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Explicit volume-preserving numerical schemes for relativistic trajectories and spin dynamics
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A class of explicit numerical schemes is developed to solve for the relativistic dynamics and spin of particles in
electromagnetic fields, using the Lorentz–Bargmann-Michel-Telegdi equation formulated in the Clifford algebra
representation of Baylis. It is demonstrated that these numerical methods, reminiscent of the leapfrog and Verlet
methods, share a number of important properties: they are energy conserving, volume conserving, and second-
order convergent. These properties are analyzed empirically by benchmarking against known analytical solutions
in constant uniform electrodynamic fields. It is demonstrated that the numerical error in a constant magnetic field
remains bounded for long-time simulations in contrast to the Boris pusher, whose angular error increases linearly
with time. Finally, the intricate spin dynamics of a particle is investigated in a plane-wave field configuration.
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I. INTRODUCTION

The classical relativistic dynamics of charged particles
in electromagnetic fields is ubiquitous in nature and, as
a consequence, is an important topic in many areas of
physics, ranging from plasma physics, astrophysics, accel-
erator physics, and many others [1–5]. In plasma physics,
the main theoretical tools based on numerical simulations
of the Vlasov equation, the so-called particle-in-cells (PIC)
method, rely on accurate long-term approximations of particle
trajectories [6–9]. In particle accelerators, these trajectories
are important to determine the stability of the beam in the
storage ring, again requiring long-time solutions [10–12].

Recently, some studies have pointed out the importance of
spin dynamics in plasmas [13,14]. Also, it is well known in
particle physics that spin dynamics is important to prepare the
electron beam in the right polarization, requiring fine tuning
and control of the electromagnetic fields in the accelerator
[15,16].

Describing these physical systems theoretically then re-
quire two main ingredients: an equation that describes the
(classical) state of the particle (position, velocity, and spin)
and an accurate approximation for the solution of this equa-
tion. The former is provided by the combination of the
relativistic Lorentz equation, for charged particle trajecto-
ries, and the Bargmann-Michel-Telegdi (BMT) equation [17],
which gives a classical description of spin precession when
gradients of the field can be neglected [1]. The latter is the
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subject of this article, where numerical methods are developed
to solve these equations.

Solving the Lorentz–BMT set of equations numerically
and efficiently for long-time simulations is a long-standing
problem. To reach this goal, many numerical approaches have
been developed over the years, most of them focusing on
the Lorentz equation and neglecting spin. The quintessential
numerical scheme is the Boris pusher [18], developed in the
1970s and now widely used in PIC codes and for simulating
the particle dynamics in magnetic fields. Its success stems
from the fact that the algorithm is simple and preserves the
phase-space volume in the nonrelativistic limit, despite not
being symplectic [19]. Moreover, it also preserves energy
explicitly for certain field configurations [20]. These prop-
erties make this method much more accurate in long-time
simulations than standard approaches for systems of ordi-
nary differential equations, such as the Runge-Kutta methods,
while still being easy to implement. Given its success, the
Boris method has been revisited many times. For example,
more accurate versions of the Boris method have been devel-
oped via a modified gyration angle update [21,22] or a filter
algorithm [23]. Also, a Boris-type algorithm with spatial step-
ping also exists [24]. Other alternatives to the Boris method in
the nonrelativistic limit include high-order exponential opera-
tor splitting [25–29], symplectic methods [30,31], multisteps
methods [32], and the line integral method [33].

In the relativistic regime, the system of equations becomes
nonlinear and, thus, more challenging to solve. In addition,
the Boris method is no longer volume conserving and, thus,
loses its accuracy in strong electromagnetic fields. For these
reasons, many alternatives to the Boris approach have been de-
veloped recently to tackle the relativistic dynamics of charged
particles [34–38]. Most of these approaches rely on the
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explicit conservation of the phase-space volume and/or the
conservation of energy for long-time accuracy. Many of the
most popular numerical schemes are compared in Ref. [39].
Attempts to solve the BMT equation in conjunction with the
Lorentz-force equation are more rare, however, but can be
found in Refs. [40,41].

In this article, we put forth frameworks for simulating rela-
tivistic dynamics of trajectory and spin for charged particles in
a strong electromagnetic field based on the spinor formulation
of Baylis [42–46]. Leapfrog-like and Verlet-type second-order
numerical methods are developed based on operator splitting.
Both preserve the phase-space volume; additionally, energy is
conserved when the electric field is absent. These properties
are tested empirically by comparing computed trajectories to
known analytical solutions in homogeneous constant electric
and magnetic fields. It is demonstrated that the numerical error
stays bounded for all field configurations, in contrast to the
Boris method, for which the numerical error increases linearly
with time in the case of a strong constant magnetic field. Fur-
thermore, our formulation provides an access to spin, which
can be evaluated by solving another differential equation. The
spin dynamics is benchmarked with the exact solution for a
particle moving in a plane electromagnetic wave.

This article is organized as follows. In Sec. II, we review
the formalism of the Clifford algebras applied to electrody-
namics. In Sec. III the numerical methods are described. In
Sec. IV the methods are benchmarked against the relativistic
Boris method. We then close in Sec. V with conclusions and
an outlook. Units where c = 1 are used throughout this article.

