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Quasi-Markovian property of strong wave turbulence
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This paper is concerned with the reduced-order modeling of the strongly nonlinear wave turbulence system.
The motivation for such an attempt comes from the utility of the probabilistic coarse-grained model in facilitating
the theoretical and numerical analysis of the true dynamical system model. One typical practice of simplifying
the complex physical model is, in the spirit of Brownian motion, to replace the nonlinear interactions by white
noise forcing and linear dissipation. For the case of slowly varying longwave, the resulting Markov process is
an accurate approximate model. However, this conventional scheme is highly inappropriate for the description
of shortwaves because the rapidly varying turbulent signal acquires a significantly non-Markovian character
resulting from the poor timescale separation between the relevant mode and the environmental wave field. To
resolve the issue, we discuss a simplification technique for which the central concept is the quasi-Markovian
property; a non-Markov stochastic process is referred to as quasi-Markovian if it can be represented as a
component of Markovian system made by adding a finite number of auxiliary variables. Our contribution in this
work is to single out the nontrivial and near resonances from the nonlinear interactions in search of the auxiliary
variable. We perform a comparison analysis of the autocorrelation matrices of the true and approximate models,
and numerically demonstrate the effectiveness of our Markovian formulation of the inherently non-Markov
turbulent signal.
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I. INTRODUCTION

A. Overview

A Hamiltonian dynamics typically arises when one takes
into consideration all the state variables involved in the evo-
lution of the entire physical system. The relevant nature
phenomenon is mathematically described by the Hamilton’s
canonical equations. In principle, by studying this determinis-
tic and Markovian law of motion, one can explain and predict
the true dynamical system behavior. In practice, however, the
full resolution of the detailed trajectories of the canonical
variables in the phase space presents a great computational
challenge especially when the underlying system account-
ing for turbulence possesses tremendously many degrees of
freedom. In many cases, concern is confined to a tiny frac-
tion of the whole physical system and such a straightforward
numerical integration implies too much waste of resources.
To circumvent this computational difficulty and to seek an
economy in the description, the theory of stochastic processes
has been initiated [1,2]. The basic idea is to design an em-
pirical law of motion for the relevant variables while masking
the irrelevant variables from observation. This coarse-graining
procedure naturally induces the uncertainty to compensate the
lost information regarding the initial condition of the whole
system and endows the outcome dynamics with the proba-
bilistic nature.

Brownian motion is one representative example in which a
physical process is successfully modeled as stochastic process
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[2,3]. There it is important to note that the reduced-order
modeling task yields a Markov model primarily because the
surrounding fine molecules move significantly faster than the
Brownian particle. In general, however, this is not the case
and the future evolution of the coarse-grained model is not
only determined by the information at that instant but by the
history due to the poor timescale separation between the re-
solved target variable and the remaining unresolved ones. One
intricacy here is that a non-Markov model is generally less
tractable than Markov models for the purpose of the theoret-
ical and numerical analysis. In this connection, the capability
of simultaneously achieving a drastic simplification of the
complex physical model and maintaining the advantageous
Markovian property of the original Hamiltonian system is
truly valuable, and the implementation will give us enormous
benefits in the study of turbulent signals generated by the true
dynamical system model. The present paper is devoted to the
development of such a desired marginalization scheme for the
system of nonlinear dispersive waves in the strong coupling
limit.

B. Problem statement

Consider the Hamiltonian

H =
∑

k

χωk|ak|2 + 1

2

∑
k1234

W 12
34 δ12

34a1a2a∗
3a∗

4, (1)

where k1234 = k1, k2, k3, k4 and a j is shorthand notation of
akj for j = 1, 2, 3, 4. The parameter χ (=1 or 0) determines
the existence and nonexistence of the quadratic terms. Here
δ12

34 = δk1+k2−k3−k is Kronecker delta function and the upper
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∗ signifies complex conjugation. The Hamilton’s equation of
motion governing the canonical variable ak is given by

ȧk = −i
δH
δa∗

k

= − iχωkak − i
∑
k123

W 12
3k δ12

3k a1a2a∗
3, (2)

where the upper dot denotes the time derivative.
In the case of χ = 1, Eq. (2) is one prototype of the wave

turbulence (WT) system, for which ωk is the linear dispersion
relation and W 12

34 is the four-wave interaction tensor [4,5].
The WT theory provides a generic approach to the statistical
description of the family of nonlinear dispersive waves. Note
the theory is applicable to the dynamical system (2) only if (i)
χ = 1 so that the coefficient ωk exists and (ii) the wave-wave
interactions are in the weakly nonlinear limit. Importantly,
such conditions are not compulsory in our treatment. The WT
system under our consideration does not necessarily possess
the linear dispersive characteristics, that is, the case of χ = 0
can be addressed by our development. Besides, our discussion
throughout the paper is targeted to the situations where the
nonlinear coupling is strong and dominant in the course of
time.

The goal of this work is to come up with a low-dimensional
Markovian model characterized by a close resemblance with
the true dynamical system model (1) and (2) at the statistical
level. The main analytic tool for the rigorous derivation is the
Mori-Zwanzig (MZ) projection theory sketched in the next
subsection.

C. Background on the Mori-Zwanzig theory

Let A(t ) = A({ak (t ), a∗
k (t )}) be an arbitrary vector-valued

variable determined by some of the canonical variables. Re-
call that its dynamic evolution obeys the Liouville equation
Ȧ = LA where L = ∑

k −i δH
δa∗

k
∂ak + i δH

δak
∂a∗

k
is the Liouville

operator. The MZ formalism [3,6–8] performs the exact re-
arrangement of the Liouville equation, which is in the form

Ȧ(t ) = −i�A(t ) −
∫ t

0
ds �(t − s)A(s) + R(t ). (3)

The first term of the right-hand side of (3) is obtained from
the projection of Ȧ(t ) onto the linear space spanned by A.
More precisely, defining the inner product 〈X, Y〉 ≡ 〈XYT〉
for which the angle bracket denotes the statistical average
against the stationary distribution and the upper T denotes
conjugate transpose, and defining the projection operator by
PX ≡ 〈X, A〉〈A, A〉−1A, the projection coefficient is given by
−i� = 〈Ȧ, A〉〈A, A〉−1.

