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Phonon wave-packet simulations using the quantized definition of energy and a
temperature-dependent phonon dispersion relation and phonon density of states
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Wave-packet simulations, regarded as phonon dynamics in the literature, have been used to explore interface
conductance problems and to study the frequency-based dynamics of systems of particles. In this work we
introduce an extension of the method to improve the postsimulation analysis and to add an energy aspect
to the definition of a wave packet. In a wave-packet simulation the most populated frequency activated with
the wave packet is known through knowledge of the wave number implemented in the atom displacement
equation. The one-to-one correspondence of wave number and frequency is known through the phonon dis-
persion relation (PDR). We add the temperature dependence of this one-to-one correspondence to the analysis
of wave packets through consideration of a temperature-dependent PDR and showed the importance of the
temperature-dependent PDR in the wave-packet definition by presenting results considering and neglecting the
phenomenon. In addition, the temperature-dependent PDR and the density of states provide us the chance to
change the nature of the atomic displacement amplitude as an arbitrary parameter to a tuning knob for the amount
of energy it carries and utilize the chance to provide a quantitative measure for the validity of molecular-dynamics
simulations considering their classical nature in comparison with the quantum particle picture of phonons.

DOI: 10.1103/PhysRevE.103.043311

I. INTRODUCTION

Material selection and material engineering have been
shown to be promising approaches to overcome design bottle-
necks in multiple engineering disciplines dealing with thermal
or lattice-vibration-related problems. The target properties are
achieved either through designing new materials that do not
exist in nature [1] or through a better understanding of the
physics of existing materials. Increasing the thermal conduc-
tivity at an interface for the sake of controlling the temperature
below the maximum operational temperature of electronics,
decreasing the thermal conductivity to increase the figure of
merit in thermoelectric systems, and finally increasing the
coupling in mechanical resonators to approach better sensing
capabilities are the most common applications that will benefit
from a better understanding of thermal transport properties in
materials [2–4]. Analytical and computational modeling are
considered effective tools to characterize the physics of the
existing materials.

Both computational and analytical approaches are catego-
rized into two main streams: (i) equilibrium analysis and (ii)
nonequilibrium analysis. The Boltzmann transport equation
(BTE)–based simulations and Green-Kubo simulations are the
main equilibrium approaches to provide the frequency-based
behavior of a material. Singh et al. used the BTE approach to
calculate the relaxation time and, as a result, the conductance
across the Si/Ge interface [5] and Lv and Henry proposed a
Kubo-based approach for the exploration of the mode-mode
contribution to thermal conductivity and performed a case
study of amorphous and crystalline silicon [6]. Analytical
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approaches in the category of equilibrium analysis are the
Green’s-function analysis and n-phonon interaction analysis
based on the radiative heat flux analysis approach [7,8]. These
are techniques that have been proven to provide detailed re-
sults in frequency space. One other method that is not as
ubiquitous as the methods mentioned above is the frequency-
based transmission analysis performed by Chalopin and Volz.
This analysis provides comprehensive frequency-based trans-
mission across the Si/Ge interface in the specular regime [9].

In addition, the wave-packet creation method is a nonequi-
librium method used to study interface transport and can look
at the dynamics of a frequency band in a system of particles.
This technique of creating wave packets is called phonon
dynamics [2] and the method was proposed by Schelling
et al. [10]. It is based on the creation of a sinusoidal wave,
which is in a Gaussian envelope. The created wave travels
in the defined system and by monitoring the dynamics of
the motion can provide characteristics such as phonon trans-
port properties and phonon boundary transmission. Schelling
and co-workers and Wei et al. used the method to calculate
the transmission across twist grain boundaries [11,12] and
to explore the heat transfer mechanisms of graphene along
the in-plane direction [13]. The method was proven to pro-
vide reliable and accurate results for transmission across an
interface, time-dependent energy distribution, scattering, and
phonon lifetime calculations [14,15]. Landry and McGaughey
also used the results for validation [16]. The phonon dynamics
has always been used assuming an arbitrary constant for the
amplitude of a wave packet as a result; the direct effect of the
wave-packet amplitude on the amount of energy it carries has
been neglected.

