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Improved thermal multiple-relaxation-time lattice Boltzmann model
for liquid-vapor phase change
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In this paper, an improved thermal multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed
for simulating liquid-vapor phase change. A temperature equation is first derived for liquid-vapor phase change,
where the latent heat of vaporization is decoupled with the equation of state. Therefore, the latent heat of
vaporization can be arbitrarily specified in practice, which significantly improves the flexibility of the present LB
model for liquid-vapor phase change. The Laplacian term of temperature is avoided in the proposed temperature
equation and the gradient term of temperature is calculated through a local scheme. To solve the temperature
equation accurately and efficiently, an improved MRT LB equation with nondiagonal relaxation matrix is
developed. The implicit calculation of the temperature, caused by the source term and encountered in previous
works, is avoided by approximating the source term with its value at the previous time step. As demonstrated by
numerical tests, the results by the present LB model agree well with analytical results, experimental results, or
the results by the finite difference method where the fourth-order Runge-Kutta method is employed to implement
the discretization of time.
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I. INTRODUCTION

Liquid-vapor phase change processes are of great impor-
tance in lots of industrial systems such as power plants [1,2],
fluidized beds [3,4], fuel cells [5,6], etc. Related phenomena
include the development of moving phase interface and the
absorption or release of latent heat. Mathematical modeling
of such phenomena remains one of the challenging problems
because of the complex boundary conditions and varied ther-
mophysical properties. Recently, the lattice Boltzmann (LB)
method originated from the lattice-gas automata [7,8] has
shown great potential in simulating liquid-vapor phase change
phenomena owing to its obvious advantages, such as the
mesoscopic kinetic essences, easy boundary treatment, and
inherent parallelizable computational property [9]. Significant
progress for liquid-vapor phase change problems, including
achieving better thermodynamic consistency, larger density
ratio, and tunable surface tension, has been made based on the
LB method [10–13]. However, accurate and efficient model-
ing of the thermal energy transmission for liquid-vapor phase
change is still a challenge.

Generally, the existing LB models to describe the ther-
mal energy transmission for liquid-vapor phase change, such
as the hybrid model [14–16] and the double-distribution-
function (DDF) model [17–19], require a temperature equa-
tion to capture the development of temperature field. Zhang
and Chen [20] derived a temperature equation for liquid-
vapor phase change based on the LB method. Later, Hazi and
Markus proposed another temperature equation coupled with
a nonideal equation of state [21]. Then, based on Hazi and
Markus’ work, Gong and Cheng proposed an improved tem-
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perature equation for liquid-vapor phase change [22]. With
this equation, Gong and Cheng successfully simulated the
pool boiling curve from natural convection to stable film
boiling [23]. Recently, an improved temperature equation
based on Gong and Cheng’s model was proposed by Li et al.
[24] to correct the error terms in Gong and Cheng’s model.
Similar contributions to improving the temperature equation
for liquid-vapor phase change were also made in the past few
years [25–28]. Although much progress has been made, a gen-
eral limitation still exists, i.e., the latent heat of vaporization
is coupled with the equation of state, which results in less
flexibility to control the vaporization rate.

In this work, we proposed an improved thermal MRT LB
model for liquid-vapor phase change. In the present model,
a temperature equation is first derived where the latent heat
of vaporization is decoupled with the equation of state. There-
fore, the latent heat of vaporization can be arbitrarily specified
in practice, which significantly improves the flexibility of
the present LB model for liquid-vapor phase change. The
Laplacian term of temperature is eliminated in the present
temperature equation and the gradient term of temperature is
calculated through a local scheme. Due to the consistency of
numerical methods adopted for the velocity and temperature
fields, the DDF model is utilized in the present model for
liquid-vapor phase change. An improved thermal MRT LB
equation with a nondiagonal relaxation matrix is proposed
to solve the temperature equation while a pseudopotential
LB model is utilized to capture the hydrodynamic behavior
for liquid-vapor phase change. Instead of implementing an
iteration procedure, the source term is approximated by its
value at the previous time step to calculate the macroscopic
temperature in the present model. Satisfactory accuracy of this
approximation in real applications is demonstrated through
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a series of numerical tests. The rest of the present paper is
organized as follows. The pseudopotential model is intro-
duced in Sec. II. The improved thermal MRT LB model is
proposed in Sec. III. The validation of the present model is
performed in Sec. IV. Finally, Sec. V concludes the paper.