The second and third terms form the complement of the
projection part. With I denoting the identity operator, R(t ) =
et (I−P )L(I − P )LA is related with the memory kernel via

�(t ) = 〈Rt , R0〉
〈A, A〉 , (4)

where the reciprocal signifies matrix inverse. The MZ frame-
work regards Rt as the random noise, and refers to (3) as

the generalized Langevin equation (GLE) equipped with the
fluctuation-dissipation (FD) theorem (4).

It follows from Eq. (3) and the identity 〈Rt , A0〉 = 0 that
the autocorrelation matrix evolves according to

〈Ȧt , A0〉 = −i�〈At , A0〉 −
∫ t

0
ds �(t − s)〈As, A0〉. (5)

Defining the Fourier-Laplace transform of φ(t ) as φ[w] =
F{φ}(ω) ≡ ∫ ∞

0 dt e−iωtφ(t ), Eq. (5) takes the form

F{〈At , A0〉}(ω)

〈A, A〉 = 1

i(ωI + �) + �[ω]
(6)

for which φ̇[ω] = iωφ[ω] − φ(0) is used. Equations (4) and
(6) reveal the connection between the autocorrelations of A
and R.

D. Organization of the paper

The remainder of this paper is organized as follows. In
Secs. II and III we develop two reduced-order models: Trio
model (TRM) and resonant duet model (RDM). We perform
numerical experiments in Sec. IV, and give the summary of
our work in Sec. V. Some calculations and arguments are
gathered in the Appendices in order not to disturb the main
storyline of the paper.

II. TRIO MODEL (TRM)

Section II A discusses the effective dispersion relationship
of the Hamiltonian dynamics (2). In Sec. II B we define two
additional variables denoted by Ak , A′

k and associate them with
the system variable ak . We devote Sec. II C to the develop-
ment of the statistical model governing the triple variables
(ak, Ak, A′

k ).

A. Trivial resonances and the mean-field equation

Let us consider the case of A = ak , and write the corre-
sponding GLE (3) by

ȧk (t ) = −i�kak (t ) −
∫ t

0
ds �a(t − s)ak (s) + Ra(t ), (7)

where

�k = i
〈ȧk, ak〉
〈ak, ak〉

= χωk +
∑
k123

W 12
3k δ12

3k

〈a1a2a∗
3a∗

k 〉
〈|ak|2〉 . (8)

In general, the normal mode frequencies of the relevant vari-
ables constituting A are determined not only by the matrix
−i� but also by some part of the kernel � [9]. Specifically,
in view of (7), the knowledge we can gain from the MZ for-
malism is at most that the coefficient �k serves as an effective
dispersion relation of ak provided that this canonical variable
is slowly varying and behaves as if it is a Markov process
[10]. Surprisingly, however, the direct numerical simulations
of a variety of WT systems have shown that the accuracy
of �k in describing the effective dispersion relation of ak

remains high across the whole wave-number domain [11–16].
Supported by several numerical evidences, we here proceed
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by tentatively concluding that the effective dispersion relation
of the canonical variables of the Hamiltonian system (1) and
(2) is well approximated by the quantity (8).

This wave phenomenon can be explained by virtue of the
collective effect of the trivial resonances [11,12]. On one
hand, the random phase argument from the WT theory is
invoked to approximate the four-point function visible in (8)
by the product of two two-point functions and to obtain

�k
.= χωk +

∑
k′

(
W k′k

k′k + W kk′
k′k

)〈|ak′ |2〉. (9)

On the other hand, denoting the nonlinearity of the original
dynamics (2) by Nk , we consider the decomposition Nk =
Tk + Neff

k where

Tk ≡ −i
∑

k123,k12=k

W 12
3k δ12

3k a1a2a∗
3

= − i

[∑
k′

(
W k′k

k′k + W kk′
k′k

)|ak′ |2
]

ak, (10)

Neff
k ≡ −i

∑
k123,k12 �=k

W 12
3k δ12

3k a1a2a∗
3. (11)

Here Tk is the collection of the terms corresponding to k1 = k
or k2 = k, called the trivial resonances. The result of averaging
the coefficient of ak in (10) is given by the mean-field equation
of motion

ȧk
.= −i�kak + Neff

k (12)

for which Neff
k operates as the effective nonlinearity. Here the

re-emergence of �k ensures that Tk takes part in the control of
the oscillation, neither forcing nor dissipation, giving rise to a
wavelike dynamics.

B. Nontrivial resonances

The comparison between (7) and (12) provides one princi-
pled way of building a simplified stochastic model, that is, to
replace the effective nonlinearity Neff

k by the forcing and dissi-
pation terms constrained via the FD theorem (4). In [17,18] we
apply this skill to develop a number of reduced-order models
governing the sole variable ak . Some of them will be revisited
in Sec. III C.

In this work our discussion of a simplification technique
begins with the decomposition of the effective nonlinearity
(11), i.e., Neff

k = Ak + A′
k , where

Ak ≡ −i
∑

k123,k12 �=k,|�12
3k |<ε

W 12
3k δ12

3k a1a2a∗
3, (13a)

A′
k ≡ −i

∑
k123,k12 �=k,|�12

3k |>ε

W 12
3k δ12

3k a1a2a∗
3, (13b)

so that Eq. (12) is in the form

ȧk
.= −i�kak + Ak + A′

k . (14)

Here �12
3k = �k1 + �k2 − �k3 − �k and 0 < ε 	 1 is a small

number. The WT theory asserts that, for the system with a
cubic nonlinearity, the long-term statistical behavior is often
controlled by the resonant quartets and the dominant exchange

of energy among the modes occurs via the sets of four waves
whose wave numbers {(k1, k2), (k3, k)} and dispersion rela-
tions �(·) satisfy

k1 + k2 = k3 + k, (15a)

�(k1) + �(k2) = �(k3) + �(k). (15b)

Of particular importance is the nontrivial (k1, k2 �= k)
resonances. Looking at the resonance condition (15), it is
immediate to recognize that our construction of (13) is in-
tended for the variable ak to mainly interact with Ak while the
interaction between ak and A′

k is insignificant in a long time.
We draw specific attention to the use of the effective dis-

persion relation �k , not the linear dispersion relation ωk , in
determining the variables in (13). Very interestingly, due to
the form of �k in (9), what is happening is that the nontrivial
resonances can be created by the pure wave-wave interaction
mechanism independently of the linear dispersive charac-
teristics [11,12]. As will be exemplified later in Sec. IV B,
this physics picture enables us to construct the variable Ak

for many nonlinear dynamical systems which had been tra-
ditionally believed not subject to the four-wave resonance
framework so that it is impossible to do so.