II. REVIEW OF THE FORMALISM OF CLIFFORD
(GEOMETRIC) ALGEBRAS APPLIED

TO ELECTRODYNAMICS

In this section, the application of the Clifford algebra to
electrodynamics and particle dynamics is reviewed. More
details on this formulation can be found in Refs. [45–47].
Throughout this paper, a classical particle of charge q and
mass m is considered. Bold letters correspond to ordinary
three-dimensional vectors.

A. Charged particle dynamics

In the usual classical relativistic formulation, the trajectory
of a charged particle x is governed by the Lorentz-force equa-
tion

d p
dt

= q

(
E + dx

dt
× B

)
, (1)

where p = γ m dx/dt denotes the momentum,
γ = 1/

√
1 − (dx/dt )2 is the Lorentz factor, E and B are

the electric and magnetic fields, respectively. The manifestly
covariant form of this equation reads as

m
duμ

dτ
= qFμνuν, (2)

where uμ = (u0, u) = γ (1, dx/dt ) is the proper velocity, τ is
the proper time, and Fμν is the electromagnetic field tensor.
The Einstein summation convention is assumed over repeated
greek indices μ, ν = 0, 1, 2, 3.

In the Clifford algebra formalism, the motion and orienta-
tion of a particle is determined by its eigenspinor �, which
is just the special Lorentz transformation relating the rest
frame of the charge to the laboratory frame. The properties
of space-time vectors known in the rest frame of the charge
are transformed to the laboratory frame by �. For instance,
the proper velocity of the particle in the laboratory frame is

U = ��†, (3)

where

U = (σ0u0 + σ1u1 + σ2u2 + σ3u3)

=
(

u0 + u3 u1 − iu2

u1 + iu2 u0 − u3

)
. (4)

The component σ0 is the 2×2 identity matrix while σk , k =
1, 2, 3, are the Pauli matrices. Note that both matrices U and
� are unimodular owing to the mass-shell condition det(U ) =
(u0)2 − u2 = 1. The velocity in the usual quadrivector repre-
sentation can be recovered via

uμ = 1
2 Tr (Uσμ). (5)

As shown in [46,48,49], the Lorentz-force equation (2) can
be written in terms of � as

d�

dτ
= q

2m
F�, (6)

where F is the electromagnetic field tensor represented by the
traceless matrix

F = Ekσk + iBkσk

=
(

E3 E1 − iE2

E1 + iE2 −E3

)
+ i

(
B3 B1 − iB2

B1 + iB2 −B3

)
.

(7)

The equivalence between Eqs. (2) and (6) can be proven as
follows. Taking the proper time derivative of Eq. (3) gives

dU

dτ
= d�

dτ
�† + �

d�†

dτ
. (8)

It follows from Eq. (6) that

d�

dτ
�† = q

2m
FU, �

d�†

dτ
= q

2m
UF †. (9)

Thus,

dU

dτ
= q

2m
(FU + UF †),

= q

m
(σ0E · u + u0Ekσk + σk (u × B)k ), (10)

given that U is Hermitian. Therefore, the scalar and vector
parts of the above equation give, respectively,

m
du0

dτ
= qE · u, (11)

m
du
dτ

= u0qE + (u × qB). (12)
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Since the eigenspinor is related to the proper velocity, the
space-time trajectory xμ is recovered as

xμ = 1
2 Tr (xσμ), (13)

dx

dτ
= ��†. (14)

The eigenspinor of a particle is different for different ob-
servers. Suppose that �A is the eigenspinor of a charged
particle with respect to observer A. Let LBA transform prop-
erties from the rest frame of the observer A as viewed by
observer B. The eigenspinor for observer B is then

�B = LBA�A.

The transformation of the eigenspinor thus takes the form

� → L�.

B. Spin dynamics

The most significant advantage of the spinorial propaga-
tor is the ability to provide the classical spin dynamics as
described by the BMT equation. Arbitrarily defining σ3 as
the direction of the spin in the particle’s rest frame, the spin
4-vector in the laboratory frame is then given by [50]

S = �σ3�
†, (15)

where � obeys the dynamical equation (6) for the g factor
g = 2. Taking the proper time derivative of (15), we have

dS

dτ
= d�

dτ
σ3�

† + �σ3
d�†

dτ
. (16)

It follows from Eq. (6) that

d�

dτ
σ3�

† = q

2m
FS, �σ3

d�†

dτ
= q

2m
SF †. (17)

Thus,

dS

dτ
= q

2m
(FS + SF †)

= q

m
(σ0E · S + S0Ekσk + σk (S × B)k ) (18)

given that U is Hermitian. Therefore, collecting the terms and
writing in covariant form, we end up with the BMT equation

dSα

dτ
= q

m
FαβSβ. (19)

In the standard approach, this differential equation is solved
along with the Lorentz-force equation (2). This is a challeng-
ing problem because the two equations are coupled via the
electromagnetic field. In the Clifford algebra formulation, we
solve for � by using Eq. (6) and the spin is simply evaluated
using Eq. (15).

