads to a difference between the two entropy densities at
coexistence �S = S+ − S−

�S = 2ρckB{BS |t |β[1 + dθ |t |θ + d2β |t |2β + · · · ]}. (10)

The middle panel in Fig. 1 indicates that �S = 2ρckBBS |t |β
accurately models the behavior of �S . The fit to the ex-
perimental data also shows that the series of terms between
brackets is close to 1 and provides a value for the parameter
2ρckBBS = 3227.05 kJ/m3/K.

We now focus on the behavior of the entropy of vapor-
ization �(S = s/N ) = �(S/ρ), rather than of the entropy
density �S . Scaling theory provides a path towards its de-
termination, provided that a few approximations are made.
Keeping only the (critical) constant term and the leading order
term in β in the equations for both the density and the entropy
density [Eqs. (7) and (9)], one can obtain

ρ± = ρc{1 ± B|t |β},
S± = ρckB{k0 ± BS |t |β} (11)
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FIG. 2. EWL results for X = 0.9 and T = 1. The grand-canonical partition function �(μ,V, T ) is shown in (a), with Q(N,V, T ) displayed
as the inset. The number distribution p(N ) is plotted at coexistence in the top panel of (b), with the potential energy of the system shown as a
function of N in the bottom panel of (b).

and, hence, to the leading order, to 1/ρ± = (1/ρc){1 ∓ B|t |β}.
In turn, this gives the following equation for the entropy of
vaporization:

�S = 2ρckB[k0B − BS ]|t |β. (12)

The critical entropy density is given by Sc = ρckBk0, which
leads to

�S = 2

(ScB

ρc
− kBBs

)
|t |β. (13)

Using the parameters B and Bs obtained from the two previ-
ous fits, as well as the experimental data for argon ρc = 536
kg/m3 and Sc = 2.261 kJ/kg/K, Eq. (13) provides a relation
to the first order in β for the dependence of �S. As shown
in the bottom panel of Fig. 1, the resulting equation does
not perform nearly as well as the previous two equations
for the density and entropy density difference over the same
temperature interval. While power laws with an exponent of
0.326 model well both the density difference and entropy
density difference under these conditions, it turns out that
the experimental data on argon for �S is more accurately
modeled with a power law of exponent of 0.47.

We now turn to the systems simulated in this work and dis-
cuss on the example of the X = 0.9 (LJ + DZ) system how we
determine the entropy along coexistence from the simulation
results. The plots are given in Figs. 2 and 3. The canonical
partition functions collected over the EWL simulations are
shown for T = 1 [inset of Fig. 2(a)] and exhibit the expected
increase with N for subcritical conditions [45]. Applying
Eq. (6) leads to the calculation of the grand-canonical parti-
tion function across the range of chemical potentials. Most
notably, we see in Fig. 2(a) a sharp increase in �(μ,V, T ) for
chemical potentials greater than μ = −3.2, corresponding to
the transition from the vapor (low μ) to the liquid (high μ)
phase. To determine accurately the conditions of coexistence,

we evaluate the number distribution p(N ) as

p(N ) = Q(N,V, T ) exp (βμN )

�(μ,V, T )
(14)

and obtain numerically the chemical potential at coexistence,
where the two phases are equally probable, by solving

Nb∑
N=0

p(N ) =
∞∑
Nb

p(N ) (15)

in which Nb corresponds to the minimum for p(N ), and the
two sides of the equation are the total probability for the vapor
(left) and for the liquid (right) phase.

The plot for p(N ) at coexistence is shown in Fig. 2(b),
and exhibits two peaks of equal area corresponding to two
different average values for 〈N〉, thus establishing that we
have correctly identified the conditions for coexistence. This
means that we now have access to μcoex at coexistence and to
the average number of particles in the two coexisting phases,
〈Nvap〉 and 〈Nliq〉, or equivalently the number densities for the
two coexisting phases 〈ρliq〉 and 〈ρvap〉. Next, to determine
the energy of the two phases, we collect, during the EWL
simulations, a histogram for the potential energy E (N ) as a
function of the number of particles N [shown in the bottom
panel of Fig. 2(b) for X = 0.9 and T = 1]. This, in turn,
provides access to the average potential energy for the two
coexisting phases, noted as 〈Eliq〉 and 〈Evap〉, which will be
key for the determination of the entropies of coexistence as
discussed below.