Notice that, in addition to the exact nontrivial resonances
(k12 �= k, �12

3k = 0), we involve the near resonances (�12
3k

.= 0)
for the construction of Ak . This is because such terms are
as important as the exact wave resonances in the energy-
momentum exchange [5]. Here arises the question of how
to select a suitable value of the parameter ε so that Ak is
well defined for a given wave-number k. To answer this, in
Appendix C we establish one useful criterion that prevents the
two different approximations of the stationary spectrum of Ak

from being notably different.

C. Model development

Together with the variables in (13), we now enter a new
paradigm for the reduced-order modeling of the WT system
(1) and (2). Specifically, we no longer seek a closed equation
for the single variable ak . We instead design a multivariate
statistical model governing A3 = (ak, iAk, iA′

k )T where T de-
notes transpose.

To this end, we consider the case of A = A3 and represent
the corresponding GLE (3) by

Ȧ3 = −i�3A3 − �3 ∗ A3 + R3, (16)

where ∗ signifies the convolution in time. First, the theoretical
analysis performed in Appendix A yields the approximations
〈A3, A3〉 .= diag(nk, Nk, N ′

k ) and

−i�3
.= −i

⎛
⎝�k 1 1
Ak �̃k 0
A′

k 0 �′
k

⎞
⎠. (17)

Here nk = 〈|ak|2〉, Nk = 〈|Ak|2〉, and N ′
k = 〈|A′

k|2〉, and the
ratios between the stationary spectra are denoted by Ak =
Nk/nk and A′

k = N ′
k/nk . As for �̃k and �′

k , their definitions
can be found in Appendix A but the sufficient information at
this moment is that νI ≡ �̃k − �k is close to zero, whereas
ν ′

I ≡ �′
k − �k is away from zero. To be more precise, the

value of νI vanishes if Ak is exclusively made up of the
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exact resonances and the slight departure from zero is caused
by the near resonances. Second, the reasoning provided in
Appendix B leads us to suggest the approximations:

�3(t )
.=

⎛
⎝0 0 0

0 νR 0
0 0 ν ′

R

⎞
⎠δ+(t ), R3

.=
⎛
⎝ 0

�ẆA

�′ẆA′

⎞
⎠, (18)

where δ+(t ) is a normalized Dirac delta function satisfying∫ ∞
0 dt δ+(t ) = 1, and Ẇ· is complex-valued white noise.

Making use of (16), (17), and (18), we build the model
equation

(TRM)

⎧⎨
⎩

ȧk = −i�kak + Ak + A′
k,

Ȧk = −Aak − (i�k + ν)Ak + �ẆA,

Ȧ′
k = −A′ak − (i�k + ν ′)A′

k + �′ẆA′ ,

(19)

where ν = νR + iνI and ν ′ = ν ′
R + iν ′

I are complex numbers.
Equation (19) is called trio model (TRM) and can be trans-
formed into

(TRM)

⎛
⎝ḃk

Ḃk

Ḃ′
k

⎞
⎠ =

⎛
⎝ 0 1 1

−A −ν 0
−A′ 0 −ν ′

⎞
⎠

⎛
⎝bk

Bk

B′
k

⎞
⎠

+
⎛
⎝ 0

�ẆB

�′ẆB′

⎞
⎠ (20)

in terms of bk = ei�kt ak , Bk = ei�kt Ak , and B′
k = ei�kt A′

k . With
regard to the drift matrix of (20), the real parts of the diagonal
elements originate from −�3, and the off-diagonal elements
and the imaginary parts of the diagonal elements are the con-
tributions by −i�3. The stationary spectrum of TRM is given
by diag(nk, Nk, N ′

k ), and Nk = Ank and N ′
k = A′nk hold [2].

We impose the constraints � = √
2νRNk and �′ = √

2ν ′
RN ′

k
to fulfill the FD theorem (4).

III. RESONANT DUET MODEL (RDM)

In Sec. III A we analyze TRM (20) to get a clear under-
standing of how Bk and B′

k affect the evolution of bk . In
Sec. III B we simplify TRM to obtain a Markov model govern-
ing the duet (bk, Bk ). In Sec. III C we discuss the connection
between the new and existing reduced-order models and the
advancement of our development.

A. Marginalization

The dynamic equation for B′
k in TRM (20) is integrated to

yield the expression

B′
k (t ) = e−ν ′t B′

k (0) −
∫ t

0
dsA′e−ν ′(t−s)bk (s)

+ �′
∫ t

0
ds e−ν ′(t−s)ẆB′ . (21)

The first term of the right-hand side of (21) can be dropped
without causing any statistically meaningful error, and the last
term denoted by Rν ′ is the Ornstein-Uhlenbeck (OU) process
satisfying 〈Rν ′ (t ), Rν ′ (0)〉/nk = A′e−ν ′t . Hence Eq. (21) can
be rephrased as

B′
k � −�ν ′ ∗ bk + Rν ′ , �ν ′ (t ) ≡ A′e−ν ′t (22)

and TRM (20) can be marginalized into

ḃk = Bk − �ν ′ ∗ bk + Rν ′ ,

Ḃk = −Abk − νBk + �ẆB. (23)

Likewise, we can verify

Bk � −�ν ∗ bk + Rν, �ν (t ) ≡ Ae−νt , (24)

where Rν is the OU process characterized by
〈Rν (t ), Rν (0)〉/nk = �ν (t ), and Eq. (23) can be marginalized
into

ḃk = Bk + B′
k

= (−�ν ∗ bk + Rν ) + (−�ν ′ ∗ bk + Rν ′ ). (25)

This univariate form of TRM clearly reveals that the dynamics
of bk is independently driven by Bk and B′

k , and that both
Bk and B′

k force and dissipate the motion of bk in the non-
Markovian manner.