For a general g factor, the calculation of spin is more
challenging. We must introduce an auxiliary spinor ϒ that is
dedicated to track the classical spin according to the following
equation [50]:

dϒ

dτ
= q

8m
[(2 + g)F + (2 − g)UF †Ū ]ϒ, (20)

where U = ��†. Here, � is calculated employing the g= 2
propagator in Eq. (6); thus, U is known at each step in τ .
Having calculated ϒ , the spin for g �= 2 is

S̃ = ϒσ3ϒ
†. (21)

It can be verified that when g = 2, one recovers ϒ = � and
S̃ = S. Following the same steps of Eqs. (16), (17), and (18)
for S̃ instead, we arrive at

d

dτ
S̃α = q

m

[
g

2
Fαβ S̃β +

(
g

2
− 1

)
U α (S̃λFλμUμ)

]
, (22)

which is the BMT equation for a general g factor.

III. NUMERICAL METHODS

In this section, a class of numerical schemes is developed
starting from the Lorentz–BMT force equation formulated
in the Clifford algebra representation developed by Baylis.
The main physical goal is obtaining accurate relativistic tra-
jectories of particles immersed in a space-time dependent
electromagnetic field. This will be achieved by a combined
use of the split-operator method and standard discretiza-
tion techniques, resulting in simple but efficient numerical
methods.

The starting point is the system of ordinary differential
equations (ODE) obeyed by the particle in its proper reference
frame, obtained from Eq. (3), along with Eq. (6). The proper
time is related to the laboratory frame time by dt/dτ = γ (t ),
where γ (t ) is the Lorentz factor. Then, the particle dynamical
equations become

d�(x(t ))

dt
= q

2mγ (t )
F (x(t ))�(x(t )), (23)

dx(t )

dt
= 1

γ (t )
�(x(t ))�†(x(t )), (24)

where �(x(t )) ∈ M2(C) is the eigenspinor describing the mo-
tion and orientation of a particle, x(t ) ∈ M2(C) is the position
of the particle, and F ∈ M2(C) is the electromagnetic tensor.
All these quantities are 2×2 complex matrices [M2(C)] ex-
pressed in the Clifford algebra described in Sec. II, where
a Pauli matrix basis decomposition is given [see Eqs. (7)
and (14)]. When g �= 2, these two equations should be sup-
plemented by Eq. (20) to obtain the spin dynamics. In the
laboratory frame, this is expressed as

dϒ (x(t ))
dt

= q

8mγ (t )
[(2 + g)F (x(t ))

+ (2 − g)U (x(t ))F †(x(t ))Ū (x(t ))]ϒ (x(t )).

(25)

Together with the initial values x(t0) = x0 and �(x0) =
�0, Eqs. (23) and (24) form the initial value problem solved
by the numerical methods. The initial position x0 is evaluated
from Eq. (14). �0 can be obtained by using the fact that � is
a unimodular element of the Pauli algebra, and therefore can
be written as a pure boost [42,43,51]:

�0 = e
w0

2 , (26)
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where w0 is the initial rapidity. The rapidity is given by

w0 = σkûk,0 arctan(|u0|), (27)

where û0 := u0/|u0| is the unit vector in the direction of the
initial velocity u0 ∈ R3.

The ODE system (23) and (24) has an important mathemat-
ical property: it preserves the phase-space volume. This can
be demonstrated by showing that the ODE is divergenceless.
For this purpose, we follow Ref. [52] and introduce similar
notation. First, the ODE system is written in the general form

dz(t )

dt
= G(z) for z, G ∈ Cm, (28)

where z = (z1, . . . , zm)T is a real vector containing the ODE
degrees of freedom (DOF) while G, also a vector, specifies the
dynamics of all DOF. The exact flow ϕ�t of the ODE system
is defined by

z(t + �t ) = ϕ�t (z(t )). (29)

To write the ODE system (23) and (24) in the form of Eq. (28),
the vectorization operator is introduced:

�A := vec(A)

= [A11, . . . , Am1, A12, . . . Am2, . . . , A1m, . . . , Amm]T ,

(30)

for any m × m matrices A with components (Ai j )i, j=1,...,m.
This operation is a mapping vec : Mm(C) → Cm2

that trans-
forms a square matrix into a vector by stacking the columns of
the matrix. This operation obeys some properties, in particular
vec(AB) = (Im ⊗ A)vec(B). Armed with this notation, it is
now possible to demonstrate that the ODE system is volume
preserving.

An ODE system is divergence free when

m∑
i=1

∂Gi

∂zi
= 0. (31)

In addition, a divergence-free ODE system is volume preserv-
ing [52], thus, we now demonstrate that Eq. (31) holds for
(23) and (24). First, the vectorization mapping is applied to
the ODE system yielding

d ��
dt

= q

2mγ
(I2 ⊗ F ) �� := G(�), (32)

d�x
dt

= vec(��†)

γ
:= G(x), (33)

where ��, �x, G(x), G(�) ∈ C4 are four-dimensional vectors, ob-
tained from the stacking of matrix components. Obviously, the
derivatives

∂G(x)
i

∂�xi
= 0 for i = 1, . . . , 4, (34)

simply because G(x) has no explicit dependence on x. On the
other hand, derivatives of G(�) are not zero, rather we have

∂G(�)
1

∂ ��1

= ∂G(�)
3

∂ ��3

= E3 + iB3, (35)

∂G(�)
2

∂ ��2

= ∂G(�)
4

∂ ��4

= −E3 − iB3. (36)

However, when taking the divergence, a sum on all these
contributions is taken and we get ∇ · G(�) = 0. As a con-
sequence, the ODE system is divergence free, implying that
it is also volume preserving [52]. It is emphasized here that
the phase space is spanned by the position and eigenspinor
(x,�). In particular, it is not the same space as the one for
Hamiltonian systems, defined via the position and momentum
of the particle (x, p). Nevertheless, volume preservation is
an intrinsic property of the dynamic ODE system (23) and
(24) and, therefore, numerical schemes fulfilling this property
should be more accurate in long-term calculations because
they will preserve the qualitative features of the solution [53].