II. PSEUDOPOTENTIAL LB MODEL

For the sake of completeness, the pseudopotential model
proposed by Huang and Wu [12] is briefly introduced in this
section. In this model, the evolution equation for the density
distribution function f is

f (x + eδt , t + δt ) − f (x, t )

= M−1

{
−SM[f (x, t ) − feq(x, t )] +

(
I − S

2

)
δt Fm(x, t )

+ SQm(x, t )

}
, (1)

where e is the discrete velocity, δt is the time step, M is the
transformation matrix, S is the relaxation matrix, feq is the
equilibrium density distribution function, I is the unit matrix,
Fm is the discrete force term, and Qm is the discrete additional
term in the moment space.

The equilibrium density distribution function feq in Eq. (1)
is given by

f eq
i = wiρ

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− |u|2
2c2

s

]
, (2)

where wi is the weight coefficient in direction i, ρ is
the density, u is the velocity, and cs is the lattice sound
speed.

For the sake of simplicity, the two-dimensional nine-
velocity (D2Q9) lattice [29] is used in this work. Therefore,
the discrete velocity is given by

ei =
⎧⎨
⎩

c(0, 0)T, i = 0,

c{cos[(i − 1)π/2], sin[(i − 1)π/2]}T, i = 1, 2, 3, 4,√
2c{cos[(2i − 1)π/4], sin[(2i − 1)π/4]}T, i = 5, 6, 7, 8,

(3)

where c = δx/δt is the lattice speed, and δx is the lattice
spacing. The transformation matrix is given by [30]

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)
The relaxation matrix can be written as

S = diag(s0, se, sε, s j, sq, s j, sq, sp, sp). (5)

The lattice sound speed is given by cs = c/
√

3, and the
weight coefficient is given by

wi =
⎧⎨
⎩

4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8.

(6)

The discrete force term Fm in Eq. (1) can be written as

Fm =
(

0, 6
F · u

c2
,−6

F · u
c2

,
Fx

c
,−Fx

c
,

Fy

c
,−Fy

c
,

2
Fxux − Fyuy

c2
,

Fxuy + Fyux

c2

)T

, (7)

where F = Fin + Fb is the total force, Fin and Fb are the inter-
action force and the external force, respectively. The discrete
additional term Qm in Eq. (1) is obtained from a third-order
Chapman-Enskog analysis to achieve a better thermodynamic

consistency, which is given by

Qm =
(

0, 3(k1 + 2k2)
|Fin|2

Gψ2c2
,−3(k1 + 2k2)

|Fin|2
Gψ2c2

,

0, 0, 0, 0, k1

F 2
in,x − F 2

in,y

Gψ2c2
, k1

Fin,xFin,y

Gψ2c2

)T

, (8)

where ψ is the pseudopotential function, G is the interaction
strength, k1 and k2 are two tunable parameters. In the present
work, k1 = 0 and k2 = 0.178 are utilized to achieve better
thermodynamic consistency. The relationships between the
macroscopic and mesoscopic parameters are defined as

ρ =
∑

i

fi, (9a)

ρu =
∑

i

ei fi + δt

2
F. (9b)

In the pseudopotential LB model, the nonideal equation of
state and the nonzero surface tension are simultaneously re-
produced by the interaction force Fin. For the nearest-neighbor
interactions on D2Q9 lattice, the interaction force can be
expressed as

Fin = −Gc2

c2
s

ψ (x)
8∑

i=1

wiψ (x + eiδt )eiδt . (10)

With Eq. (10), the nonideal equation of state can be ob-
tained as

pEOS = ρc2
s + Gδ2

x

2
ψ2. (11)

For a prescribed equation of state in real application, the
pseudopotential function is inversely calculated by Eq. (11),
i.e., ψ = √

2(pEOS − ρc2
s )/(Gδ2

x ). In the present work, the

043308-2



IMPROVED THERMAL MULTIPLE-RELAXATION-TIME … PHYSICAL REVIEW E 103, 043308 (2021)

Peng-Robinson equation of state is utilized, which is given
by [31]

pEOS = ρRT

1 − bρ
− aθ (T )ρ2

1 + 2bρ − b2ρ2
, (12)

where R is the gas constant, θ (T ) = [1 + (0.374 64 +
1.542 26ω − 0.269 92ω2)(1 − √

T/Tc)]2, a=0.457 24R2T 2
c /

pc, b = 0.1873RTc/pc, and T is the temperature which is
calculated by Eq. (29b) in real simulations (ω is the acentric
factor, Tc is the critical temperature, and pc is the criti-
cal pressure). We utilize a = 1/49, b = 2/21, and R = 1
in the present study and choose ω = 0.344. Considering
that the pseudopotential LB model is a diffusive inter-
face model, the position of the interface is defined at ρ =
(ρl + ρv )/2 in the present work.