B. Timescale separation limit

We turn our attention to the true dynamical system model.
In terms of

Bk = ei�kt Ak = −i
∑

k123,k12 �=k,|�12
3k |<ε

W 12
3k δ12

3k b1b2b∗
3e−i�12

3k t ,

B′
k = ei�kt A′

k = −i
∑

k123,k12 �=k,|�12
3k |>ε

W 12
3k δ12

3k b1b2b∗
3e−i�12

3k t ,

Eqs. (12) and (14) can be written as

ḃk
.= ei�k Neff

k = Bk + B′
k . (26)

Equation (26) confirms that the form of (25) complies with our
prior knowledge concerning the effect of Neff

k on the system
variable. This consistency with the argument provided in the
first paragraph of Sec. II B obviously supports the plausibility
of the approximations in (18). In fact, our modeling of Neff

k
by means of (22) and (24) is distinguished from the classical
ones made without the decomposition of Neff

k and hence the
statistical model (25) is conceptually a more refined version
of the univariate model than the existing ones presented in
Sec. III C. The task is admittedly not so meaningful unless the
timescales of Bk and B′

k are very different from one another.
Our key intuition with regard to this issue is that, such as in
the case of Brownian motion, the influence of the far-from
resonances on the target system variable is at most transient
and B′

k is significantly faster than the typical evolution of bk .
We return now to TRM and show that the direct conse-

quence of this sharp timescale separation is the approximation
of (22) by

B′
k

.= −γ bk + σẆb, (27)

where γ = A′/ν ′
R and σ = √

2γ nk . That B′
k is rapidly vary-

ing corresponds to a tiny relaxation time of B′
k and the real

part of ν ′ = ν ′
R + iν ′

I is a large number. As ν ′
R → ∞, one

has �ν ′[ω] = A′
iω+ν ′ → γ since A′ = γ ν ′

R and hence �ν ′ (t ) →
γ δ+(t ). Moreover, in this limit, one has 〈Rν ′ (t ), Rν ′ (s)〉 →
σ 2δ(t − s) and Rν ′ → σẆb where δ(t ) is Dirac delta function.
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We are tempted by (27) to eliminate the fast variable B′
k

of TRM (20). This can be achieved by taking the timescale
separation limit ν ′

R → ∞ to (23), and such an operation gives
rise to the Markov model

(RDM)

(
ḃk

Ḃk

)
=

(−γ 1
−A −ν

)(
bk

Bk

)
+

(
σẆb

�ẆB

)
(28)

named as resonant duet model (RDM). Equation (28) is trans-
formed into

(RDM)

{
ȧk = −(i�k + γ )ak + Ak + σẆa,

Ȧk = −Aak − (i�k + ν)Ak + �ẆA,
(29)

in terms of the genuine variables (ak, Ak ). This removal of one
degree of freedom is indeed advantageous as the dimension
reduction essentially gives no harm to the Markovian char-
acter of TRM. The stationary spectrum of RDM is given by
diag(nk, Nk ), and Nk = Ank holds. The relations σ = √

2γ nk

and � = √
2νRNk are satisfied according to the FD theorem.

C. Reduction to the univariate models

Together with RDM (29), here we repeat the same pro-
cedures with those applied to TRM, i.e., performing the
marginalization and taking the timescale separation limit. In
the first step, as in Sec. III A, we obtain the univariate form of
RDM

(ARM) ȧk = −i�kak − γ ak −
∫ t

0
dsAe−(i�k+ν)(t−s)ak (s)

+ σẆa + e−i�kt Rν . (30)

This non-Markov model is called autoregressive model
(ARM). In the second step, as in Sec. III B, Eq. (30) is ap-
proximated by the Markov model

(MSM) ȧk = −i�kak − γ̄ ak + σ̄Ẇa, (31)

under the situation of νR � 1. Here γ̄ and σ̄ = √
2γ̄ nk are

used in order to avoid confusion with γ and σ . Equation (31)
is referred to as mean stochastic model or MSM for short.

In fact, ARM and MSM are the existing models; they were
proposed and studied by the author in [17,18]. Specifically,
following the recipe that can be found in the first paragraph of
Sec. II B, we have devised these univariate models from sub-
stituting �a(t ) = γ δ+(t ) + Ae−(i�k+ν)t and �a(t ) = γ̄ δ+(t )
into the GLE (7). Unfortunately, the development is rather
heuristic and carried out with no serious justification for this
particular choice of the kernel functions. By contrast, their
construction by the multivariate modeling approach is signifi-
cantly more systematic and the argument using the GLE (16)
enables a comprehensive explanation for the non-Markovian
form of the memory kernel of ARM.

We emphasize that the advantage of the current derivation
is not limited to the theoretical rigor. It also brings the prac-
tical benefit in clarifying the validity regime of RDM. More
precisely, the non-Markovian process (30) was shown to be
an accurate model when k is large and ak is a rapidly varying
shortwave. In this case, it is desired to use ARM or RDM in
describing the true turbulent signal. When k is small and ak is
a slowly varying longwave, however, MSM is already a decent
approximation and it is redundant to introduce the variable Ak .

TABLE I. MSM and RDM are Markov models; ARM is a non-
Markov model.

Governing variables Longwave (small k) Shortwave (large k)

ak MSM (31) ARM (30)
(ak, Ak ) RDM (29)

As a summary, Table I provides an overview of the differences
between the simplified models.

Moreover, the new framework offers a means to strengthen
the numerical validation of ARM. Though ARM can be re-
formulated as RDM along with the formal definition of Ak

that is essentially given by the one in (24), RDM is distin-
guished from ARM in the aspect that the auxiliary variable Ak

is identified in terms of the canonical system variables. The
consequence is that it is possible to simulate a single trajectory
of Ak (t ) as an addition to that of ak (t ) from a direct numerical
integration of the true turbulence model and, as will be seen
in the next section, we can utilize this plenty of data to give
further depth to the plausibility of the reduced-order models.

So far our discussion is made while keeping in mind the
situation of the strong nonlinearity. We comment that the ap-
plicability of our formalism continues to hold independently
of the strength of nonlinearity. Nonetheless, for the WT sys-
tem with a weak nonlinearity, the concept of the multivariate
models like TRM and RDM has no great merit because in
such cases MSM (or its variant created from replacing �k by
ωk) is capable of imitating with reasonable accuracy the true
underlying signal that changes in a Markovian fashion.

