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Rotational symmetry of the multiple-relaxation-time collision model
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We point out that the minimal components of the tensorial moments of the distribution that can be inde-
pendently relaxed in collision without violating rotational symmetry are its irreducible representation (irrep)
of SO(3), and a generic multiple-relaxation-time collision model can be constructed by independently relaxing
these components. As the simplest example the irreps of the second moment are the traceless deviatoric stress and
an isotropic tensor which is conserved in monatomic gases. Applying the decomposition to the thermal lattice
Boltzmann model for polyatomic gases [Phys. Rev. E 77, 035701(R) (2008)], the shear and bulk viscosities
are decoupled by two independent relaxation times. The hydrodynamic equation of the model is obtained via
Chapman-Enskog calculation and verified by numerical simulation.
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I. INTRODUCTION

A well-known deficiency of the lattice Boltzmann-BGK
(LBGK) approach [1] is its simplistic single-relaxation-time
(SRT) collision operator [2] adopted from continuum kinetic
theory. It relaxs all moments of the distribution function with a
single rate, resulting in the unphysical artifact that the thermal
diffusivity and viscosity are always the same. In continuum
kinetic theory a couple of models were proposed [3,4] to de-
couple the thermal diffusivity from viscosity by modifying the
equilibrium distribution. In the context of LBGK, a multiple-
relaxation-time (MRT) model [5,6] was suggested to assign
separate relaxation rates to the eigenvectors of the collision
matrix in the space of discrete velocities. The eigenvectors
represent the hydrodynamic moments that one is concerned
with. Nevertheless, as the underlying lattices used therein
are insufficient to accurately represent the third moments
and beyond, the Fourier equation of heat transfer is beyond
the reach, leaving an adjustable Prandtl number unattainable.
However, the numerical stability was indeed drastically im-
proved, essentially due to the trimming of the moments not
fully supported by the underlying lattice [7].

The idea of MRT was later applied to the high-order LB
which employs lattices accurate enough to recover the full
Navier-Stokes-Fourier equations [8]. The collision term is
expanded in terms of the tensorial Hermite polynomials [9] of
which, each term is assigned an independent relaxation time.
The thermal diffusivity is decoupled from the viscosity as they
are dictated by the third and second moments, respectively.
A remaining issue is that thermal diffusion is not Galilean
invariant when the thermal diffusivity is set to be different
from the viscosity. This abnormality was later removed by
explicitly correcting the third-order moment [10], or more
systematically, by carrying out the Hermite expansion in the
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reference frame moving with the fluid [11,12], or relaxing the
central moments directly.

As each of the tensorial moments consists of multiple
components, a question arises as what the minimum unit is
that can be assigned a separate relaxation time. As a fun-
damental requirement, the physics of relaxation should be
independent of the coordinate system and invariant under
spatial rotation. Therefore, the tensor components that can
be assigned independent relaxation times must form an irre-
ducible representation of the rotation group SO(3) [13]. For
instance, the irreducible components of the second moment
consist of a traceless symmetric tensor and an isotropic ten-
sor. The linear relaxation of the second moment can have
at most two rates, in analog to the two coefficients in the
constitutive relation that give rise to the shear and bulk
viscosities [14].

Microscopically bulk viscosity [15,16] stems from either
the finite energy-equilibrating time between the translational
and the internal degrees of freedom of molecular motion, or
from the dense gas effect. Here we are only concerned with
the former mechanism which has been extensively discussed
in classic kinetic theory [17–21]. Describing a monatomic gas,
the original Boltzmann equation yields zero bulk viscosity. In
the lattice Boltzmann community, the early a-thermal LBGK
models with no energy conservation exhibits an artificial
nonzero bulk viscosity which becomes absent once the correct
energy conservation is recovered [22,23]. This artifact can
also be eliminated by explicitly modifying the equilibrium
distribution [24]. To reflect the effect of energy exchange
between translational and other forms of molecular motion, a
lattice BGK model [25] was proposed to model the evolution
of the kinetic energy of internal motions by an additional
distribution in the same way as the approach used to reduce
the BGK equation to lower dimensions [26]. The same idea
was adopted to the entropic lattice Boltzmann model [27],
and in a recent model the internal energy is modeled by a
scalar [28]. In these models, although an adjustable specific
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heat ratio is achieved, the bulk and shear viscosity are coupled
together by the same relaxation time.

