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Recently in a paper by Hidalgo-Gonzalez and Jiménez-Aquino [Phys. Rev. E 100, 062102 (2019)], the
generalized Fokker-Planck equation (GFPE) for a Brownian harmonic oscillator in a constant magnetic field
and under the action of time-dependent force fields, has been explicitly calculated using the characteristic
function method. Although the problem is linear it is not easy to solve, however, the method of the characteristic
function is effective and allows to obtain an exact and precise solution of the problem. Our theoretical result
has been compared with the one reported by Das et al. in a recently submitted paper [arXiv:2011.09771] using
another solution method. The proposed method consists in constructing the GFPE and then calculating each
time-dependent coefficient associated with this equation. However, in a more complicated case, one cannot
know a priori the exact number of terms that this equation must contain. The precise number is further provided
by the characteristic function method.
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I. INTRODUCTION

In 1976 a clever method to derive the generalized Fokker-
Planck equation for a free particle and for a particle bounded
by a harmonic potential for simple non-Markovian systems
was reported by Adelman [1]. Twenty years later, the study
of the statistical properties of linear oscillators driven by both
internal and external Gaussian colored noise was reported by
Wang and Masoliver [2]. By means of the explicit solution
of the generalized Langevin equation (GLE) with a general
friction memory kernel, the GFPE for the harmonic oscillator
could also be derived using the characteristic function method.
It was shown that the GFPE is exactly the same as the one
derived by Adelman. In 2016, the method of the characteristic
function was used to obtain the GFPE for an electrically
charged Brownian particle in the presence of a constant mag-
netic field and under the action of time-dependent force fields
[3]. According to the obtained results, it was shown that the
characteristic function method is exact and provides the pre-
cise analytical expressions for each GFPE reported in Ref. [3].

A year after the paper reported in Ref. [3], the GFPE for
the charged Brownian harmonic oscillator in the presence of a
constant magnetic field was reported in Ref. [4] using another
solution method. The method proposed in Ref. [4] consists in
constructing the GFPE based on the structure of the Marko-
vian Fokker-Planck equation plus additional contributions. It
is worth commenting that in the Markovian Fokker-Planck
equation all the coefficients are constant. According to the
authors, the GFPE is constructed depending on the structure
of a time-dependent matrix A(t ) contained in the Gaussian
conditional probability density. If the matrix is diagonal, it
seems to be easy to construct the GFPE for a Brownian par-
ticle. However, in a more complicated case the matrix is not
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already diagonal, and, therefore, it is not clear in a general
way to know a priori the exact number and the structure of
additional contributions the GFPE should have.

In 2019 the characteristic function method was again ap-
plied to calculate the GFPE for a harmonic oscillator across
a constant magnetic field and time-dependent force fields [5].
In this case, the exact number and explicit structure of each
contribution have been explicitly obtained. Our theoretical
results show that the characteristic function method is exact
and precisely provides all the contributions the GFPE should
have. Our result has been compared with the one obtained
reported in a submitted paper by Das et al. [6].

II. GFPE FOR A HARMONIC OSCILLATOR ACROSS
A MAGNETIC FIELD AND TIME-DEPENDENT

FORCE FIELDS

The problem a non-Markovian harmonic oscillator across
a magnetic field and under the action of time-dependent force
fields has been studied and solved in a paper by Hidalgo and
Jiménez-Aquino [5]. In this case the associated GLE can be
written as

ẍ − �ẏ + ω2x +
∫ t

0
γ (t − t ′)ẋ(t ′) dt ′ − ax(t ) = fx(t ), (1)

ÿ + �ẋ + ω2y +
∫ t

0
γ (t − t ′)ẏ(t ′) dt ′ − ay(t ) = fy(t ), (2)

z̈ + ω2z +
∫ t

0
γ (t − t ′)ż(t ′) dt ′ − az(t ) = fz(t ), (3)

where γ (t ) is the friction memory kernel, ai(t )’s are the com-
ponents of the time-dependent force field per unit mass a(t ),
and fi(t )’s are the components of the fluctuating force per unit
mass f (t ) which satisfies the fluctuation-dissipation relation of
the second kind given by