A. Discretization of the ODE system

To develop such numerical schemes, a time grid is intro-
duced where xn = x(tn), �n = �(x(tn)), and tn = t0 + n�t ,
where n ∈ N and �t is the time step. To preserve volume, the
two approaches described in the following subsections take
advantage of the fact that the formal solution of Eq. (23) is

�n+1 = T exp

[
q

2m

∫ tn+1

tn

F (x(t ′))
γ (t ′)

dt ′
]
�n, (37)

where T represents time ordering. This can be written in a
form more convenient for numerical approximation [54]:

�n+1 = exp

[
�t

(
q

2m

F (xn)

γ n
+ T

)]
�n, (38)

where T = ←−
∂tn is now the “left” time-shifting operator. At this

point, the solution is still exact. To evaluate this numerically,
an operator splitting approximation scheme is implemented.
In particular, a third-order accurate approximation of the
last expression, the symmetric exponential decomposition, is
used. It is given by

�n+1 = e
�t
2 T exp

[
�t

q

2m

F (xn)

γ n

]
e

�t
2 T �n + O(�t3) (39)

= exp

[
�t

q

2m

F (xn+ 1
2 )

γ n+ 1
2

]
�n + O(�t3) (40)

= V n�n (41)

where the properties of the time-shifting operator have been
used to obtain (40) and where V n is the 2×2 transition matrix.
The latter corresponds to an exponential scheme for the �

update, typical of operator splitting methods. It allows for
estimating �n+1 assuming �n, xn+ 1

2 , and γ n+ 1
2 are known.

However, the Lorentz factor is related to � via (14) and,
therefore, is available only at time tn. An accurate approxima-
tion of the Lorentz factor at tn+ 1

2
can be obtained by deriving

an equation for its time dependence and by approximating
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this evolution equation to a desired order. Taking the time
derivative of γ (t ) = Tr[��†]/2 gives

dγ (t )

dt
= 1

2
Tr

[
d�

dt
�† + �

�†

dt

]

= q

4mγ (t )
Tr[F��† + ��†F †], (42)

where Eq. (23) was used to get the second equation. The latter
can be discretized to obtain the value of the Lorentz factor at
tn+ 1

2
with a second-order accuracy, in order to be consistent

with the accuracy of the exponential evolution scheme for �

in Eq. (40). An explicit Euler method is used for that purpose,
yielding

γ n+ 1
2 = γ n + �t

2

q

4mγ n
Tr[F (xn)�n�n† + �n�n†F †(xn)]

+ O(�t2). (43)

When this second-order accurate expression is reported into
Eq. (40), it incurs a third-order error on the exponential, con-
sistent with the numerical scheme.

The last ingredient missing for the update of γ and � is the
position x, evaluated at times tn and tn+ 1

2
. This can be achieved

by evolving x on half time steps or on a time-staggered grid,
in the same spirit as the Verlet and leapfrog methods, respec-
tively. This will be described in more detail in the following
subsections.

To obtain the spin dynamics for a general g factor (g �= 2),
one has to solve Eq. (25) numerically along with the equa-
tions for � and x. This can be achieved via a split-operator
technique, similar to the � update given in Eq. (40). First,
Eq. (25) is written as

dϒ (x(t ))
dt

= �(x(t ))ϒ (x(t )), (44)

where

�(x(t )) = e

8mγ (t )
[(2 + g)F (x(t ))

+ (2 − g)U (x(t ))F †(x(t ))Ū (x(t ))]. (45)

This can be solved formally as a time-ordered exponential:

ϒn+ 1
2 = T exp

(∫ t
n+ 1

2

t
n− 1

2

�(x(t ′))dt ′
)

ϒn− 1
2 . (46)

Then, a third-order accurate approximation of the time-
ordered exponential is given by

ϒn+ 1
2 = exp (�t�n)ϒn− 1

2 + O(�t3). (47)

To evaluate this expression, one needs the value of �n, F n,
and γ n beforehand, which is possible by evaluating Eq. (47)
at the appropriate step in the numerical algorithm (see the end
of the next subsections).