In the present paper, based on the mathematical fact on the
minimum rotational invariant components that a tensor can
be decomposed into, we construct a Hermite-expansion-based
MRT collision model with maximum number of relaxation
times. Particularly, the second moment in the polyatomic
model [25] is decomposed into the two parts corresponding to
shear and bulk viscosities to arrive at a model with adjustable
bulk-to-shear viscosity ratio independent of the specific heat
ratio γ . Instead of predicting experimental measurements,
our goal is to derive a model that allows the bulk viscosity
freely adjusted without violating fundamental principles. The
rest of the paper is organized as the following. In Sec. II
we give the theoretical derivation. After a brief review of
of the background, we present the tensor decomposition in
Sec. II A, followed by an introduction of the SRT poly-
atomic gas model in Sec. II B, and its extension to MRT in
Sec. II C. The hydrodynamic equation of the model is derived
via Chapman-Enskog calculation in Sec. II D. In Sec. III nu-
merical verification is presented, and finally conclusions and
some discussions are given in Sec. IV.

II. THEORETICAL DERIVATION

In a previous series of papers [8,11,12] we propose to
define the collision process through its action on the nonequi-
librium part of the distribution function. Specifically, we
expand the distribution function in terms of Hermite polyno-
mials [9] as

f (ξ, x, t ) = ω(η)
∞∑

n=0

1

n!
a(n)(x, t ):H(n)(η), (1)

where η can be ξ, c ≡ ξ − u, or v ≡ c/
√

θ , respectively,
corresponding to expansions in the laboratory frame, frame
moving with the fluid, and thermally scaled moving frame,
respectively. Here, c is the peculiar velocity, θ is the tem-
perature, and ω(η) ≡ (2π )−D/2 exp(−η2/2) is the weight
function. The expansion coefficientsa(n)(x, t ) are the moments
of the distribution function or their combinations in the vari-
ous frames. The whole set of a(n) completely and uniquely
specifies f (ξ, x, t ) and vice versa. In case c or v is used,
the binomial transform and a further scaling can be used to
transform a(n) back to the laboratory frame where they can be
exactly represented by a set of fixed discrete velocities [29].

Now consider the collision operator �( f ) which repre-
sents the change to the distribution due to the local collision
process. As apparently �( f (eq)) = 0 for convenience, we de-
note the nonequilibrium part of the distribution by f (neq) ≡
f − f (eq) and redefine � as a functional of f (neq) such that
�(0) = 0. For instance, the well-known BGK collision op-
erator is simply �( f (neq)) = −ω f (neq) where ω ≡ 1/τ is the
collision frequency and τ is the collision time. Let the expan-
sion coefficients of f (neq) and �( f (neq)) in terms of H(n)(v) be
d (n)

1 and d (n)
� , respectively. Note that if the construction of f (eq)

guarantees the conservation of mass, momentum, and energy,
we have d (0)

1 = 0, d (1)
1 = 0, and d (2)

1 is traceless. The collision
operator can be specified via the expansion coefficients. The

previous MRT model is defined by [11]

d (n)
� = −ωnd (n)

1 , n = 2, 3, . . . , (2)

which gives each of the Hermite terms a separate relaxation
frequency ωn.

A. Rotational symmetry of a rank-2 tensor

A well-known conclusion of group theory [13] is that
the nine-dimensional representation of the rotation group
SO(3) furnished by a rank-2 tensor can be decomposed into
a five-dimensional space of a traceless symmetric tensor, a
three-dimensional space of an antisymmetric tensor, and a
one-dimensional space of a unit tensor, commonly noted as
5 ⊕ 3 ⊕ 1, each of which is closed under the transform of
SO(3). Hence, the second tensorial moment, which is sym-
metric by definition, can be decomposed into the spaces of a
traceless symmetric tensor and a unit tensor (5 ⊕ 1), both can
be relaxed separately without breaking rotational symmetry.