A phonon counting process is an essential part of most of
the mentioned analyses. As a result, a correct definition of the
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phonon density of states (DOS) is correlated to any subse-
quent analysis. The use of the DOS in thermal conductivity
calculations started with Callaway’s linear consideration of
the DOS and was reused by other researchers [17,18]. The
full-Brillouin-zone consideration of the DOS provided results
that matched the experiment better [19]. Still, a nonlinear
(frequency-dependent phonon group velocity) full-zone con-
sideration of the DOS provided a more realistic model of
materials. Aksamija and Knezevic [20] considered a nonlinear
and full-zone DOS and were able to capture the dependence
of graphene nanoribbon thermal conductivity on the chiral
angle of the ribbons. They also performed the same analy-
sis on silicon-on-insulator nanomembranes and observed the
anisotropy of thermal conductivity in these materials. Despite
the possibility, the temperature dependence of the DOS was
never addressed in computational thermal property calcula-
tions, although the decrease of the range of lattice-vibration
frequencies with increasing temperature is an accepted and
experimentally observed phenomenon in physics research
[21,22]. This phenomenon was attributed to the coupling of
optical and acoustic phonons [23] or the electron-phonon
interactions [24]. Typically, the temperature dependence of
the calculation is solely based on the temperature depen-
dence of the Bose-Einstein distribution [25,26], although the
importance of the temperature-dependent DOS and phonon
dispersion relation (PDR) was recently addressed by Gerboth
and Walker in the context of size-dependent softening of
nanoribbons [27].

The phonon dynamics has always utilized the 0 K DOS
and PDR and in its definition the selection of the displace-
ment amplitude is arbitrary. The introduction of the energy
to the definition of a wave packet is addressed in this work
through consideration of the temperature-dependent DOS
and PDR. We use a Green’s-function-based definition of the
temperature-dependent DOS and the PDR [28] in order to
get the energy of a frequency band. The frequency space
of the wave packet created using the mentioned approach is
tested using a Fourier-analysis-based method to provide the
difference between considering the temperature dependence
and ignoring it. In addition, knowledge of the energy of a wave
packet based on the quantum definition of phonons provides
the chance to quantitatively check the extent of the validity
of molecular-dynamics (MD) simulations in frequency space
and at different temperatures.

To present the details of the work, we first elucidate the
details of the computational approaches for the calculation
of the PDR and the DOS g(ω) followed by the methodology
to capture the correct kinetic energy of a wave packet. The
system, which is the test specimen to simulate and validate
the proposed methodology, is defined in Sec. II. We present
our results and discuss the uncertainty of the numerical calcu-
lations in Sec. III. We summarize in Sec. IV.

II. METHODS

We designed an extension of the phonon dynamics method
that captures the correct kinetic energy of a frequency band
in a wave packet, which results in a wave packet carry-
ing the same amount of energy at a specific temperature
in the frequency band flowing in a specific Cartesian direc-

tion. The definition of the energy is based on the quantum
definition of energy for the range of frequencies within a
frequency band in a Gaussian envelope. For the temperature-
dependent definition of the energy in any system we require
the temperature-dependent definition of the PDR and the
DOS. In this section we start with the definition of the PDR
and the DOS and then we define the methodology to structure
a wave packet considering the temperature-dependent defini-
tion of the PDR and the DOS.

A. Phonon dispersion relation and density of states

We encountered two computational methods that can cap-
ture the temperature dependence of the PDR and are able
to capture the full anharmonic picture of the dynamics. The
first approach was proposed by Heino [29], which is based on
mapping the velocity field to the k space (k = 2π

λ
) and getting

the spatial Fourier transform of the velocity field vα (t, r),
where α indicates the direction in the coordinate system for
each particle indexed with i. The calculation is followed by
the computation of the autocorrelation function Aα (k, t ) of the
k-space velocity vectors. As a result, the PDR is the output of
the temporal Fourier transform over the total simulation time
Tsim of A(k, t ), which provides the autocorrelation function as
a function of angular frequency ω and k vectors [A(k, ω)]

vα (k, t ) =
∑

i

vα
i (t, r)e−ikri ,

Aα (k, t ) = 〈vα (k, t ) · vα (k, 0)〉
〈vα (k, 0) · vα (k, 0)〉 ,

Aα (k, ω) =
Tsim∑

Aα (k, t )e−iωt . (1)

