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Comment on “Non-Markovian harmonic oscillator across a magnetic field
and time-dependent force fields”
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In a recent paper Das et al. [J. Chem. Phys. 147, 164102 (2017)] proposed the Fokker-Planck equation (FPE)
for the Brownian harmonic oscillator in the presence of a magnetic field and the non-Markovian thermal bath,
respectively. This system has been studied very recently by Hidalgo-Gonzalez and Jiménez-Aquino [Phys. Rev.
E 100, 062102 (2019)] and the Fokker-Planck equation was derived using the characteristic function. It includes
a few extra terms in the FPE and the authors conclude that their method is accurate compared to the calculation
by Das et al. Then we reexamine our calculation and which is present in this comment. The revised calculation
shows that both methods give the same result.
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In a recent paper [1], we derived the Fokker-Planck equa-
tions using an alternative method for the non-Markovian
dynamics for a free particle and the harmonic oscillator,
respectively. Then we extend this method for the non-
Markovian dynamics in the presence of a magnetic field. Very
recently, the Fokker-Planck equation (FPE) equation for a
non-Markovian harmonic oscillator across a magnetic field
has been derived by the characteristic function in Ref. [2].
Here it has been shown that a few extra terms appear in the
FPE compared to Ref. [1]. Then to reexamine our calculation
we started with the relevant Langevin equations of motion
[1,2],

u̇x = −ω2x −
∫ t

0
γ (t − τ )ux(τ )dτ + �uy + fx(t ), (1)

and

u̇y = −ω2y −
∫ t

0
γ (t − τ )uy(τ )dτ − �ux + fy(t ), (2)

where ω is the frequency of the harmonic oscillator and �

corresponds to the cyclotron frequency. The random forces, fx

and fy are independent Gaussian noises, and they are related
with the frictional memory kernel γ (t − t ′) by the stan-
dard fluctuation-dissipation relation 〈 fi(t ) f j (t ′)〉 = kBT γ (t −
t ′)δi j where i = x, y and j = x, y.

Since the equations of motion correspond to the Gaussian
noise driven linear system then the phase space distribution
function is a Gaussian one [3]. It can be written as

P[x, x(0); y, y(0); ux, ux (0); uy, uy(0); t]

= (2π )−2[σ (t )]−(1/2) exp
[− 1

2 g†(t )A′−1(t )g(t )
]
, (3)

where g(t ) is a column matrix with the elements
g1(t ) = x − 〈x〉(t ), g2(t ) = y − 〈y〉(t ), g3(t ) = ux − 〈ux〉(t ),
and g4(t ) = uy − 〈uy〉(t ), respectively. 〈x〉(t ) =

*Author to whom correspondence should be addressed:
bidhanchandra.bag@visva-bharati.ac.in

A(t )x(0) − B(t )y(0) + C(t )ux(0) + D(t )uy(0), 〈y〉(t ) =
A(t )y(0) + B(t )x(0) + C(t )uy(0) − D(t )ux(0), 〈ux〉(t ) =
Ȧ(t )x(0) − Ḃ(t )y(0) + Ċ(t )ux(0) + Ḋ(t )uy(0), 〈uy〉(t ) =
Ȧ(t )y(0) + Ḃ(t )x(0) + Ċ(t )uy(0) − Ḋ(t )ux(0) with A(t ) =
χ0(t ) + �2ω2χ (t ), B(t ) = �ω2H ′(t ), C(t ) = H0(t ) −
�2H ′

0(t ), D(t ) = �H (t ), χ0(t ) = 1 − ω2
∫ t

0 H0(τ )dτ , and
χ (t ) = ∫ t

0 H0
′(τ )dτ. H0(t ), H0

′(t ), H (t ), and H ′(t )
which appear in these relations are the inverse
Laplace transformation of H̃0(s) = 1

s2+sγ̃ (s)+ω2 ,

H̃ ′
0(s) = s2[ 1

[s2+sγ̃ (s)+ω2]{[s2+sγ̃ (s)+ω2]2+(�s)2} ], H̃ (s) =
s[ 1

[s2+sγ̃ (s)+ω2]2+(�s)2 ], and H̃ ′(s) = 1
[s2+sγ̃ (s)+ω2]2+(�s)2 ,

respectively. Here γ̃ (s) is the Laplace transform of γ (t ).
For further details one may go through Ref. [4]. A′−1 in
the above equation is the inverse of matrix A′. The element
of this matrix is defined by A′

i j = 〈gi(t )g j (t )〉. Finally,
σ (t ) = A1A2 − A2

3 − A2
4 with A′

11 = A′
22 = A1, A′

33 = A′
44 =

A2, A′
13 = A′

31 = A′
24 = A′

42 = A3, A′
14 = A′

41 = A4, and
A′

23 = A′
32 = −A4. It is to be noted here that the rest of the off

diagonal elements of matrix A′(t ) are zero.
Now following the procedure as reported in the recent

paper [1] for several linear systems, one may read the Fokker-
Planck equation with the solution (3) as