To further illustrate, let us define two operators ā and ã,
respectively, which take the trace and traceless symmetric
components of the rank-2 tensor a. Assuming Einstein sum-
mation, in component form we define

ā ≡ aii, and ãi j ≡ 1

2
(ai j + a ji ) − ā

D
δi j . (3)

Any symmetric rank-2 tensor can be decomposed as

a = ā

D
δ + ã. (4)

Particularly, the second-order term in a Hermite expansion can
be decomposed into two parts that are orthogonal under spatial
rotation,

a:H(2)(v) = ã:H(2)(v) + ā

D
δ:H(2)(v). (5)

The action of the most general rotationally symmetric linear
relaxation operator on such a functional can be defined as

�[a:H(2)(v)] = −
[

1

τ1
ã + 1

τ2

ā

D
δ

]
:H(2)(v), (6)

with two independent relaxation times τ1 and τ2.
We note that for the two tensor contractions on the right-

hand side of Eq. (5), only the traceless component and the
trace of H(n)(v) have contributions. Hence, the same term can
take several equivalent forms, e.g.,

a:H(2)(v) = ã:vv + ā

D
(v2 − D). (7)

B. BGK model with internal degrees of freedom

For a monatomic gas in which the translational kinetic

energy is conserved, d (2)
1 is traceless so that d (2)

1 = 0. Only
a single relaxation time can exist. Previously, a lattice BGK
model was proposed for gases with internal degrees of free-
dom [25]. The approach is essentially the same as the one
developed to reduce spatial dimensionality [26]. In this ap-
proach, a polyatomic gas is described by a pair of distribution
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functions in the reduced phase space (ξ, x), obeying the fol-
lowing BGK equations:

∂g

∂t
+ ξ · ∇g = �g ≡ − 1

τ
[g − g(eq)], (8a)

∂h

∂t
+ ξ · ∇h = �h ≡ − 1

τ
[h − g(eq)θ ], (8b)

where �g and �h are the collision operators for g and h, and

g(eq) = ρ

(2πθ )D/2 exp

(
− c2

2θ

)
= ρ

θD/2
ω(v) (9)

is the Maxwellian in the reduced phase space. Here ρ is the
density, c ≡ |c|, and θ is the temperature which is related to
the energy density per mass ε by

ε = 1

2
(D + S)θ. (10)

where S is the number of internal degrees of freedom. The
specific heat ratio can be obtained as

γ ≡ cp

cv

= D + S + 2

D + S
. (11)

The variables ρ, u, and ε, are moments of the two distribu-
tions,

ρ =
∫

gdξ, (12a)

ρu =
∫

gξ dξ, (12b)

ρε = 1

2

∫
gc2dξ + S

2

∫
h dξ. (12c)

The above equations can then be discretized in velocity
space using Gauss quadrature [29,30]. As the model in-
volves energy transfer and, hence, the third moments, a Gauss
quadrature of, at least, eighth degree is required to recover
the hydrodynamic equation with full Galilean invariance [31].
Although originally a fourth-order 121-velocity quadrature
was used [25], quadrature rules with fewer velocities are
also available [23,32]. Once discretized in velocity space, the
standard lattice Boltzmann computation can be carried out
following the standard procedure outlined in Refs. [25,29].

Although Eq. (8a) appears to be identical to the BGK
equation for monatomic gases, a critical difference lies in the
calculation of g(eq) where θ is now given by Eqs. (10) and
(12c) which couple g and h. This coupling reflects energy
transfer between the translational and the internal degrees of
freedom. As the translational energy is not conserved, g(neq) ≡
g − g(eq) can have a nonvanishing trace. Nevertheless, the total
energy is still conserved as from Eqs. (12c) and (10), we have∫

gc2dξ + S
∫

h dξ = (D + S)ρθ. (13)

The definition of g(eq) of Eq. (9) gives∫
g(eq)c2dξ = Dρθ, and

∫
g(eq)dξ = ρ. (14)

The above two equations lead to∫
g(neq)c2dξ + S

∫
h(neq)dξ = 0. (15)

Together with the fact that the two relaxation times in Eqs. (8)
are identical, it ensures that∫

(�gc2 + S�h)dξ = 0, (16)

namely, ρε as defined by Eq. (12c) is conserved by the
collision operator. Obviously, mass and momentum are also
conserved as∫

�gdξ = 0, and
∫

�gξ dξ = 0. (17)

C. MRT extension

Now let d (n)
g and d (n)

h , respectively, be the Hermite expan-
sion coefficients of g(neq) and h(neq) ≡ h − g(eq)θ , i.e.,

g(neq) = ω(v)
∞∑

n=2

1

n!
d (n)

g :H(n)(v), (18a)

h(neq) = ω(v)
∞∑

n=0

1

n!
d (n)

h :H(n)(v). (18b)