IV. MODEL VALIDATION

In order to validate the proposed multivariate models,
we here resort to the numerical simulations. Section IV A
presents the testbed. Section IV B explains in detail the
settings for the generation of the true turbulent signal. Sec-
tion IV C discusses the training of the reduced-order models.
Section IV D provides the simulation results.

A. Testbed

We examine the effectiveness of our reduced-order mod-
eling framework in the context of the generalized Majda-
McLaughlin-Tabak (MMT) model [11,12,19]. A finite dimen-
sional approximation of the MMT model is given by the
Hamiltonian system (2), along with ωk = |k̂|α and W 12

3k =
|k̂1k̂2k̂3k̂| β

4 where k̂ ≡ kπ/N and N is the total number of
Fourier modes [18]. Here δ12

3k is equal to unity if k1 + k2 −
k3 − k is a multiple of N , and zero otherwise. Accordingly,
Eq. (15a) is to be understood in the sense of the modulus N .
The generalized MMT model possesses three parameters: χ

and α, β(>0). When χ = 1, the system reduces to the original
MMT model introduced for the numerical study of the wave
turbulence theory [19]. In this case, the MMT model includes
a number of familiar wave systems as specific cases. For
example, if α = 2 and β = 0, the system corresponds to the
nonlinear Schrödinger equation, while the case of α = 1/2,
β = 3 mimics the scaling present in water waves [20]. When
χ = 0, the model equation has a certain similarity with the
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Clebsch-variables formulation of the 3D Euler equations in
fluid mechanics [21].

B. True turbulent signal

The MMT model allows for an excellent case study not
only because of the coverage of a wide scope of dynamical
systems ranging from nonlinear waves to fluid motion, but
also because of the occurrence of effective nontrivial four-
wave resonances. More precisely, Eq. (9) becomes

�k
.= χ |k̂|α + Cβ |k̂| β

2 , Cβ ≡ 2
∑

k′
|k̂′| β

2 〈|ak′ |2〉

in case of the MMT system. With regard to the resonance
condition (15), the linear dispersion relation �(k) = χ |k̂|α
admits the nontrivial resonances only if χ = 1 and α < 1.
However, due to the scalings of the effective dispersion re-
lation �(k) = χ |k̂|α + Cβ |k̂| β

2 , the nontrivial resonances can
occur if β

2 < 1, irrespective of the value of χ and α [12].
Here we pick up two instances of the MMT system for

which the parameters are given by (i) χ = 1, α = 1/2, β = 3,
and Cβ = 3/10, and (ii) χ = 0, β = 1, and Cβ = 9/10. Notice
that Cβ characterizes the MMT system in thermal equilibrium
and the selected values give rise to the strong nonlinearities
[18]. The Fourier index k ∈ Z is in the range of −N/2 < k �
N/2 with N = 512, and we take k = 192 for a representative
case of the high k and shortwave signal ak .

According to the criterion provided in Appendix C, we
determine the variable Ak in the way that the relative error
between the two different approximations of Nk = 〈|Ak|2〉
given by (C1) and (C2) is less than 1 percent. The designated
tolerance ensures that, in both cases of χ = 1 and χ = 0, the
variable Ak for k = 192 consists of about 37 percent of the
total number of terms constituting the effective nonlinearity
Neff. We draw attention to the fact that the application requires
the knowledge of the equilibrium spectrum nk for all wave-
number k. For this we use nk = θ/�k where θ = 〈a∗

kδH/δa∗
k 〉

is the temperature. This theoretical prediction is the general-
ization of the classical Rayleigh-Jeans distribution nk = θ/ωk

for the weakly nonlinear WT system, and is numerically vali-
dated in [11,12].

C. Model training

We first train ARM (or equivalently RDM) using the two-
point function in time. We recall that the autocorrelation of
bk (t ) is given by

〈bk (t )b∗
k (0)〉

nk
= e− τ

2 t

[
cos

(Rt

2

)
− γ − ν

R sin

(Rt

2

)]
,

where τ = γ + ν and R =
√

4A − (γ − ν)2 [17]. This sta-
tistical quantity is numerically approximated using the single
trajectory of the true turbulent signal under the ergodicity
assumption, and the associated parameters are learned via the
curve fitting using the autocorrelation functions.

We next train TRM by capturing our assumption of the
timescale separation, i.e., by taking the value of ν ′

R large
enough. The remaining set of parameters are kept or suitably
chosen in a way that the autocorrelation matrix of (bk, Bk )
indicated by TRM are almost the same with that by RDM.

D. Autocorrelation matrices

Having trained TRM (20), we calculate the associated au-
tocorrelation matrix 〈B3(t ), B3(0)〉 where B3 = (bk, Bk, B′

k )T .
The theoretical predictions in the physical space and Fourier
space are obtained using Eqs. (5) and (6). The elements are
drawn as a function of time in both cases of χ = 1 (Figs. 1 and
2) and χ = 0 (Figs. 3 and 4). We also depict the corresponding
numerically measured quantities of the MMT model. De-
spite the elementary and simple training of TRM based on
the partial information matching between the correlation ma-
trices, the remaining elements show qualitatively analogous
behaviors. Because the drift matrix determines the autocor-
relation matrix as can be seen in Eq. (6), this simulation
result concerning the two-point functions in time lets us to
conclude that the approximations in (18) and (27) are rea-
sonable and that both TRM and RDM are good approximate
models.

V. SUMMARY AND FUTURE WORKS

Writing the total Hamiltonian (1) as H = H2 + H4, con-
sider the decomposition of the Hamiltonian responsible for the
nonlinear interactions: H4 = HTR + HNR. Here HTR gathers
the terms corresponding to the trivial resonances (TR), and
HNR gathers the terms corresponding to the nonlinearities
remainder (NR). In our prior work [11,12] we made use of
the Mori-Zwanzig theory to demonstrate that HTR controls the
oscillation of ak . Defining Heff

2 = H2 + HTR where the upper
bar denotes the mean-field approximation leading to

δHeff
2

δa∗
k

= �kak,

the effective Hamiltonian Heff = Heff
2 + HNR provides us

with the comprehensible framework that captures accurately
the realistic behavior exhibited by the strongly nonlinear wave
turbulence system.