The second method is a particle tracking model and de-
fines the dynamical matrices D(k, ω) in the context of atom
positions over time [28,30]. This method first maps all the α

components of the atom positions at each time t , Riα (x, t ), in
the k space by a spatial Fourier transform. The sum is over
the location of each primitive cell [Fig. 1(a)] in the primitive
structure, but it reduces to a summation over atoms i as we
have one atom per unit cell, due to the distribution of atoms
along the primitive lattice vectors,

Riα (k, t ) = 1√
N

∑
i

Riα (x, t )e−ikrl . (2)

The force constants matrix elements φiα, jβ (k) are defined
with respect to the positions in k space Riα (k, t ). The defi-
nition is based on defining the Green’s function in terms of
the time-dependent α and β components of the position of
atoms i and j. Here kb and T are the Boltzmann constant and
the simulation temperature, respectively. In the following, the
asterisk denotes the complex conjugate of a complex vector:

Giα, jβ (k) = 〈Riα (k, t ) · R∗
jβ (k, t )〉

− 〈Rjβ (k, t )〉 · 〈R∗
jβ (k, t )〉,

φiα, jβ (k) = kbT G−1
iα, jβ (k). (3)

As a result, we define the dynamical matrices with the
aid of force constant matrices, and the squares of angular
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(a) (b) (c)

FIG. 1. (a) Primitive structure conducive to the spatial Fourier analysis. (b) Validation system. (c) Volumetric mesh in k space.

frequencies are the eigenvalues of the proper eigenproblem:

Diα, jβ (k) = 1√
mimj

φiα, jβ (k),

|Diα, jβ (k) − δαβδi jω
2(k)| = 0. (4)

This method, up to the generation of dynamical matrices, is
available as FIX-PHONON in the LAMMPS molecular dynamics
package [31].

The DOS g(ω) is the count of frequencies within a fre-
quency bin centered at ω. The width of the frequency bins
was chosen to be equal to 0.01 THz. It is also essential to
perform the DOS normalization precisely by considering all
of the three polarizations p, which results in integration over
all frequencies of the g(ω) being equal to 3:∫ ωmax

0
g(ω)dω =

∑
p

1 = 3. (5)

The temperature dependence of the PDR and DOS is a
phenomenon addressed by other researchers as phonon soft-
ening [21]. The frequency shift due to temperature change
is also an observable phenomenon in Raman spectroscopy
experimental measurements [32]. The change in the frequency
behavior of the PDR and softening of the frequencies were
attributed to the change of the lattice constant due to ther-
mal expansion [33]. Although the work by Yun et al. is on
UO2, their observation is relevant to this work on argon as
the thermal conductivity of UO2 is lattice dominated up to
high temperatures (1400 K) [34], which is well above the
temperatures studied in the work by Yun et al. [33]. We
confirmed this behavior in our system by first running ten dif-
ferent simulations at 50 K with ten different random velocity
seeds to capture the numerical oscillation of the results and
monitoring the frequency space of the system at the same four
different temperatures under the canonical ensemble (NV T );
the analysis will ensure the change being beyond the statistical
variations.

B. Simulation conditions

Two distinguished systems of particles are defined: (i) for
the characterization of the Lennard-Jones argon and (ii) to
compare the expected characteristics of a wave packet with the

ones used in the literature neglecting the temperature effects.
To achieve a high k-space resolution, in the analysis system,
we choose a 40 × 40 × 40 unit cell system in the format of
a primitive structure. We model the interatomic interactions
with the 6-12 Lennard-Jones potential. The constants of the
potential ε and σ are 1.69 × 10−21 J and 3.4 × 10−10 m,
respectively [35]; as a result, we calculate the lattice constant
at 0 K as 5.2411 Å [36]. The run process of the analysis
section is a combination of a 5 × 105 time steps of equili-
bration followed by 9.5 × 106 time steps of calculation for
every temperature; each time step is 2 fs. Both equilibration
and calculation steps are in an NPT ensemble, which allows
for expansion of the system under the thermal stresses. The
validation system [Fig. 1(b)] dimensions are 2 × 60 × 2 unit
cells in the format of a cubic structure (not unit cell) and
the potential constants are the same as the analysis system.
Simulations in the validation system are performed for each
wave number (5 × 105 time steps with a time-step temporal
length of 1 fs) and are all in a microcanonical ensemble
(NV E ). The temperature dependence is observed in the val-
idation system by applying an expanded lattice constant for
every temperature under analysis. The approach helps us run
the system at 0 K and while still being able to observe the
temperature-dependent PDR. The possibility of observing the
frequency-space temperature dependence at 0 K provides us
the chance to isolate any other possible reason resulting in a
temperature-dependent behavior and validates lattice expan-
sion as the reason for this type of behavior in dielectrics.