〈 fi(t ) f j (t
′)〉 = kB T δi j γ (t − t ′) , (4)
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being kB as Boltzmann’s constant and T as the temperature
of a thermal bath. Along the z axis and in the absence of
time-dependent external fields, the problem was solved first
by Adelman [1] and later by Wang and Masoliver [2]. The al-
ternative solution reported by Wang and Masoliver was given

using the characteristic function method, which has also been
used in Refs. [3,5]. The GFPE for the harmonic oscillator
across a magnetic field and under the action of time-dependent
force fields is explicitly calculated in Ref. [5], and its exact
analytical expression on the xy plane is given by
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In the first comment by Das and Bag [7], it was pointed out that the time-dependent coefficient P1(t ) = P2(t ) = 0, a fact which
was verified to be true. In such a case the GFPE, thus, becomes
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As can be seen, the precise number of nonzero terms that arise in a natural way using the characteristic function method is
then 13. In a short notation we have

∂P

∂t
− Q1(t ) q · ∇xP + Q2(t ) [q × ∇uP]z + [ṗ − Q3(t )p] · ∇uP + Q4(t ) [p × ∇uP]z

= −u · ∇xP − Q1(t ) x · ∇uP − R1(t ) [x × ∇uP]z − R3(t ) [u × ∇uP]z

−Q3(t ) ∇u · uP − S2(t ) ∇u · ∇xP + S3(t ) [∇x × ∇uP]z − S1(t ) ∇2
uP, (7)

where the vectors x = (x, y) and u = (vx, vy).

III. COMPARISON WITH ANOTHER METHOD

In Sec. V of the submitted paper by Das et al. [6], and cited in the second submitted comment by Das and Bag [7], the
authors construct the GFPE associated with the above GLE for a Brownian harmonic oscillator across a magnetic field and
time-dependent force fields. According to the proposed method, the GFPE is established on the xy plane and given in Eq. (100)
of the paper. It reads as
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After a long and tedious algebra but not “shortcut,” the authors conclude that

∂P

∂t
= −ṗ · ∇uP − H1(t )q · ∇uP + H6(t )[q × ∇uP]z − H2(t )∇p · uP − H3(t )[p × ∇xP]z

− u · ∇xP + H1(t )x · ∇uP + H2(t )∇u · uP − H3(t )[u × ∇xP]z

− H6(t )[x × ∇uP]z + H7(t )[∇x × ∇uP]z + H9(t )∇u · ∇xP + H10(t )∇2
uP. (9)

However, there are again some inaccuracies in this equa-
tion, and they are the following: (i) the terms [ ∂uyP

∂ux
− ∂uyP

∂uy
] and

[u × ∇xP]z which multiply H3(t ) in Eqs. (8) and (9), respec-
tively, are not consistent. (ii) The same occurs with the terms
[x ∂P

∂vy
− y ∂P

∂vx
] and [x × ∇uP]z which multiply H6(t ). (iii) The

coefficient H9(t ) must be H8(t ). (iv) The term (px
∂P
∂vx

+ py
∂P
∂vy

)
which multiplies the coefficient Q3(t ) in Eq. (6) is the same
as p · ∇uP, does not appear in Eqs. (9).

In conclusion, when the time-dependent force field is con-
sidered in the method proposed by Das et al., one cannot

know a priori the exact number of terms which have to be
taken into account in the GFPE. For instance, in Eq. (8)
the sum −G1(t ) ∂P

∂ux
− G2(t ) ∂P

∂uy
gives the impression to be a

divergence, and the difference K1(t ) ∂P
∂x − K2(t ) ∂P

∂y to be a ro-
tational. It seems that these terms have been included because
the authors now know the form of the expressions arising in
a natural way in the GFPE (6), see the second–fifth terms
on the left-hand side of Eq. (6). In general, the proposed
method by Das et al. seems to be established without solid
foundations.
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