Our achievement in this work is the further decomposition
of the Hamiltonian responsible for the effective nonlinearity:
HNR = HNTR + HFFR. Here NTR stands for the nontriv-
ial (and near) resonances, and FFR stands for the far-from
resonances. In terms of the variables in (13), these two Hamil-
tonians are defined through

δHNTR

δa∗
k

= iAk,

δHFFR

δa∗
k

= iA′
k,

and we once again make use of the Mori-Zwanzig theory to
demonstrate that both HNTR and HFFR independently control
the forcing and dissipation of ak . In short, breaking the quartic
Hamiltonian into smaller pieces, i.e., H4 = HTR + HNTR +
HFFR, we perform the detailed analysis of each of the individ-
uals to identify their precise roles in determining the motion
of ak .

Moreover, with the aid of the wave turbulence theory,
we build a physical insight into a possibly sharp separation
between the timescales induced by HNTR and HFFR, and
numerically demonstrate this is indeed the case when k is
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FIG. 1. The elements of C = 〈B3(t ), B3(0)〉 are drawn as a function of time. The MMT system is parametrized by χ = 1, α = 1
2 , and

β = 3, and the wave-numbers range −256 < k � 256. The autocorrelation matrix of the true signal ak is numerically measured when k = 192.
The counterparts of TRM are depicted for comparison purposes. (a), (b), (c), (e), and (i) The solid blue (upper) and red (lower) lines are,
respectively, for the real and imaginary parts of MMT; the dashed blue (upper) and red (lower) lines for the real and imaginary parts of TRM.
(d), (f), (g), and (h) The solid blue (lower) and red (upper) lines are, respectively, for the real and imaginary parts of MMT; the dashed blue
(lower) and red (upper) lines for the real and imaginary parts of TRM.

large and ak is a rapidly varying shortwave. This discrepancy
between the typical evolutions of Ak and A′

k guides us to
statistically project the extremely complex motion of the sin-
gle wave-profile ak onto the two-dimensional space spanned
by (ak, Ak ) in order to suppress the time-lag effect from
which the conventional projection onto the one-dimensional
space spanned by ak inevitably suffers and to successfully
address the quasi-Markovian property of the strongly nonlin-
ear wave turbulence signal in the high wave-number domain.
Our task is highlighted by the trade-off between the Marko-
vian nature of the bivariate model called RDM and the
lower dimension of the non-Markov univariate model called
ARM.

The present work focuses on the rigorous derivation of
the multivariate stochastic models out of the true turbulence
model, and in the future we will naturally proceed to the

investigation of their practical utilities. For this, the research
direction currently being pursued by the author is twofold.
One way is to make use of the suggested reduced-order mod-
els as the platform for the theoretical characterization of the
strong wave turbulence system. The other way is to solve
the uncertainty quantification problems associated with the
true dynamical system model, such as probabilistic filtering,
for which the simplified models are employed as stochastic
emulator.
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FIG. 2. The elements of S = F{〈B3(t ), B3(0)〉} are drawn as a function of time. The setting is the same with Fig. 1. The line specifications
are the same with Fig. 1.

APPENDIX A: PROJECTION MATRIX �3

First we calculate the stationary spectrum of A3 =
(ak, iAk, iA′

k )T and obtain the approximation 〈A3, A3〉 .=
diag(nk, Nk, N ′

k ) for the true dynamical system model (1) and
(2). Recall that, invoking the random phase argument (RPA),
the four-point and six-point correlation functions can be ap-
proximated by

〈a1a2a∗
3a∗

k 〉 .= n1n2(δ13δ2k + δ1kδ23),
(A1)

〈a1a2a∗
3a∗

1′a∗
2′a3′ 〉 .= n1n2n3δ33′ (δ11′δ22′ + δ12′δ21′ ),

respectively [4]. Here nj is shorthand notation for nkj =
〈|akj |2〉. In this RPA approximation, the elements of A3 are
mutually orthogonal, i.e., the cross-correlations

〈ak, Ak〉 = −i
∑
<

W 12
3k δ12

3k 〈a1a2a∗
3a∗

k 〉 .= 0,

〈ak, A′
k〉 = −i

∑
>

W 12
3k δ12

3k 〈a1a2a∗
3a∗

k 〉 .= 0,

〈Ak, A′
k〉 =

∑
<

W 12
3k δ12

3k

∑
|�1′2′

3′k |>ε

W 1′2′
3′k δ1′2′

3′k

× 〈a1a2a∗
3a∗

1′a∗
2′a3′ 〉 .= 0, (A2)

vanish simply because there are no survival terms. Here
∑

<

and
∑

> abbreviate the summation notations shown in (13).
Next, we calculate the matrix 〈Ȧ3, A3〉.
(1) The elements of the first row are approximated by

〈ȧk, ak〉 = −i�k〈ak, ak〉,
〈ȧk, Ak〉 =

〈
− i

(
χωkak +

∑
W 12

3k δ12
3k a1a2a∗

3

)

− i
∑
<

W 12
3k δ12

3k a1a2a∗
3

〉
.=

∑
<

W 12
3k δ12

3k �k〈a∗
1a∗

2a3ak〉 + 〈Ak + A′
k, Ak〉

.= 〈Ak, Ak〉,
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FIG. 3. The elements of C = 〈B3(t ), B3(0)〉 are drawn as a function of time. The setting is the same with Fig. 1, except that the MMT
system is parametrized by χ = 0 and β = 1. The line specifications are the same with Fig. 1.

〈ȧk, A′
k〉 .=

∑
>

W 12
3k δ12

3k �k〈a∗
1a∗

2a3ak〉 + 〈Ak + A′
k, A′

k〉
.= 〈A′

k, A′
k〉,

for which the use is made of Eqs. (8), (9), and (13). Notice
that the same results can be easily obtained from using (14),
the linear expansion of ȧk in terms of A3, and the mutual or-
thogonality of the elements of A3. Henceforth, for simplicity
of the calculation of the correlation functions, we make use of
the mean-field equation (14) instead of the original dynamic
equation (2).