To get the averaged lattice constant at each temperature, we
run the validation system with no extra wave packets under
NPT and the temperature conditions for 5 × 106 time steps
and calculate the average lattice constant after the conver-
gence of macrostates. The calculation of the lattice constant
is through the calculation of the average of the atom-atom
distances over the time of simulations.

C. Wave-packet generation and energy calculation

We define the wave packet as a sinusoidal function in a
Gaussian envelope [Fig. 2(a)]. The Gaussian envelope en-
sures the smooth decay of the oscillation to avoid unwanted
vibrations as a result of abrupt spatial changes in atom dis-
placement. We choose the standard deviation s of the Gaussian
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FIG. 2. (a) Representation of a displacement wave. (b) Displace-
ment wave with interatomic distance marked on it.

to be ten times the temperature-dependent lattice constant of
argon to get a full wave for wave numbers as low as 0.1π

a , and
the Gaussian is centered at the center of the validation system
by the definition of μ. The oscillatory part of the displacement
function is a simple cosine

z(y) = A exp

(
(y − μ)2

2s2

)
cos (yk). (6)

The exponential definition of oscillation introduces an imagi-
nary part that defines the phase of a hypothetical wave, which
is immaterial in the definition of an initial condition.

We apply the displacement to all the atoms in the validation
system as a function of the atoms’ positions y, which is the
direction containing 60 unit cells. To calculate the amplitude
of the displacement signal, we first need to define the energy
of the wave packet. We calculate the wave-packet energy
using the frequency-based kinetic energy E equation. The
equation defines the contribution of each angular frequency
ω to the energy as the product of the reduced Planck constant
and angular frequency h̄ω. Then the energy in a frequency
band (integration between two frequencies) or the total energy
(integration over the whole spectrum of frequencies) of the
system is the summation of energies considering both the
DOS and the Bose-Einstein distribution,

E =
∫ ωmax

0
g(ω)

h̄ω

1 − exp( h̄ω
kbT )

dω. (7)

Before we apply Eq. (7) to the wave-packet energy cal-
culation, we should note the effect of a Gaussian envelope
in real space on the wave, in frequency space. The standard
deviation s in real space translates to 1/s in frequency space,
which requires the consideration of the effect of the Gaussian
envelope in the calculation of the kinetic energy of a wave
packet. The phenomenon becomes more evident by consider-
ing the following:

1√
2πs2

∫ ∞

−∞
e−x2/2s2

ei2πkxdk = e−2π2s2k2
. (8)

The Gaussian distribution in the frequency space (8) re-
quires us to multiply the energy of the frequency bins,
activated by creating a wave packet, by the Gaussian value of
the corresponding frequency. The Gaussian in the frequency
space is a function of wave number k(ω) and is centered at

k′(ω). As a result, the kinetic energy of the entire system
between two frequencies ω1 and ω2, Eω1�ω′�ω2 , is defined as

Eω1�ω′�ω2 =
∫ ω2

ω1

(
es2[k(ω)−k′(ω′ )]2

√
2πs2

)

×
(

g(ω)
h̄ω

1 − exp( h̄ω
kbT )

)
dω. (9)

The calculated kinetic energy is the kinetic energy of a
frequency band flowing in all traveling directions and polar-
izations. We are interested in the energy of a wave packet
traveling in a specific direction. Eigenvectors of the dynamical
matrices are usually used to define the flow direction of en-
ergy, but the eigenvectors are not continuous in the frequency
space and we cannot use them in an integration process. As a
result, we define the directional dependence of the energy flow
considering the main crystallographic directions. This consid-
eration is supported by the Raman spectroscopy data [37].
Correspondingly, we divide the calculated energy into three
sections for each of the three main crystallographic directions
in the fcc argon lattice, weighted by the linear atomic density
L in the structure. We calculate the shares of the energy to
be 0.47, 0.33, and 0.2 in directions [110], [100], and [111],
respectively.