Due to the conservation of mass and momentum, d (0)
g and

d (1)
g vanish. The leading coefficient of g(neq) is as follows:

d (2)
g =

∫
[g − g(eq)]H(2)(v)dv

=
∫

(vv − δ)gdv

= θ−[(D+2)/2]

[∫
gcc dc − ρθδ

]
, (19)

where the fact
∫

g(eq)H(2)(v)dv = 0 is used. The trace and
traceless component of d (2)

g can be computed as

d̄ (2)
g = θ−[(D+2)/2]

[∫
gc2dc − Dρθ

]
, (20a)

d̃
(2)
g = θ−[(D+2)/2]

∫
g

[
cc − c2

D
δ

]
dc. (20b)

Similarly the leading coefficient of h(neq) is as follows:

d (0)
h =

∫ [
h − ρθ

θD/2
ω(v)

]
dv = θ−(D/2)

[∫
h dc − ρθ

]
.

(21)
Using Eqs. (10) and (12c), d (0)

h is related to d̄ (2)
g by

θ d̄ (2)
g + Sd (0)

h = 0. (22)

Using Eq. (4), the leading term in Eq. (18a) can be decom-
posed to have

g(neq)

ω(v)
= 1

2!

[
d̃

(2)
g + d̄ (2)

g

D
δ

]
:H(2) + d (3)

g : H(3)

3!
+ · · · . (23)

A corresponding MRT collision model can then be devised as

− �g

ω(v)
= 1

2

[
d̃

(2)
g

τ21
+ d̄ (2)

g δ

τ22D

]
:H(2) + d (3)

g :H(3)

3!τ3
+ · · · , (24a)

− �h

ω(v)
= d (0)

h

τ0
+ d (1)

h :H(1)

τ1
+ · · · , (24b)
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where, τ21, τ22, τ3, τ0, and τ1 are independent relaxation
times. We now show that the energy conservation of Eq. (16)
demands that τ0 = τ22. For translational energy we note that

∫
�gc2dξ = θ (D+2)/2Tr

∫
�gvv dv

= θ (D+2)/2Tr
∫

�g[H(2)(v) + δH(0)(v)]dv. (25)

Using the orthogonal relations and the fact that Tr(d̃
(2)
g ) = 0,

we have

∫
�gc2dξ = −θ [(D+2)/2]d̄ (2)

g

τ22
= − 1

τ22

[∫
gc2dc − Dρθ

]
,

(26)

and similarly,

∫
�hdξ = −θD/2d (0)

h

τ0
= − 1

τ0

[∫
h dc − ρθ

]
. (27)

Noting Eq. (13) in order for Eqs. (24) to satisfy Eq. (16), we
must have τ0 = τ22.

D. Hydrodynamic equations

We now derive the hydrodynamic equations of Eqs. (8) and
(24). By taking the moments in Eqs. (17) and (16) of Eqs. (8),
we have the conservation equations,

dρ

dt
+ ρ∇ · u = 0, (28a)

ρ
du
dt

+ ∇ · P = 0, (28b)

ρ
dε

dt
+ ∇u:P + ∇ · q = 0, (28c)

where d/dt ≡ ∂/∂t + u · ∇ is the material derivative, and

P ≡
∫

gcc dc, and q ≡ 1

2

∫
(gc2 + Sh)c dc (29)

are the pressure tensor and energy flux, respectively. Except
for the last term in the definition of q, all are the same as in a

monatomic gas. The hydrostatic pressure,

p ≡ Pii

D
= 1

D

∫
gc2dc (30)

is defined as the average of the normal components of P and
the deviatoric stress σ ≡ −(P − pδ) is the negative of the
traceless part of P. In particular, if g and h are expanded in
terms of Hermite polynomials H(n)(v), we have

P = θ [(D+2)/2]
∫

g[δ + H(2)(v)]dv

= θ [(D+2)/2][d (0)δ + d (2)]. (31)

On decomposing d (2) according to Eq. (4), we have

p = θ [(D+2)/2]

[
d (0) + d̄ (2)

D

]
, and σ = −θ [(D+2)/2]d̃

(2)
.