(2) The elements of the second row are approximated by

〈Ȧk, ak〉 = −〈Ak, ȧk〉 .= −〈Ak, Ak〉, (A3a)

〈Ȧk, Ak〉 .= −
〈∑

<

W 12
3k δ12

3k (�1 + �2 − �3)a1a2a∗
3, Ak

〉

≡ −i�̃k〈Ak, Ak〉, (A3b)

〈Ȧk, A′
k〉 .= −i�̃k〈Ak, A′

k〉 .= 0. (A3c)

As for (A3a), recall that the Liouville operator is skew Her-
mitian. As for (A3b), the three terms τk , Tk , and T̃k comprising
the evolution of Ak are defined from

Ȧk = −i
∑
<

W 12
3k δ12

3k (ȧ1a2a∗
3 + a1ȧ2a∗

3 + a1a2ȧ∗
3 )

.= −
∑
<

W 12
3k δ12

3k (�1 + �2 − �3)a1a2a∗
3

− i
∑
<

W 12
3k δ12

3k (A1a2a∗
3 + a1A2a∗

3 + a1a2A∗
3 )

− i
∑
<

W 12
3k δ12

3k (A′
1a2a∗

3 + a1A′
2a∗

3 + a1a2A′
3
∗)

≡ τk + Tk + T̃k, (A4)

where (14) is used. Suppose that τk contains only the terms
corresponding to the exact nontrivial resonances, then the
quantity equals to −i�kAk because the coefficient �1 + �2 −
�3 = �k due to the resonance quartet condition (15b) is
independent of the summation index. The presence of the
near resonances leads us to introduce �̃k , which is close to
�k and is defined by 〈τk, Ak〉 ≡ −i�̃k〈Ak, Ak〉. This statistical
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FIG. 4. The elements of S = F{〈B3(t ), B3(0)〉} are drawn as a function of time. The setting is the same with Fig. 3. The line specifications
are the same with Fig. 1.

approximation is symbolically represented by

τk � −i�̃kAk . (A5)

Because the amplitude of ak is small (this is true when k is
large as discussed in Sec. IV B, and the reason why this case
is under our consideration can be found in Sec. III C) and
both Tk and T̃k are of higher order than τk , the inner products
between Tk , T̃k , and Ak are significantly smaller than 〈τk, Ak〉.
Thus 〈Tk, Ak〉 and 〈T̃k, Ak〉 are ignored in obtaining (A3b). As
for (A3c), the same argument is applied to the inner products
between Tk , T̃k , and A′

k .
(3) The elements of the third row are approximated by

〈Ȧ′
k, ak〉 = −〈A′

k, ȧk〉 .= −〈A′
k, A′

k〉,
〈Ȧ′

k, Ak〉 = −〈A′
k, Ȧk〉 .= −i�̃k〈A′

k, Ak〉 .= 0,

〈Ȧ′
k, A′

k〉 .= −
〈∑

>

W 12
3k δ12

3k (�1 + �2 − �3)a1a2a∗
3, A′

k

〉

≡ − i�′
k〈A′

k, A′
k〉.

The calculations are similar to the ones for the second row.
Like (A4), the three terms τ ′

k , T ′
k , and T̃ ′

k are defined from
Ȧ′

k ≡ τ ′
k + T ′

k + T̃ ′
k for which the summation is with respect

to
∑

> and over the far-from resonances. Introducing �′
k

to represent the approximation τ ′
k � −i�′

kA′
k , analogous to

(A5), we add a remark that the coefficient �′
k can devi-

ate substantially from �k due to the far-from resonances.
The argument using the small magnitude is again applied
to ignore the higher order terms than those of 〈τ ′

k, Ak〉
and 〈τ ′

k, A′
k〉.

Last, Eq. (17) follows from

−i�3 = 〈Ȧ3, A3〉
〈A3, A3〉

.= −i

⎛
⎜⎝

�knk Nk N ′
k

Nk �̃kNk 0
N ′

k 0 �′
kN ′

k

⎞
⎟⎠

⎛
⎜⎝

nk 0 0
0 Nk 0
0 0 N ′

k

⎞
⎟⎠

−1

.
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APPENDIX B: MEMORY KERNEL �3(t )

In view of (14), (16), and (17), the first component of
R3 is zero and the random noise can be written by R3 =
(0, RA, RA′ )T . The FD theorem ensures that the elements in the
first row and first column of �3(t ) vanish. Here our reasoning
about the form of the memory kernel is that (i) the remain-
ing elements of �3(t ) are well approximated by the constant
multiplication of the Dirac delta function, i.e.,

�3(t )
.=

⎛
⎝0 0 0

0 νR μ

0 μ′ ν ′
R

⎞
⎠δ+(t ), (B1)

and (ii) the off-diagonal elements of μ and μ′ are minor and
negligible. In a word, RA and RA′ are originally correlated in
a nonwhite manner, but can be approximated by the indepen-
dent white noises with no significant loss of accuracy. From
which, alongside the FD theorem, the approximations in (18)
are produced.

First, we discuss the form of (B1). It basically follows from
the statistical approximations

Tk � −Akak − νRAk + �ẆA, (B2a)

T̃k � −Ãkak − μA′
k + �̃ẆA′ , (B2b)

and

T ′
k � −Ã′

kak − μ′Ak + �̃′ẆA, (B3a)

T̃ ′
k � −A′

kak − ν ′
RA′

k + �′ẆA′ , (B3b)

which should be interpreted in the sense of the correlation
agreement as in (A5). The argument in support of our demon-
stration that Eqs. (B2) and (B3) are reasonable is motivated
from the modeling

Neff = −i
∑

k123,k12 �=k

W 12
3k δ12

3k a1a2a∗
3

� −γ̄ ak + σ̄Ẇa. (B4)

Note that MSM (31) can be obtained from applying (B4)
to (12), and becomes an accurate model when the cubic
nonlinearity in (B4) is weak. Here we refer to a set of non-
linear interactions as weak if it can be well approximated
by the white-noise forcing and linear dissipation due to a
sharp timescale separation. As discussed in Sec. III C, the
effective nonlinearity is not always weak because ARM (30)
constructed from using

Neff � −γ ak −
∫ t

0
dsAe−(i�k+ν)(t−s)ak (s) + σẆa + e−i�kt Rν

is in some cases a good approximate model. Nonetheless, our
belief is that Tk , T̃k and T ′

k , T̃ ′
k are weak because they are of

higher order and the magnitudes are significantly smaller than
Neff. Paying attention to the similarity between the cubic non-
linearity terms visible in (A4) and (B4), we are encouraged to
perform the formal approximations in (B2) and (B3). In doing
so, we take into account the style for Ak (or A′

k) to be involved
in Tk , T ′

k (or T̃k , T̃ ′
k ) and make the critical difference from (B4)

in the aspect that the damping part of (B2) and (B3) is replaced
by the linear combination of ak and Ak (or A′

k). Explaining

below the reason why the coefficients of ak in (B2a) and (B3b)
are given by −Ak and −A′

k , and why the terms in (B2b) and
(B3a) can be ignored, the approximations in (B2) and (B3)
agree with the ones obtained from substituting (17) and (B1)
into (16).