We now turn to the analysis of the fluid properties as the
conditions approach criticality. To compare the results for
the coexisting entropies along the phase boundary, we need
to be able to obtain scaled entropy-temperature and entropy-
pressure plots for all systems, with a scaling performed with
respect to the critical parameters for each system. For this
purpose, we first focus on determining the critical properties
(Tc, Pc, Sc). Results are first shown for the difference between
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FIG. 3. (a) Dependence of the difference between the coexisting densities upon temperature for X = 0.9 and T = 1. EWL simulation
results are shown as open squares and the estimate for the critical point is plotted as a filled square. The dashed line is a power-law fit to the
simulation results using an Ising-type exponent of 0.326. (b) Variation of the pressure at coexistence with temperature. Same legend as in (a),
with the dashed line corresponding to an exponential fit to the EWL simulation results.

the densities of the two coexisting phases as a function of
temperature in Fig. 3(a) for X = 0.9. A power law with an
Ising-type exponent of 0.326 fits very well the simulation
results, providing a reliable estimate for the critical temper-
ature Tc (critical properties are listed for all systems studied
in this work in Table II). Moving on to the dependence of the
pressure at coexistence upon temperature, we calculate Pcoex

from the usual statistical mechanical relation

Pcoex = kBT ln �(μcoex,V, T )

V
. (16)

We report in Fig. 3(b) the results obtained for Pcoex when
X = 0.9. We fit the simulation results with the following
exponential function P = A exp ( B

T +C ) (A, B, and C are fitting
parameters). Figure 3(b) shows that the simulation results for
the pressure at coexistence are very well accounted for by this
functional form. This fit, also known as Antoine’s law, allows
one to determine the dependence of Pcoex upon temperature
and to obtain an estimate for the critical pressure Pc by plug-

TABLE II. Critical temperature Tc, pressure Pc, and entropy Sc

estimated from the simulation results.

Effective pair potential

X Tc Pc Sc

1 1.290 0.119 2.986
0.9 1.164 0.113 2.852
0.8 1.033 0.100 2.844
0.7 0.915 0.093 2.704

Many-body potential

Metal Tc (K) Pc (MPa) Sc (J/g/K)

Ag 4260 34.3 1.320
Pd 5444 50.1 1.358
Ni 6700 62.1 2.433
Ir 9484 91.7 0.832

ging in the value previously obtained for Tc (Pc estimates are
gathered in Table II for all systems).

The coexisting entropies are calculated from the EWL sim-
ulation results as

Sliq = 〈Eliq〉
〈Nliq〉T + 3kB

2
+ PcoexV

〈Nliq〉T − μcoex

T
,

Svap = 〈Evap〉
〈Nvap〉T + 3kB

2
+ PcoexV

〈Nvap〉T − μcoex

T
(17)

in which the average energy for each phase is calculated from
E (N ), shown in Fig. 2(b), weighted by the number distribution
p(N ) over each of the two peaks. This gives, e.g., for the va-
por phase, 〈Evap〉 = ∑Nb

N=0 p(N )E (N ). We finally estimate the
critical entropy Sc by averaging the entropies of the two co-
existing phases at the highest temperature available from the
simulations (see Table II for numerical values). This is moti-
vated by the observation that the average entropy exhibits little
dependence upon temperature close to the critical point. For
instance, when X = 0.9, it varies by less than 5% for T � 1.

We show in Fig. 4 the entropies at coexistence along the
phase coexistence for X ranging from 0.7 to 1 (LJ system),
using as a scaling factor the value of Sc for each system.
The results are plotted in the scaled entropy-pressure plot
in Fig. 4(a) and in the scaled entropy-temperature plot in
Fig. 4(b). Despite strong changes in the effective pair poten-
tial and the gradual onset of the first Friedel oscillaton as X
decreases, we find that the behavior of the scaled entropy for
the two coexisting phases remains remarkably the same for
all systems. Indeed, the simulation results almost fall onto
the same plot for all systems over the range of temperatures
studied here. Our results also show that the same conclusion
applies to both plots, i.e., when the coexisting entropies are
plotted either against pressure, or against temperature.

The next step consists in applying the same analysis to
systems modeled with a many-body force field. We start by
determining the critical properties from the EWL simulation
results and give in Table II the numerical values we use to
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FIG. 4. Entropy for the two phases at coexistence for X ranging
from 0.7 to 1 (LJ system), X = 0.9. In (a), the entropy scaled with
respect to the critical entropy Sc is plotted against the scaled pressure
(with respect to Pc), while (b) shows a scaled entropy-temperature
plot.

scale the temperature, pressure, and entropy. We show in
Fig. 5(a) the resulting scaled entropy-pressure plot and in
Fig. 5(b) the scaled entropy-temperature plot for a series of
transition metals (Ag, Ir, Ni, and Pd). The plots show that the
four metals exhibit very similar behaviors, with the entropies
for the two coexisting phases aligning well for the various
systems. This conclusion holds over the range covered by the
different potential parameters, but also for the different values
taken by the exponents used in the repulsive two-body part
[see Eq. (4)] and in the attractive many-body part [see Eq. (5)].
This means that we will be able to analyze and characterize as
a group, i.e., the many-body group, the variations of entropy
for the two coexisting phases along the phase boundary.