B. Verlet-type numerical scheme

A Verlet-type numerical scheme is obtained by approxi-
mating Eq. (24) using a two-step method, based on the explicit

forward and backward Euler scheme:

xn+ 1
2 = xn + �t

2

�n�n†

γ n
+ O(�t2), (48)

xn+1 = xn+ 1
2 + �t

2

�n+1�n+1†

γ n+1
+ O(�t2). (49)

Although each step has an accuracy O(�t2), the full evolution
is O(�t3). This can be demonstrated by substituting Eq. (48)
into (49). Then, we get

xn+1 = xn + �t

2

[
�n�n†

γ n
+ �n+1�n+1†

γ n+1

]
, (50)

corresponding to the trapezoidal rule method with an accuracy
O(�t3). Splitting this in two steps as in Eqs. (48) and (49) al-
lows for getting the position at time tn+ 1

2
required in Eq. (40).

To summarize, here is a description of the algorithm to
evolve the position for one time step. It assumes that �n, xn

are known:
(1) Compute γ n using γ n = 1

2 Tr[�n�n†].

(2) Compute xn+ 1
2 using Eq. (48).

(3) Compute F (xn).
(4) If we want the spin dynamics and if g �= 2, compute

ϒn+ 1
2 using Eq. (47).

(5) Compute γ n+ 1
2 using Eq. (43).

(6) Compute �n+1 using Eq. (40).
(7) Compute γ n+1 using γ n+1 = 1

2 Tr[�n+1�n+1†].
(8) Compute xn+1 using Eq. (49).

C. Leapfrog-like numerical scheme

The leapfrog-like scheme is obtained by considering a
time-staggered grid, where � and x are evaluated on different
time steps. Then, the time derivative in Eq. (24) is discretized
using a midpoint finite difference scheme, centered on tn. This
is written as

xn+ 1
2 = xn− 1

2 + �t
�n�n†

γ n
+ O(�t3). (51)

This again has an accuracy O(�t3).
With this staggered grid, the position is not evaluated at

tn, as required to obtain the Lorentz factor at tn+ 1
2
. The strat-

egy used here is to approximate the electromagnetic field in
Eq. (43) by linear interpolation as

F (xn) = F (xn+ 1
2 ) + F (xn− 1

2 )

2
+ O(�t2). (52)

This average can be evaluated on the staggered grid.
To summarize, here is a description of the algorithm for

one time step. It assumes that �n, xn− 1
2 are known:

(1) Compute γ n using γ n = 1
2 Tr[�n�n†].

(2) Compute xn+ 1
2 using Eq. (51).

(3) Compute F (xn− 1
2 ) and F (xn+ 1

2 ).
(4) Compute F (xn) using Eq. (52).
(5) If we want the spin dynamics and if g �= 2, compute

ϒn+ 1
2 using Eq. (47).

(6) Compute γ n+ 1
2 using Eq. (43).

(7) Compute �n+1 using Eq. (40).
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FIG. 1. Position x and numerical error ε(t ) = ‖x(t ) −
xanalytical (t )‖∞ as function of time for the Boris, Verlet-type,
and leapfrog-like methods for a particle in a constant electric field.
All position curves are overlapping with the analytical solution. The
position, the numerical error, and time are expressed in natural units.

The first step of the scheme, from t0 to t 1
2
, can be performed

via the forward Euler step (48). Although this step is O(�t2),
it does not deteriorate the global convergence order of the
numerical scheme because it is used only once.

D. General properties of the numerical schemes

The numerical schemes described in the last two subsec-
tions share a number of interesting properties.

1. Order of convergence

First, they have a second-order rate of global convergence.
Henceforth, the numerical error ε after N time steps obeys

ε := ‖xN − xexact (t
N )‖∞ � C�t2, (53)

where C ∈ R+ is some positive constant, xN is the approx-
imated solution of the position vector [with xi = 1

2 Tr(xσi )],
and xexact is the exact solution. The infinite vector norm is
defined as ‖x‖∞ = maxi=1,2,3 |xi|.

Equation (53) is not proven rigorously here as this would
demand a careful analysis of the regularity of the solution,
which is outside the scope of this article. Rather, it is assumed
that the solution is smooth enough, which is reasonable for a
large class of physically relevant initial conditions and elec-
tromagnetic fields. In this case, the global convergence rate
is usually one order less than the local accuracy. As demon-
strated in Secs. III B and III C, each step of the numerical
schemes incurs local numerical error O(�t3), leading to a
second-order global rate of convergence. This property will
be verified empirically in Sec. IV, where numerical results are
displayed.
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FIG. 2. Numerical error at t = tfinal = 10 for a particle in a con-
stant electric field as function of the time step �t for the Boris,
Verlet-type, and leapfrog-like methods. The dashed line corresponds
to a fit of the data, used to determine the order of convergence. The
numerical error and the time step are expressed in natural units.

2. Energy conservation

Second, both numerical methods are energy conserving
when there is no electric field E = 0. This can be demon-
strated in the following way. The energy EN of the particle
is given after N time steps by

EN = γ N m = m

2
Tr[�N�N†]. (54)

On the other hand, from Eq. (41), we have that

�N =
N∏

i=0

V i�0. (55)

When the electric field is zero, the transition matrices
(V i )i=0,...,N are unitary, as can be deduced from the definition
of F in Eq. (7). As a consequence, the energy becomes

EN = m

2
Tr[�0�0†] = γ 0m, (56)

where the cyclic property of the trace and unitarity have been
used to cancel the transition matrices. The fact that EN = E0

confirms that the energy is manifestly conserved by the nu-
merical scheme.