(32)
As the zeroth approximation, taking g and h as their equi-

libria, g(eq) and g(eq)θ , we have the ideal gas equation of state,

p = ρθ, (33)

and

σ = 0, and q = 0, (34)

which yield Euler’s equations when plugged into Eqs. (28).
The first Chapman-Enskog approximation [33] amounts to
substituting f = f (eq) + f (1) + · · · into the Boltzmann-BGK
equation and keeping the leading terms on both sides to yield

f (1) ∼= −τ

(
∂

∂t
+ ξ · ∇

)
f (eq). (35)

Using Euler’s equation to convert the time derivatives to spa-
tial ones, f (1) can be written in terms of the hydrodynamic
variables and their spatial derivatives. On substituting into
Eq. (29), we obtain P(1) and q(1) and, in turn, the Navier-
Stokes-Fourier equations when plugged into Eqs. (28).

It was noted [12] that in this procedure, P(1) and q(1) can
be obtained by taking the corresponding moments of the BGK
equation directly without computing f (1) explicitly. We now
apply the same procedure to Eqs. (8) and (24). Define the
differential operator for brevity,

D ≡ ∂

∂t
+ ξ · ∇ = d

dt
+ c · ∇, (36)

where d/dt is the material derivative, the first Chapman-
Enskog approximation can be written as

Dg(eq) = −ω(v)

[
1

2

(
d̃

(2)
g

τ21
+ d̄ (2)

g δ

τ22D

)
:H(2) + d (3)

g :H(3)

3!τ3
+ · · ·

]
, (37a)

D(g(eq)θ ) = −ω(v)

[
d (0)

h

τ22
+ d (1)

h :H(1)

τ1
+ · · ·

]
. (37b)

For the left-hand side of Eqs. (37a) and (37b), using the chain rule by following the standard procedure [33], we have

Dg(eq) =
[
Dρ

∂

∂ρ
+ Dui

∂

∂ui
+ Dθ

∂

∂θ

]
. (38)
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The derivatives with respect to ρ, ui, and θ can be conve-
niently carried out by differentiating the logarithm of Eq. (9),

1

g(eq)

∂g(eq)

∂ρ
= 1

ρ
, (39a)

1

g(eq)

∂g(eq)

∂ui
= ci

θ
, (39b)

1

g(eq)

∂g(eq)

∂θ
=

(
c2

2θ
− D

2

)
1

θ
. (39c)

Ignore the high-order terms in Eq. (28), the Euler equations
can be written as

Dρ = −ρ∇ · u + c · ∇ρ, (40a)

Du = −∇θ − θ

ρ
∇ρ + c · ∇u, (40b)

Dθ = − 2θ

D + S
∇ · u + c · ∇θ. (40c)

Combine the above, we have

Dg(eq) = 1

θ

[(
cc − c2δ

D

)
:∇u +

(
c2

2θ
− D + 2

2

)
c · ∇θ + S

D + S

(
c2

D
− θ

)
∇ · u

]
g(eq), (41a)

D(g(eq)θ ) =
[(

cc − c2δ

D

)
:∇u +

(
c2

2θ
− D

2

)
c · ∇θ + S

D + S

[
c2

D
−

(
1 + 2

S

)
θ

]
∇ · u

]
g(eq), (41b)

where the first two terms in the brackets of the first equation
are the same as in the monatomic case, whereas the third one
is due to the internal degrees of freedom. Now taking the
moment

∫ ·cc dc of Eq. (37a), the moment equation for the
pressure and stress tensor can be obtained

2ρθ

[(
� − δ∇ · u

D

)
+ Sδ∇ · u

D(D + S)

]

= −θ (D+2)/2

[̃
d

(2)
g

τ21
+ d̄ (2)

g δ

Dτ22

]
, (42)

where � ≡ 1
2 [∇u + (∇u)T ] is the strain rate. Matching up

the trace and traceless part on both sides, we have the correc-
tion to the hydrostatic pressure and deviatoric stress as

p(1) = θ (D+2)/2
d̄ (2)

g

D

= − 2S

D(D + S)
τ22ρθ∇ · u, (43a)

σ (1) = −θ (D+2)/2d̃
(2)
g

= 2τ21ρθ

(
� − δ∇ · u

D

)
(43b)

corresponding to the kinematic shear viscosity ν and the kine-
matic bulk viscosity νb,