Second, we discuss the off-diagonal elements of (B1).
Let us consider the evolution of the autocorrelation matrix,
obtained from substituting (17) and (B1) into (5). After com-
paring the resulting equation with

〈Ȧk (t ), ak (0)〉 .= −i�̃k〈Ak (t ), ak (0)〉 − Ak〈ak (t ), ak (0)〉
− νR〈Ak (t ), ak (0)〉, (B5)

we are allowed to ignore the contribution of μ. Equation (B5)
results from the approximations

〈τk (t ), ak (0)〉 .= −i�̃k〈Ak (t ), ak (0)〉, (B6a)

〈Tk (t ), ak (0)〉 .= −Ak〈ak (t ), ak (0)〉 − νR〈Ak (t ), ak (0)〉,
(B6b)

〈T̃k (t ), ak (0)〉 .= −Ãk〈ak (t ), ak (0)〉 − μ〈A′
k (t ), ak (0)〉,

(B6c)

calculated as follows.
(1) Equation (B6a) is obtained from (A5) and this two-

point function is nonvanishing unless t = 0.
(2) For the first term of the right-hand side of (B6b),

we can perform a similar calculation with (C3), provided
in Appendix C, and show 〈Tk (t ), ak (0)〉 .= −Ak〈ak (t ), ak (0)〉
where Ak = ∑

< 2W 12
3k δ12

3k (W k3
21 n2n3 + W 3k

12 n1n3 − W 21
k3 n1n2).

One can see that this coefficient is a good approximation of
Nk/nk from (C4a), and that 〈Tk, ak〉 .= −Nk = −Ak〈ak, ak〉
holds from (A3a). Hence the coefficient of ak in (B2a) should
be −Ak . For the second term we need to seek the expression
for νR by studying the higher order approximation than the
RPA level.

(3) For the first term of the right-hand side of (B6c), we
apply the RPA and perform a similar calculation with (A2) to
obtain 〈T̃k (t ), ak (0)〉 .= 0 and Ãk

.= 0. This implies that Ãk is
significantly smaller than Ak and can be ignored. The sym-
metry in (B2) gives a strong indication that μ and �̃ are also
significantly smaller than νR and �, respectively. Hence we
believe that 〈T̃k (t ), ak (0)〉 .= 0 for all time and the contribution
by T̃k is minor.

For the case of μ′, considering 〈Ȧ′
k (t ), ak (0)〉 as in (B5), we

demonstrate that 〈T ′
k (t ), ak (0)〉 is minor and can be ignored

compared with 〈T̃ ′
k (t ), ak (0)〉 and that the coefficient A′

k in
(B3b) equals to the one in (C4b).

APPENDIX C: EQUILIBRIUM SPECTRUM OF Ak

Here we derive the approximations

Nk
.=

∑
<

2W 12
3k δ12

3k

(
W k3

21 n2n3 + W 3k
12 n1n3 − W 21

k3 n1n2
)
nk

(C1)
and

Nk
.=

∑
<

2
∣∣W 12

3k

∣∣2
δ12

3k n1n2n3. (C2)
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It is demanded that two quantities (C1) and (C2) are close to
one another, allowing for Ak and A′

k in (13) to be determined
in an unambiguous fashion.

As for (C1), we use (A3a) and (A4) to obtain

Nk = 〈Ak, Ak〉 .= −〈Ȧk, ak〉
.= i

〈∑
<

W 12
3k δ12

3k (A1a2a∗
3 + a1A2a∗

3 + a1a2A∗
3 ), ak

〉

.=
∑
<

2W 12
3k δ12

3k

(
W k3

21 n2n3 + W 3k
12 n1n3 − W 21

k3 n1n2
)
nk,

(C3)

where we have used

∑
<

W 12
3k δ12

3k 〈A1a2a∗
3a∗

k 〉

= − i
∑
<

W 12
3k δ12

3k

∑
|�12′

3′4′ |<ε

W 4′3′
2′1 δ12′

3′4′ 〈a3′a4′a∗
2′a2a∗

3a∗
k 〉

.= − i
∑
<

2W 12
3k W k3

21 δ12
3k n2n3nk,

and so on. A similar result holds for N ′
k , and as the byproduct,

the approximations

Ak ≡ Nk

nk

.=
∑
<

2W 12
3k δ12

3k

(
W k3

21 n2n3 + W 3k
12 n1n3 − W 21

k3 n1n2
)
,

(C4a)

A′
k ≡ N ′

k

nk

.=
∑
>

2W 12
3k δ12

3k

(
W k3

21 n2n3 + W 3k
12 n1n3 − W 21

k3 n1n2
)

(C4b)

are obtained.
As for (C2), we obtain

Ak ≡ Nk

nk

.=
∑

< 2
∣∣W 12

3k

∣∣2
δ12

3k n1n2n3

nk
(C5)

from directly applying the RPA (A1) to Nk = 〈Ak, Ak〉. We
here remark that there is no analog of (C5) for A′

k . We also re-
mark that, from equating (C4a) and (C5), the (near) resonance
quartets satisfying (15) are essentially constrained by

W 12
3k

nk
+ W 21

k3

n3
− W 3k

12

n2
− W k3

21

n1
= 0. (C6)

Equation (C6) is the condition characterizing the thermal
equilibrium of the wave turbulence system (see [22] and ref-
erences therein).
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