3. Phase-space volume preservation

Finally, the third property of the numerical schemes is
phase-space volume preservation. The detailed proof, given
in the following, hinges on the fact that the Jacobian of the
flow has a unit determinant, for each step of the numerical

TABLE I. Order of convergence for all the numerical schemes,
determined from a fit of the error as a function of the time step, for a
particle in a constant electric field.

Numerical scheme Order of convergence

Boris 2.0285
Verlet-type 1.9847
Leapfrog-like 1.9916
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FIG. 3. Relative error on energy as function of time for a particle
in a constant magnetic field. Time is expressed in natural units.

schemes. As mentioned earlier, this property is important
for long-term simulations required in accelerator and plasma
physics.

We start by proving that the Verlet-type scheme is
manifestly volume preserving. First, the vectorization op-
eration defined in Eq. (30) is applied and the scheme is

written as

φn+ 1
2 :=

{�xn+ 1
2 = �xn + �t

2γ n vec(�n�n†),
��n+ 1

2 = ��n,
(57)

φñ :=
{
�xñ = �xn+ 1

2 ,

��ñ = (I2 ⊗ V n) ��n+ 1
2 ,

(58)

φn+1 :=
{�xn+1 = �xñ + �t

2γ ñ vec(�ñ�ñ†),
��n+1 = ��ñ,

(59)

where φn are approximated flows and ñ denotes an intermedi-
ary time step. Setting

z =
[ �x

��
]
, (60)

the Jacobian of the flow can be written in matrix form as

∂φn+ 1
2

∂zn
=

[
I4 M (1)

0 I4

]
, (61)

∂φñ

∂zn+ 1
2

=
[
I4 0

M (2) I2 ⊗ V n

]
, (62)

∂φn+1

∂zñ
=

[
I4 M (3)

0 I4

]
, (63)

where the 4×4 matrices M (1,3) come from the derivative with
respect to � in Eqs. (57) and (59), while the matrix M (2)
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FIG. 4. Positions r, θ and numerical errors εr, εθ as a function of time for the Boris scheme and a particle in a constant magnetic field. The
radius, the numerical error on radius, and time are expressed in natural units.
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FIG. 5. Positions r, θ and numerical errors εr, εθ as a function of time for the Verlet-type scheme and a particle in a constant magnetic
field. The radius, the numerical error on radius, and time are expressed in natural units.

comes from the derivative with respect to x in Eq. (58). Their
explicit expression is not important because we are interested
in the determinant of the Jacobian. Using the properties of
determinant, the latter are given by

det

(
∂φn+ 1

2

∂zn

)
= 1, (64)

det

(
∂φñ

∂zn+ 1
2

)
= det(V n)2

, (65)

det

(
∂φn+1

∂zñ

)
= 1. (66)

The last determinant can be evaluated from the definition of
V n and the identity for the determinant of a matrix exponen-
tial:

det(V n) = exp

[
�t

q

2mγ n+ 1
2

Tr[F (xn+ 1
2 )]

]
. (67)

However, from the definition of the electromagnetic field, we
have that Tr[F (xn+ 1

2 )] = 0, confirming that the last determi-
nant is also unity. This concludes the demonstration that the
Verlet-type scheme is volume preserving.

The argument for the leapfrog scheme is very similar. The
approximated flow is now

φn+ 1
2 :=

{�xn+ 1
2 = �xn + �t

γ n vec(�n�n†),
��n+ 1

2 = ��n,
(68)

φn+1 :=
{
�xn+1 = �xn+ 1

2 ,

��n+1 = (I2 ⊗ V n) ��n+ 1
2

(69)

with the understanding that x and � are staggered. In matrix
form, the Jacobian of the flow gives

∂φn+ 1
2

∂zn
=

[
I4 M̃ (1)

0 I4

]
, (70)

∂φn+1

∂zn+ 1
2

=
[

I4 0
M (2) I2 ⊗ V n

]
. (71)

The last steps of the proof are the same as for the Verlet-type
scheme and we obtain a unit determinant. Thus, we conclude
that the leapfrog scheme is also volume preserving.

IV. NUMERICAL RESULTS

The Verlet-type and leapfrog-like numerical schemes have
been implemented in C++, using the highly efficient and easy
to use linear algebra library ARMADILLO [55]. The resulting
code can perform approximately 5.0×104 time steps per sec-
ond on a standard laptop computer (with an Intel I7 CPU).
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FIG. 6. Positions r, θ and numerical errors εr, εθ as a function of time for the leapfrog-like scheme and a particle in a constant magnetic
field. The radius, the numerical error on radius, and time are expressed in natural units.

The numerical methods are compared to the standard Boris
pusher, described in Ref. [39] and implemented in Python.
To verify some numerical properties and benchmark against
known analytical solutions, simple uniform electromagnetic
fields are first considered, in the same spirit as the numerical
tests given in Ref. [39]. Then, to display nontrivial spin dy-
namics, a plane-wave electromagnetic field is chosen.

The following numerical calculations are performed in nat-
ural units in which c = h̄ = me = 1, where me is the electron
mass. In these units, the reference time and length are given
by tnu = h̄/mec2 and �nu = h̄/mec, respectively. All physical
quantities are thus given by dimensionless quantities, ex-
pressed in these units.