∂P

∂t
= −∂uxP

∂x
− ∂uyP

∂y
+ H1(t )

[
x

∂P

∂ux
+ y

∂P

∂uy

]

+H2(t )

[
∂uxP

∂ux
+ ∂uyP

∂uy

]
− H3(t )

[
∂uyP

∂ux
− ∂uxP

∂uy

]

+H4(t )

[
x
∂P

∂y
− y

∂P

∂x

]
+ H5(t )

[
ux

∂P

∂y
− uy

∂P

∂x

]

−H6(t )

[
x

∂P

∂uy
− y

∂P

∂ux

]
+ H7(t )

[
∂

∂x

∂P

∂uy
− ∂

∂y

∂P

∂ux

]

+H8(t )

[
∂2P

∂x2
+ ∂2P

∂y2

]
+ H9(t )

[
∂

∂x

∂P

∂ux
+ ∂

∂y

∂P

∂uy

]

+H10(t )

[
∂2P

∂u2
x

+ ∂2P

∂u2
y

]
, (4)
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where H1(t ), H2(t ), H3(t ), H4(t ), H5(t ), H6(t ), H7(t ),
H8(t ), H9(t ), and H10(t ) are relevant time dependent
quantities to account for the non-Markovian dynamics
properly. The first two terms on the right hand side of the
above equation are usual drift terms in the phase space
description for both Markvian [3] and non-Markovian
dynamics [1,5,6], respectively. The next term is corresponding
to the harmonic force field [1,5,6]. Then contribution from
the dissipative force is considered by the fourth term [1,5,6].
The next drift term may be identified as due to the magnetic
force [1,7]. Although additional drift terms in the presence of
a magnetic field do not appear for the Markovian dynamics
[3,8], but the non-Markovian dynamics may modify the
probability flux. Keeping it in mind and the cross effect of the
magnetic force, one may include additional all possible drift
and diffusion terms. Thus, sixth–eighth and ninth to tenth are
the additional drift and diffusion terms, respectively. It is to
be noted here that the calculation of the second moment also
implies to include the ninth and tenth terms. If the proposed
Fokker-Planck equation is a correct one then fifth–tenth terms
should disappear in the absence of the magnetic field. We will
check it after the determination of all coefficients. Finally, the
11th and 12th terms are the usual diffusion terms in the phase
space description [1,5,6]. To avoid any confusion we would
mention here that the diffusion terms with other possible cross
derivatives are not considered since the cross correlation of
the fluctuations is zero for the respective case.

Then we have determined the coefficients and presented
them in detail in Ref. [4]. The determination of the coefficients
automatically implies that the distribution function (3) is a
solution of the Fokker-Planck equation,

∂P

∂t
= −u · ∇xP + H1(t )x · ∇uP + H2(t )∇u · uP

+ H3(t )[u × ∇uP]z − H6(t )[x × ∇uP]z

+ H7(t )[∇x × ∇uP]z + H9(t )∇u · ∇xP + H10(t )∇2
uP,

(5)

with H1 = {−Äax (t )−B̈ay (t )−C̈avx (t )−D̈avy [(t )]}
�m

, H2 =
{Äbx (t )−B̈by (t )−C̈bvx (t )−D̈bvy [(t )]}

�m
, H3={−Ädx (t )+B̈dy (t )−C̈dvx (t )+D̈dvy [(t )]}

�m
,

H6 = {−Äcx (t )+B̈cy (t )+C̈cvx (t )−D̈cvy [(t )]}
�m

, H7 = [Ȧ4 + H2A4 +
H3A3 − H6A1], H9 = [Ȧ3 − A2 − H3A4 + H1A1 + H2A3],
and H10 = 1

2 [Ȧ2 + 2H1A3 + 2H2A2 − 2H6A4]. Here we have
used �m = (A2 + B2)(Ċ2 + Ḋ2) + (C2 + D2)(Ȧ2 + Ḃ2) −
2(AC − BD)(ȦĊ − ḂḊ) − 2(AD + BC)(ȦḊ + ḂĊ), ax(t ) =
A(Ċ2 + Ḋ2) − C(ȦĊ − ḂḊ) − D(ȦḊ + ḂĊ), bx(t )=
B(CḊ − ĊD) + C(AĊ − ȦC) + D(AḊ − DȦ), cx(t ) =
B(Ċ2 + Ḋ2) + D(ȦĊ − ḂḊ) − C(ȦḊ + ḂĊ), dx(t ) =
B(CĊ + DḊ) − C(AḊ + CḂ) + D(AĊ − DḂ), ay(t ) =
B(Ċ2 + Ḋ2) + D(ȦĊ − ḂḊ) − C(ȦḊ + ḂĊ), by(t ) =
A(CḊ − ĊD) − C(BĊ − ĊB) − D(BḊ − ḂD), cy(t ) =
A(Ċ2 + Ḋ2) − C(ȦĊ − ḂḊ) − D(ȦḊ + ḂĊ), dy(t ) =
A(CĊ + ḊD) + C(BḊ − ȦC) − D(BĊ + ȦD), avx (t ) =
C(Ȧ2 + Ḃ2) − A(ȦĊ − ḂḊ) − B(ȦḊ + ḂĊ), bvx (t ) =
A(AĊ − ȦC) + B(BĊ − ḂC) − D(AḂ − ȦB), cvx (t ) =
D(Ȧ2 + Ḃ2) + B(ȦĊ − ḂḊ) − A(ȦḊ + ḂĊ), dvx (t ) =
A(AḊ + ḂC) + B(BḊ − ȦC) − D(AȦ + ḂB), avy (t ) =
D(Ȧ2 + Ḃ2) + B(ȦĊ − ḂḊ) − A(ȦḊ + ḂĊ), bvy (t ) =