Turning to the entropy difference between the two phases,
we compare in Fig. 6 the results obtained for the effective

FIG. 5. Entropy for the two phases at coexistence for a series of
metals modeled with the qSC-EAM many-body potential (Ag: black;
Ir: red; Ni: green; and Pd: blue). (a) Scaled entropy-pressure plot and
(b) scaled entropy-temperature plot.

pair potential to those found for the many-body potential
for all four metals. Figure 6 shows the emergence of two
distinct groups, which establishes the qualitatively different
behavior exhibited by both classes of models. Perhaps sur-
prisingly, the onset of the first Friedel oscillation does not
significantly impact how the entropy difference varies as a
function of the scaled pressure. Indeed, the behavior found for
all X values studied here remains remarkably similar to that
found for the ideal (LJ) system, simulated for X = 1. On the
other hand, the qSC-EAM many-body potential yields results
that are markedly different. Another interesting finding from
this plot is the similarity found between entropy differences
plots across the range of metals considered here. This points
towards the predominant role played by many-body effects in
such systems.
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FIG. 6. Scaled entropy difference–pressure plot. The graph
shows results for both the effective pair potential as squares (LJ:
violet, X = 0.9: red, X = 0.8: green and X = 0.7: blue) and for the
many-body potential as circles (Ag: black, Ir: red, Ni: green and
Pd: blue). Results for Cu from prior simulation work [63] using a
many-body potential are shown as cyan circles.

The dependence of �S and �S is shown on an example
for the two classes of systems studied here, i.e., X = 1 and
Cu for the qSC-EAM potential (see Fig. 7). The results for
the entropy density difference at coexistence show that, for
both classes of systems, a power law with the expected expo-
nent of 0.326 models well the results along the coexistence
curve. However, when turning to the entropy difference at
coexistence, two very different behaviors are observed, with
the many-body potential for Cu leading to a power-law fit with
a higher exponent (0.67) than for X = 1 (0.47).

FIG. 7. Left: Entropy density difference–scaled temperature plot
(lines are power-law fits with an exponent of 0.326). Right: Entropy
difference–scaled temperature plot (lines are power-law fits with an
exponent of 0.47 for X = 1 and 0.67 for Cu). The graph shows results
for the effective pair potential (X = 1) in purple and for the many-
body potential (Cu) in cyan.

FIG. 8. Scaled entropy difference–temperature plot. The graph
shows results for the effective pair potential as squares and for the
many-body potential as circles. Same legend as in Fig. 6.

To characterize this further, we examine the dependence
of the difference between the scaled entropies of the two
coexisting phases on the scaled temperature. Figure 8 shows
the onset of two different groups: the effective pair potential
group, which conforms to the ideal behavior as shown with
the LJ system (X = 1), and the many-body potential group.
We then set out to extract from the simulation data a law for
the entropy difference. For this purpose, we fit the two groups
of results with the following power law

�S

Sc
= A

(
1 − T

Tc

)s

(18)

in which A and s are two fitting parameters. The resulting
fits are also plotted in Fig. 7 and show that this functional
form performs well for both groups. The value found for the
exponent s takes distinct values for the two groups. Specif-
ically, s is found to be equal to close to 0.5 for the ideal
behavior, with a value of 0.495 obtained for the effective pair
potential group. On the other hand, the exponent of 0.67,
identified above for Cu, holds over the entire group modeled
with the qSC-EAM many-body potential. This result departs
notably from the exponent of 0.5 found for the ideal group.
As shown in Table I, the parameters for the qSC-EAM model
undergo significant changes from one metal to another; most
notably for c that varies between ∼84 and 225 and n that
varies between 10 and 13 in the cases studied here. However,
we observe a remarkable agreement between the exponents
obtained for the metals considered in this work and attribute
this finding to the general functional form of the qSC-EAM
force field. Future work will focus on extending this conclu-
sion to a broader range of metals and models.

IV. CONCLUSION

In this work, we characterize the behavior of entropy
along the vapor-liquid phase coexistence and identify a scal-
ing equation for the difference in entropy between the two
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coexisting phases. For this purpose, we carry out a se-
ries of flat-histogram simulations, based on the expanded
Wang-Landau method, to determine the partition function,
coexistence loci, critical parameters, and entropies along the
binodal. From the simulation results, we are able to obtain
two seldom explored projections of the phase boundary in the
S-P and S-T planes and to determine estimates for the critical
entropy. Then, we characterize the impact of the onset of the
first Friedel oscillation in a series of effective pair potentials
and of many-body effects in a series of transition metals, mod-
eled with an embedded-atoms force field. We find two classes
of behaviors. First, the effective pair potential yields results
that, when shown on scaled entropy-pressure plots (using
the critical entropy Sc and the critical pressure Pc as scaling
factors) and on scaled entropy-temperature plots (using the
critical temperature Tc as a scaling factor in this case), exhibit
an ideal behavior similar to the Lennard-Jones system. The
results also show that the onset of the first Friedel oscillation

in the effective pair potential does not result in any qualitative
change. Second, the many-body potential results in an entropy
behavior that is qualitatively the same for all transition metals.
However, in this case, the presence of a many-body term in the
interactions leads to a markedly different coexistence curve
in the S-P and S-T planes, when compared to ideal systems.
Future work will focus on elucidating the relation between the
nature of the interatomic and intermolecular interactions and
the entropy as conditions approach criticality.
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