The polarization affects the calculation based on our obser-
vation that the creation of a wave by transverse displacement
results in the generation of longitudinal modes. We attribute
this fact to the creation of a compression field in the crystal
in front of a propagating transverse wave. The longitudinal
wave has the longitudinal frequency of the same wave number.
The observation suggests the need for the addition of the
longitudinal energy modes to our energy calculation. As a
result, a wave packet carries both the energy of the transverse
bandwidth and the energy of the longitudinal contribution. To
calculate the energy of each branch contributing to the energy
carried by a wave packet, we are required to divide the energy
of a frequency bin, calculated by Eq. (9), by 3 if the frequency
is less than the maximum frequency of the transverse branch.
The same approach has been used with the analytical calcula-
tion of thermal conductivity and the contribution of different
polarizations [38]. Considering the energy of the frequency
band between ω1 and ω2, the directional linear atom density
LD, the division of energy based on polarization, and the
contribution of different polarization, we can define the total
energy of a wave packet E(tot,D). The definition is for two
cases, one with frequencies below the maximum transverse
frequency ωT,max and the other with the frequencies above the
maximum transverse frequency,

E(tot,D) =LD[ 1
3 E (ω′

T ) + 1
3 E (ω′

L )],

× {ω′
L(k′)| 0 � ω′

L(k′) � ωT,max}
E(tot,D) =LD[ 1

3 E (ω′
T ) + E (ω′

L )],

× {ω′
L(k′)| ωT,max � ω′

L(k′) � ωL,max}. (10)

To enforce the kinetic energy on the wave packet, we
calculate the interatomic distance R [Fig. 2(b)] based on the
Lennard-Jones potential by equating the potential equation to
the value of the potential Pmax at the bottom of the potential
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FIG. 3. The PDR curve and the DOS of the argon crystal at four different temperatures. For comparison, the PDR computed using lattice
dynamics (LD) is also included.

well minus the calculated kinetic energy (9). The difference
between the two positive roots is the displacement magnitude
of the atoms from their equilibrium positions. This protocol
provides the energy-based definition of amplitude instead of
choosing it as an arbitrary parameter,

Pmax + E(tot,D) = 4ε
[(σ

r

)12
−

(σ

r

)6]
,

{r | r � 0 ∧ Im(r) ≡ 0}, R = |r1 − r2|. (11)

Then we use an algorithm that increases the amplitude of
the wave in small steps to get an average of the interatomic
distance r equal to the calculated value from Eq. (11). As
the perturbation is applied to the z direction only, there is no
change in the interatomic distance except for the transverse
and longitudinal directions along each string of atoms. As a
result, we have no displacement in the x direction.

III. RESULTS AND DISCUSSION

We used the method developed by Kong et al. [28,30]
to generate the wave-vector frequency structure of the argon
crystal (Fig. 3). For comparison and validation, we calcu-
lated and added the lattice-dynamics-based dispersion; the
data were created using the GULP package [39]. We have
also compared our result for one temperature with the exper-
imental data [40] to confirm the data calculated by Kong’s
method [Fig. 1(c)]. The comparison showed an acceptable
match within the statistical limit, which will be discussed
below.

The numerical oscillations showed a maximum of ∼7.7%
change in the results [Fig. 4(a)], which is significantly smaller
than the pronounced temperature dependence of frequency
under the NPT ensemble. The NV T results also provided
intact frequencies for most of the frequency interval and under
all four temperature conditions [Fig. 4(b)]. We observed slight
changes beyond the statistical oscillation in the PDR at high

frequencies, which are not lattice constant related and contra-
dictory to our assumption of lattice constant dependence of
the PDR. Occelli et al. showed the dependence of phonon
frequencies on many-body terms in potential functions for
argon [41]. The many-body terms are absent in the Lennard-
Jones potential used in the present work, thus the effect on
frequencies [Fig. 4(b)]. The statistical variations observed at
NV T provided evidence that the decreasing trend observed in
the frequencies as a function of temperature is not an artifact
of statistical variations.