A. Constant uniform electric field

A uniform electric field applies a force on a charged par-
ticle, inducing acceleration in the field orientation. Without
loss of generality, we consider an electric field pointing in
the x direction given by E = (E , 0, 0). In this simple case,
the Lorentz equation of motion can be solved analytically.
Assuming the particle is initially at rest [v(0) = 0] and po-
sitioned at the origin [x(0) = 0], the solution is given by [39]

xanalytical(t ) =
(

m

qE
[γ (t ) − 1], 0, 0

)
, (72)

where

γ (t ) =
√

1 + (qEt )2

m
. (73)

To test the numerical methods, we consider a positively
charged particle with an electron mass (a positron with mass
m = 1 in natural units) immersed in an electric field of magni-
tude E = 0.5. In the first test, we look at the particle position
as a function of time and compare to the analytical solution.
The final time of the simulation is set to tfinal = 10 and the
number of time steps to N = 10 000, making for a time step
of �t = 1.0×10−3. The numerical results for the position are
displayed in Fig. 1, along with the numerical error ε evalu-
ated from Eq. (53). The results demonstrate that all methods
reproduce accurately the analytical solution (all the curves are
overlapping). However, the error of the Verlet-type scheme is
lower than the two other methods.

In the second test, we determine the order of convergence
by looking at the scaling of the numerical error with the time
step. The same particle, electric field, and evolution time are
considered. Four different numbers of time steps are chosen
for each numerical methods, leading to different value of �t .
At the end of the simulation, the numerical error on posi-
tion is evaluated using Eq. (53). The numerical results are
displayed in Fig. 2, along with the linear fit (dashed line)
used to determine the order of convergence. The values of the
order of convergence are given in Table I. Similar to the first
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FIG. 7. Positions x, z and numerical errors as a function of time for the Boris scheme and a particle in a plane wave. The positions, the
numerical error, and time are expressed in natural units.

test, these numerical results demonstrate that numerical errors
for the Boris and leapfrog-like schemes are similar, while the
Verlet-type method shows an improvement of approximately
one order of magnitude, for any time step size. In addition,
the analysis reveals that all the numerical schemes have a
second-order convergence rate.

B. Constant uniform magnetic field

In a constant magnetic field, a charged particle follows a
circular trajectory at constant speed |v| because the magnetic
field does not exert any work on the particle. For simplic-
ity, we choose a magnetic field in the z direction, given by
B = (0, 0, B). In this case, the trajectory will follow a circle
in the xy plane. This is confirmed by looking that the analyti-
cal solution obtained from solving the Lorentz equation. The
position is given by

r = rg
γvm|v|

qB
, θ (t ) = qB

γvm
t, (74)

where γv = 1/
√

1 − v2 is the constant Lorentz factor, r = |x|
is the radial distance from the origin, rg stands for the con-
stant gyroradius, and θ (t ) is the angle with respect to the y
axis. Therefore, in simulations, the particle is positioned at
x = (0, rg, 0) at initial time t = 0.

Again, we consider a positively charged particle with
an electron mass. The magnitude of the magnetic field is

set to B = 0.5 while the initial velocity is chosen as v =
(0.4, 0.0, 0.0). With these values, the gyroradius of the tra-
jectory is rg ≈ 2.882 456 401 795 655 3.

In the first test, we verify the conservation of energy
claimed in Sec. III D. To achieve this goal, a long-term sim-
ulation is carried out with a final time of tfinal = 100 000 and
a number of time steps set to N = 1.0×106. The energy is
evaluated from the relativistic gamma factor as E (t ) = γ (t )m.
According to the exact solution, the energy is constant and
given by Eexact = γvm. In Fig. 3, the relative error on the
energy, defined as εrel = |E (t ) − Eexact|/|E (t ) + Eexact|, is dis-
played for the three numerical methods. They all show an
excellent energy-preservation property, accurate up to ma-
chine precision. This result is an empirical confirmation of the
theoretical result given in Sec. III D.

In the second test, the actual error on position is eval-
uated. For these calculations, the final time is chosen as
tfinal = 1000 and the number of time steps is N = 10 000. The
radius and angle are evaluated from the Cartesian compo-
nents and the error on the radius and angle is simply defined
as εr = |r(t ) − rg| and εθ = |θ (t ) − θexact (t )|. The results are
displayed in Figs. 4, 5, and 6 for the Boris, the Verlet-type, and
the leapfrog-like schemes, respectively. The first observation
is that all the numerical methods reproduce the analytical
result with fairly high accuracy. However, two conclusions
can be reached by looking at the error in the numerical re-
sults. On the one hand, the accuracy of the Boris scheme
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FIG. 8. Positions x, z and numerical errors as a function of time for the Verlet-type scheme and a particle in a plane wave. The positions,
the numerical error, and time are expressed in natural units.

for the radius of the trajectory is far superior than the other
two schemes. Indeed, the error of the Boris scheme reaches
machine precision (εr ≈ 3.0×10−14) while the error for the
other two schemes oscillates, bounded by εr � 0.9×10−4. On
the other hand, the numerical error on the angle accumulates
linearly in the Boris scheme, consistent with the findings of
Ref. [39], and can reach relatively high value in long-term
simulations. This linear accumulation of error is not observed
for the Verlet and leapfrog-like scheme. Rather, the error oscil-
lates but stays bounded by εθ � 0.16×10−4. This interesting
property is likely due to the volume-preserving properties of
the numerical scheme.