A(AḊ − ȦD) + B(BḊ − ḂD) − C(AḂ + ȦB), cvy (t ) =
C(Ȧ2 + Ḃ2) − A(ȦĊ − ḂḊ) − B(ȦḊ + ḂĊ), and dvy (t ) =
A(AĊ − ḂD) + B(BĊ + ȦD) − C(AȦ + ḂB). Then one may
check easily that the distribution function (3) is a solution of
the above Fokker-Planck equation. It constitutes the necessary
and sufficient check of the present calculation. Now we have
to compare the above equation with the Fokker-Planck
equation which is derived recently in Ref. [2] for the same
equations of motion and the associated distribution function.
Then one can easily find out that the FPE in Ref. [2] contains
additional three terms with the coefficients, H4, H5, and
H8, respectively. The remaining terms exactly correspond
with each other. At this circumstance our check of the
coefficients, H4, H5, and H8 in the respective Fokker-Planck
equation in Ref. [2] suggests that H4 = H5 = H8 = 0. Thus,
taking care of all the comments (including the typographical
error and the rearrangement of the Fokker-Planck equation)
in Sec. V (in Ref. [2]) which is devoted to Ref. [1] we
conclude that both methods give the same result. Another
point is to be noted here. From the independent relations
among the time dependent coefficients the present method
automatically requires that one of the coefficients in Eq. (5)
must be zero. Then we have chosen that the coefficient
in the diffusion term (which appears in the Fokker-Planck
equation in the configuration space) may be zero. Because it
is well known that this term does not appear usually [1,5–8]
in the probabilistic description in velocity space or phase
space for the Gaussian noise driven dynamical systems. With
this choice the present method predicts automatically other
coefficients exactly as the distribution function satisfies the
above equation. To derive the same equation, the method [2]
with the characteristic function does not need such a kind
of any choice which may offer a shortcut way for the same
destination (as shown in the present case). In other words, all
the terms in Eq. (5) and the other case appear automatically
in Ref. [2]. But the above discussion does not mean that the
present method always needs to include a choice, such as
the present case. For examples one may go through Ref. [1].
Finally, to avoid any confusion we would mention here
that if any choice appears in the method, such as in the
present case, that may not be an arbitrary one as mentioned
above.

Before leaving this issue we would mention that the above
equation reduces to the standard results at the appropriate
limits, such as at � = 0 [4]. For a further check, one may
consider the condition ω = 0. For this condition we have
shown in Ref. [4] that in the absence of the harmonic force
field the Fokker-Planck Eq. (5) reduces to the Fokker-Planck
equation which was derived in Ref. [7] using the characteristic
function. Thus, the accuracy of the present method is well jus-
tified with the check of the calculation for appropriate limiting
conditions. Very recently, using the Fokker-Planck equation
has been derived in Ref. [9] for the non-Markovian dynamics
in the presence of the magnetic field and time dependent
conservative force. This equation reduces to all the standard
results at appropriate limits. Thus, the present method may
be applicable for any kind of linear Langevin equation of
motion which describes additive colored noise driven non-
Markovian dynamics with or without the frictional memory
kernel.
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In conclusion, the present calculation suggests that the
drift terms, H4(t )[x ∂P

∂y − y ∂P
∂x ], H5(t )[ux

∂P
∂y − uy

∂P
∂x ], and the

diffusion term, H8(t )[ ∂2P
∂x2 + ∂2P

∂y2 ] are not relevant quantities in
the Fokker-Planck description of the Brownian motion of a
harmonic oscillator in the presence of a magnetic field and

the non-Markovian thermal bath. At the same, it contradicts
the claim made in Ref. [2] in the context of the comment on
Ref. [1]. The authors in Ref. [2] claimed that their method is
accurate compared to the calculation by Das et al. [1]. In other
words, the present calculation justifies that both methods give
the same result.
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