A. Importance of the temperature- and energy-dependent
definition of a wave packet

Based on the presented data, we have confidence in the
observed temperature dependence in our simulations because
of the lattice expansion, as suggested by the existing exper-
imental data [33]. Using the PDR and DOS data, we could
create wave packets and compare the frequency space of the
system, considering the temperature dependence and ignor-
ing it. To structure our validation system with the required
temperature-induced lattice constant, we captured the lattice
constants after the expansion by relaxing our validation sys-
tem at each temperature. The resulting lattice constants are
listed in Table I, where we also compare the results with
the experimental values [42]. The computed lattice constants
are in good agreement with the experimental work. We see
deviations at higher temperature, which we attribute to the
absence of many-body terms in the potential [41], as the terms
provide more constraint on the atom motions, thus limiting the
lattice constant at high temperatures. The wave-packet valida-
tion process is performed in the validation system and under
the conditions explained in Sec. II. The simulation results
show the importance of the consideration of the temperature
dependence of the PDR and DOS in defining a wave packet.
Neglecting this dependence results in frequencies that are not
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(a) (b) (c)

expt.

FIG. 4. (a) Uncertainty in frequency analysis. The inset shows a close-up for better visibility. (b) The NV T results showing a slight
difference in frequency at high frequencies. The NV T results at 50 and 30 K are not presented for the clarity. (c) Comparison between the
PDR resulted from a Green’s-function approach and experimental work [40] at 10 K. The red circles are the experimental data and the black
triangles are the computational data.

the correct frequencies in the system (see Fig. 5; compare the
arrows with the dotted lines). The 0 K frequencies for the
same wave vectors are shown in Fig. 5. The 0 K frequen-
cies are commonly used in interpreting the results of phonon
dynamics simulations. The arrows are coded with the colors
assigned to each temperature. In comparing the location of the
arrows with the targeted frequencies (dashed vertical lines) we
notice the increase in the gap between them with increasing
temperature. The observation emphasizes the importance of
the temperature dependence at higher temperatures. We also
compare the expected frequencies from the PDR analysis with
what we observed in our wave-packet simulations. At 10 K
the wave number (right side of each plot) and the frequencies
(left side of each plot) match the expected values (solid Gaus-
sian for the wave numbers and dashed line for frequencies)
[Fig. 5(a)]. The matching trend continues for both 30 and 50 K
except for minimal deviations at the expected frequencies,
which we attribute to the uncertainty in the first method used
in this work [Figs. 5(b) and 5(c)]. The 70 K data do not show
deviations, but we observed low peaks at the target frequen-
cies due to large peaks at low frequencies, which are due to
decay to low frequencies. We could not avoid the decay as the
fast Fourier transform resolution is dependent on the length
of the data set; hence the decay was inevitable [Fig. 5(d)]. At
70 K we observed nonzero spatial frequency values, 2σ -3σ

away from the expected maximum, which we attribute to the

TABLE I. Lattice constant values from computational work acomp

and a comparison with the experimental aexpt values (from [42]).

Temperature (K) Lattice constant (Å) acomp−aexpt

aexpt
× 100 (%)

0 5.24
10 5.29 0.2
30 5.33 0.2
50 5.39 0.75
70 5.46 0.92

low frequency-space resolution in the spatial Fourier analysis.
The low number of atoms (60) along the y axis is the reason
for low spatial frequency resolution and can be solved by
choosing a more computationally extensive system. Neverthe-
less, we were able to target a frequency with a specific wave
vector and show the importance of the temperature-dependent
definition of a wave packet.

B. Frequency-based validation of MD simulations

Molecular-dynamics simulations do not represent the
quantum particle character of phonons due to their clas-
sic nature and the misrepresentation is pronounced more at
temperatures well below the Debye temperature, where the
quantum effects dominate [43,44] and the classical molecular
dynamics can overpredict the frequency contribution to the
specific heat. The quantum effects specifically for an argon
crystal of particles are mentioned heuristically to be impor-
tant in a range between one-tenth [43] and one-quarter of
the Debye temperature [45]. The wave-packet method as a
frequency-specified method and with the additional energy
details provided us the chance to do a frequency-based as-
sessment of MD simulations and develop a frequency-based
measure to evaluate the reliability of MD simulations with
respect to temperature. As a result, we monitored the oscil-
lation of the total kinetic energy (shaded region in Fig. 6) in
the simulation and compared the results with the calculated
(expected) energy [Eqs. (9) and (10)] for all four frequencies
and all four temperature data points (Fig. 6). At 10 K, we
observed that the first four frequencies (0.2, 0.4, 0.6, and 0.8
THz) lie within the trend of oscillations of the MD-calculated
kinetic energy [Fig. 6(a)]. The last data point falls beyond
the MD oscillation band due to the overprediction of the
contribution of the frequency at 10 K (Fig. 3). The data
show that the kinetic energy calculated by the MD code is
reliable at temperatures as low as one-eighth of the Debye
temperature of solid argon [46,47] and up to a frequency of 1
THz. This observation is a more exact reliability limit for MD
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(a) (b)

(c) (d)

Expt. Expt.