ν = τ21θ, and νb = 2S

D(D + S)
τ22θ. (44)

Note that τ22 in the second equation makes the bulk viscosity
independent to the shear viscosity, whereas in Ref. [25] they
have a fixed ratio. Similarly taking the moments

∫
c2c dc

and
∫

c dc of Eqs. (37a) and (37b), respectively, the moment
equations for the translational heat flux and internal heat flux
can be obtained

θ (D+3)/2d (3)
g = −τ3(D + 2)ρθ∇θ, (45a)

θ (D+1)/2d (1)
h = −τ1ρθ∇θ. (45b)

Take the summation, the first-order correction to the total
heat flux is as follows:

q(1) = − (D + 2)τ3 + Sτ1

2
ρθ∇θ (46)

corresponding to a heat conductivity of

λ = (D + 2)τ3 + Sτ1

2
ρθ. (47)

Noting that cp = (D + S + 2)/2, the kinematic thermal diffu-
sivity is as follows:

κ ≡ λ

ρcp
= (D + 2)τ3 + Sτ1

D + S + 2
θ, (48)

which reduces to τθ if S = 0 as for monatomic gases, or τ1 =
τ3 = τ as for the single-relaxation-time polyatomic model
[25]. The adjustable Prandtl number is

Pr = ν

κ
= τ21(D + S + 2)

τ3(D + 2) + τ1S
, (49)

which recovers the results in Refs. [8,12,34] if τ3 = τ1.

III. NUMERICAL VERIFICATION

To verify the model, the transport coefficients are mea-
sured from the dynamics of the linear hydrodynamic modes
in a one-dimensional periodic setup and compared with their
theoretical values. The case setup has been extensively dis-
cussed previously [8,12,34]. Here we briefly summarize the
analytical results. Consider the monochromatic plane wave
perturbation,⎛

⎝ρ

u
θ

⎞
⎠ =

⎛
⎝ρ0

u0

θ0

⎞
⎠ +

⎛
⎝ρ̄

ū
θ̄

⎞
⎠eωt+ik·(x−u0t ), (50)

where the subscript 0 denotes the base flow and ρ̄, ū, and θ̄

are the perturbation amplitudes. Both the base state and the
perturbation amplitudes are homogeneous and constant. k and
ω, respectively, are the wave vector and angular frequency of
the plane wave. Decomposing the velocity into components
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parallel and perpendicular to the wave vector and substitut-
ing into Eqs. (28), we obtain an eigensystem in the space
of (ρ̄, ū‖, θ̄ , ū⊥)T from which the dimensionless dispersion
relations of four linear modes can be obtained

− ωv

csk
= 1

Re
, (51a)

− ωt

csk
= 1

Pe
+ (γ − 1)λ

Pe3
+ O

(
1

Pe5

)
, (51b)

−ω±
csk

= γ − λ

2 Pe
− (γ − 1)λ

2 Pe3
+ O

(
1

Pe5

)

± i

[
1 − (γ + λ)2 − 4λ

8 Pe2
+ O

(
1

Pe4

)]
, (51c)

where ωv, ωt , and ω± are the angular frequencies of the
viscous, thermal, and two acoustic modes, cs ≡ √

γ θ0 is a
characteristic speed of sound, k ≡ |k| is the wave num-
ber, Re ≡ cs/νk, Pe ≡ cs/κk, and Pr ≡ ν/κ are the acoustic
Reynolds, Péclet, and Prandtl numbers, and

λ ≡ 1 −
(

2 − 2

D
+ νb

ν

)
Pr (52)

is a constant defined for brevity which is the only place where
bulk viscosity affects the dispersion relations. Although the
viscous mode is independent from the other three, and its
dispersion relation is exact, the dispersion relations of the ther-
mal and acoustic modes are solutions of a cubic characteristic
equation and only their asymptotic form at the large-Pe limit
are given. Up to the order of O(Pe−2), the decay rates of the
viscous and thermal modes are as follows:

ωv = −νk2, and ωt
∼= −κk2

[
1 + (γ − 1)λ

Pe2

]
. (53)

The sound attenuation rate is a weighted sum of the shear
viscosity, bulk viscosity, and thermal diffusivity,

α ∼= −k2
[
aκ + (1 − a)ν + νb

2

][
1 + (γ − 1)λ

(γ − λ)Pe2

]
, (54)

where a = (γ − 1)/2. The speed of sound is also corrected by
the dissipation rates as

√
γ θ0

[
1 − (γ + λ)2 − 4λ

8 Pe2

]
. (55)

Although the effects of the bulk viscosity on sound speed and
decay rate of the thermal mode is on the order of O(Pe−2),
its effect on sound attenuation is on the leading order. As a
verification of the bulk viscosity, we numerically measure the
sound attenuation rate and compare with the theoretical value.