It was also observed (not shown here for simplicity) that
the bound on the error can be lowered by increasing the
number of time steps and decreasing �t , as expected from
the numerical method convergence rates. However, when one
reaches a large number of time steps (N � 100 000), a small
error starts accumulating, possibly due to the repeated third-
order error at every iteration. This phenomenon has also been
reported in simulations using other numerical methods [38].
Nevertheless, the fact that the error stays bounded for both r
and θ when �t is not too small, makes the Verlet and leapfrog
schemes interesting alternatives for long-term simulations.

C. Plane wave

The final test is for a particle immersed in a plane wave
propagating in the z direction. For an analysis of the spin

dynamics of electrons in laser fields, see Ref. [56]. This il-
lustrates spin dynamics and the convergence of the numerical
methods when the electromagnetic field is space dependent.
We choose g = 2 because an analytical solution exists in this
case for the spin dynamics, allowing us to verify the conver-
gence of the numerical scheme.

The electromagnetic field is given by

E(t, z) = (E cos(ϕ), 0, 0), (75)

B(t, z) = (0, E cos(ϕ), 0), (76)

where E is the field amplitude and ϕ = ω(z − t ), with ω the
angular frequency. The corresponding vector potential is

A(ϕ) =
(

E

ω
sin(ϕ), 0, 0

)
. (77)

Remarkably, it is possible to find an exact solution of the
Lorentz–BMT equation in such field configuration. The po-
sitions are given by [57]

x(t ) =
(

qE

mω2
[1 − cos(ϕ)], 0,

q2E2

8m2ω3
[sin(2ϕ) − 2ϕ]

)
.

(78)

On the other hand, the spin dynamics can be extracted from
the matrix spinor via (15) once an expression for � is found.
In a plane wave, it has been shown that the eigenspinor is
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FIG. 9. Spins Sx, Sz and numerical errors as a function of time for the Verlet-type scheme and a particle in a plane wave. Time is expressed
in natural units.

given by [46]

�(ϕ) = �(ϕ0) − e

2mω
�A(ϕ)k̄�(ϕ0), (79)

where k̄ = ωσ0 − σ · k is the Clifford conjugate of the wave
vector expressed in the Clifford algebra while �A(ϕ) =
A(ϕ) − A(ϕ0) is the variation of the electromagnetic vector
potential, again expressed in the Clifford algebra as A(ϕ) =
σkAk (ϕ).

In the simulations for a plane-wave electromagnetic field,
the final time is tfinal = 10 while the number of time steps
is N = 10 000, making for �t = 0.001. The electric field
strength is set to E = 1 while the angular frequency is ω =
2π . The particle is initially at the origin x(0) = 0 and at
rest v(0) = 0. The comparison with the analytical solution is
displayed in Figs. 7 and 8, for the Boris and Verlet-type meth-
ods, respectively. The results for the leapfrog-like scheme are
not shown for simplicity and because they are similar to the
Verlet scheme. The numerical error is evaluated using Eq. (53)
and presented below the position. These numerical results
demonstrate that the Boris and Verlet-type methods reproduce
the exact solution accurately and perform equally well, both
having numerical errors bounded by ε � 2.5×10−8 for the x
and z positions.

However, the main advantage of the Verlet-type scheme is
that spin dynamics can be obtained easily via the relation (15).
The numerical results are compared to this analytical solu-
tion is Fig. 9 for the Verlet-type scheme (again, the leapfrog

method is not displayed because it presents similar results).
The numerical error is also evaluated for each spin component
using εs = |SN

i − Si,exact|, for i = x, z. Again, the numerical
method reproduces the exact solution very accurately, with
numerical errors bounded by εs � 8.0×10−8 for both spin
components.

V. CONCLUSION

In this work, the Lorentz–BMT system of equations was
solved numerically in the Clifford algebra representation. Two
numerical schemes were developed and tested against the
Boris pusher by comparing with analytical solutions. It was
demonstrated that the numerical schemes have bounded nu-
merical errors, even in strong magnetic fields, in contrast to
the Boris method. This long-term accuracy is attributed to
their volume-preserving properties. We also showed that the
Verlet-type and leapfrog-like schemes share the strengths of
the Boris pusher: they have second-order convergence, they
are explicit, they preserve energy when there is no electric
field, and finally, they are simple and easy to implement.
In addition, they can be used to obtain the spin dynamics
of the charged particle, without solving explicitly another
differential equation when g = 2. For general g factors, a
numerical strategy was presented. All of these features make
them very appealing for applications in plasma physics, accel-
erator physics, astrophysics, and others.
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The numerical methods developed in this article could be
improved in several ways. For instance, the split-operator
method can be extended to third-order accuracy and even
higher [58–60]. Combining these results on exponential op-
erators with usual methods for solving ordinary differential
equations, we conjecture that higher-order numerical schemes
could be obtained. This will be the topic of future work.
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