Expt.Expt.

FIG. 5. Spatial Fourier validation of (a) and (c) the perturbation and (b) and (d) the temporal Fourier validation for four different frequencies
at (a) 10 K, (b) 30 K, (c) 50 K, and (d) 70 K. The arrows are the 0 K frequencies that are commonly used in the interpretation of the wave-packet
simulations. The arrows are color coded with the colors used for each temperature.

simulations in comparison with the previous ones [43,45]. At
30, 50, and 70 K we observed that the expected data points
follow the trend of the MD oscillations. The decline in the 1
THz point for 70 K does not refute the energy definition of
MD at 70 K yet still illustrates the importance of the DOS in
the definition of the the kinetic energy, which is an important
concern at low temperatures.

The quantum definition of the energy used in this work
cannot be represented with MD simulations. Consequently,
we find the expected value of the energy on the bottom of
the energy oscillation at high frequencies of low temperatures,
which is due to the consideration of the density of states in the
calculations. The observation matches the calculation much
better at high temperatures, where the calculated energy is
near the maximum of oscillations. We expected the midpoint
of the oscillation to match the quantum particle-based energy

calculation, as the calculated energy was added to the system
with an algorithm setting the average atomic displacement to
the calculated value. As a result, the MD simulations can be a
close estimate of a dielectric material even at low temperatures
for low frequencies; at high frequencies of high temperature
where the DOS decreases rapidly, the MD energy loses the
quantum energy trend but its oscillation still enfolds the quan-
tum value.

It is also necessary to address the current concerns about
the acoustic wave picture of phonons. Henry and Seyf pro-
posed a different definition, as an extension of the concept
defined by Allan et al. [48], of lattice vibration with the
existence of impurities in materials and raised concerns about
the limit of the acoustic wave assumptions of phonon behavior
[49]. Although the phonon dynamics provides valuable re-
sults, the concern raises questions about the limits in which
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FIG. 6. Energy oscillation of the simulation (shaded area) compared to the energy calculated for each temperature calculated based on the
quantum particle picture of the problem (black hexagons) at (a) 10 K, (b) 30 K, (c) 50 K, and (d) 70 K.

this method can provide reliable results. Considering the na-
ture of this work, which is evaluating the dynamics of phonons
within a pure crystalline material, this method distances itself
from this criticism.

IV. CONCLUSION

In this work we introduced an extension of the phonon
dynamics method. The method has always been used dis-
regarding the temperature-dependent PDR and DOS, under
which the wave packet is evolving, and the amount of energy
a wave packet carries. We utilized a Green’s-function-based
approach to capture the temperature dependence of the PDR
and the DOS and compared wave packets in two cases, one
that neglects the temperature dependence and uses the lattice

dynamics (0 K) results and another in which the temperature
dependence is considered. The difference in the frequency
space of a system considering the temperature dependence
and the one using 0 K results was shown and we discovered
that its importance increases at higher temperatures, mak-
ing the consideration more important. Consideration of the
temperature-dependent PDR and DOS enabled the definition
of the wave-packet amplitude as a parameter that specifies
the amount of energy a wave packet carries. As a result, we
improved the phonon dynamics method that considers the
amplitude of the wave as an arbitrary parameter while consid-
ering the amplitude as a tuning knob of the energy. Finally, we
were able to use the method to improve a heuristic rule for the
validity of MD simulations considering their classical nature
and provide a quantitative measure in frequency space for the
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matter. The result of the last part of our work provided the
result that, at high temperatures, although the MD simulations
under a thermostated and equilibrated condition are able to
reproduce the correct DOS, they are unable to do so with a
frequency band in a system expanded to the lattice constant of
high temperatures, resulting in the lost of the energy trend at
high frequencies at high temperatures. In contrast, despite the
common belief that at low temperatures the MD simulations
are not able to provide acceptable results in comparison with
the quantum picture of vibrations, they still provide reliable

results at temperatures as low as the one-eighth of the Debye
temperature and up to 1 THz in the argon case.
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