The simulation is performed on a 256 × 5 × 5 periodic
lattice using the minimal ninth-order E9

3,103 quadrature [23]
capable of representing the fourth moments exactly. As the
acoustic modes are isentropic, we set ρ = ρ0 + ρ ′ sin(k ·
x) and initialize θ using the isentropic invariant θρ1−γ =
θ0ρ

1−γ

0 . The sound attenuation rate α and the sound frequency
ω are measured by fitting the pressure fluctuation with the
model ase−αt sin(ωt + φ).

Shown in Fig. 1 are the time histories of the pressure
perturbation amplitude for various ratios of bulk to shear
viscosities. The shear viscosity and all other parameters are
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FIG. 1. Time history of the amplitude of pressure perturbation
in acoustic waves with the varying ratio of bulk to shear viscosities.
The solid black, dotted black, dashed black, solid red, and solid blue
curves denote the cases with νb/ν = 100, 500, 1000, 1500, 2000, re-
spectively. The other parameters are τ21 = 0.5005, γ = 1.3, Pr =
2.1, and τ1 = τ3.

fixed. Clearly the sound attenuation rate increases with the
bulk viscosity. As shown in Fig. 2, the relative error of sound
attenuation rate against its theoretical value is below 1% over
a wide range of the viscosity ratio. As a relaxation time of
τ21 � 0.5005 with small bulk viscosity could cause stability
problem, and τ22 � 2 corresponds to a finite Knudsen number,
two different τ21’s is used. Also worth noting is that, at least,
in the continuum flow regime as long as the total thermal
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FIG. 2. Relative error of the decay rate with the varying ratio of
bulk viscosity to shear viscosity. Two cases are tested: τ21 = 0.5005
and τ21 = 0.6. In both cases γ = 1.3, Pr = 2.1, and τ1 = τ3. To be
seen is that the relative error is generally below 1% over a large range
of νb/ν.
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FIG. 3. Sound speed: analytical solution cs = √
γ θ0 versus nu-

merical measurement with varying specific heat ratio. Parameters are
Pr = 2.1, τ21 = 0.501, νb/ν = 100, and τ1 = τ3.

conductivity remain the same, τ1 and τ3 can be adjusted freely
according the constraint Eq. (47) without causing any visible
effect. The effect of τ1 and τ3 in rarefied gas flow regime
remains to be investigated in a future work.

Shown in Fig. 3 are the sound speed measured through the
angular frequency of the pressure perturbation. For the usual
range of specific heat ratio, numerical measurements agree
well with theoretical predictions.

IV. CONCLUSIONS AND DISCUSSION

To summarize, we point out that a collision operator can be
defined as a spectral expansion where the eigenstates to which
separate relaxation times can be assigned to correspond to

the irreducible representations of SO(3) to preserve rotational
symmetry. As the direct derivative at the second order, a LB
model with arbitrarily adjustable bulk viscosity independent
of the shear viscosity is constructed and numerically verified.
Comparing with the similar model in Ref. [28], the present
model employs a full distribution function to describe the
additional energy transfer and a central-moment expansion
which recovers the full Galilean invariance in the energy
equation. More importantly the present model can be viewed
as the first of a more comprehensive MRT model with a
spectrum of relaxation times that can capture the details of
the collision kernel and capable of simulating gases in a
broader flow regime. An interesting future direction is that the
same decomposition can be applied to the higher moments.
For instance, the space of rank-3 tensors is 27 dimensional,
which according to group theory, can be decomposed into
seven lower-dimensional subspaces as commonly noted as
7 ⊕ 5 ⊕ 5 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 1. Each of these spaces is closed
under spatial rotation. Obviously many of these seven sub-
spaces are not fully symmetric as the third moment should be.
It would be interesting to know the maximum number of re-
laxation times a given order of moment can accommodate, and
physical transport coefficients the relaxation times correspond
to.
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