III. IMPROVED THERMAL MRT LB MODEL

A. Temperature equation

Generally, the energy equation utilized to describe the ther-
mal energy transmission for fluid can be expressed by [24]

ρT
Ds

Dt
= ∇ · (λ∇T ) − 
, (13)

where T is the temperature, s is the specific entropy, λ is the
thermal conductivity, 
 = ρς (∂ ju j )2 + ρν/2(∂ jui + ∂iu j )2 is
the dissipation function, and ς and ν are the bulk viscos-
ity and kinematic viscosity, respectively. For liquid-vapor
phase change, the dissipation function 
 in Eq. (13) can be
neglected [21,22,24,26]. Therefore, the energy equation for
liquid-vapor phase change is

ρT
Ds

Dt
= ∇ · (λ∇T ). (14)

To simplify Eq. (14), a thermodynamic relationship is in-
troduced as

T ds = de + pdv = de − p

ρ2
dρ, (15)

where e is the specific internal energy, p is the pressure, and
v is the specific volume. The internal energy e in Eq. (15) can
be expressed by

de =
(

∂e

∂T

)
ρ

dT +
(

∂e

∂ρ

)
T

dρ = cvdT +
(

∂e

∂ρ

)
T

dρ,

(16)
where cv is the specific heat at constant volume.

Inspired by Hu and Liu [32], in the present work, a linear
assumption for the last term in Eq. (16) is made to introduce
the latent heat of vaporization hlv , which is given by(

∂e

∂ρ

)
T

dρ = el − ev

ρl − ρv

dρ = −hlv − ps(vv − vl )

ρl − ρv

dρ, (17)

where ps is the saturated pressure, and the subscripts
"v“ and ”l" denote the vapor and liquid phases, re-
spectively. For the sake of simplicity, a parameter H =
[hlv − ps(vv − vl )]/(ρl − ρv ) is introduced. Substituting
Eqs. (16) and (17) into Eq. (15), it is obtained that

T ds = cvdT −
(

H + p

ρ2

)
dρ. (18)

Then, the temperature equation for liquid-vapor phase
change can be obtained by substituting Eq. (18) into Eq. (14):

ρcv (∂t T + u · ∇T ) = ∇ · (λ∇T ) − ρ2

(
H + p

ρ2

)
(∇ · u).

(19)
Note that the continuity equation Dρ/Dt = −ρ∇ · u is

also utilized to obtain Eq. (19).
In the DDF model, the temperature equation is solved by a

thermal LB equation, which requires the temperature equation
as a standard convection-diffusion equation [9]. Considering
that

1

ρcv

∇ · (λ∇T ) = ∇ · (α∇T ) + (α∇T ) · [∇(ρcv )]

ρcv

, (20)

where α = λ/(ρcv ) is the thermal diffusivity, Eq. (19) can be
rewritten as

∂t T + ∇ · (uT ) = ∇ · (α∇T ) + (α∇T ) · [∇(ρcv )]

ρcv

+
(

T − ρH

cv

− p

ρcv

)
(∇ · u). (21)

Note that Eq. (21), as a standard convection-diffusion
equation, is the temperature equation proposed in this work.
Compared with the previous work, the latent heat is decoupled
with the equation of state by Eq. (17). In fact, the thermody-
namic relationship utilized in the previous work to simplify
the energy equation Eq. (14) is [18,22,24,27]

T ds = cvdT + T

(
∂ pEOS

∂T

)
ρ

dv. (22)

The term (∂ pEOS/∂T )ρ in Eq. (22) implicitly combines the
latent heat and the equation of state, and thus decreases the
flexibility to control the vaporization change rate.

Before proceeding further, some comparisons between the
present temperature equation [i.e., Eq. (21)] with previous
equations are useful. Comparing Eq. (21) with the temperature
equation proposed by Gong and Cheng [22], which is given by

∂t T + ∇ · (uT ) = ∇ · (α∇T )

+ T

[
1 − 1

ρcv

(
∂ pEOS

∂T

)
ρ

]
(∇ · u), (23)

it can be found that the term (α∇T ) · [∇(ρcv )]/(ρcv ) in
Eq. (21) is unreasonably neglected in Eq. (23). This incorrect
treatment in Gong and Cheng’s model has been considered as
a major reason causing significant inaccuracy for liquid-vapor
phase change [24].

A correction model to Gong and Cheng’s model is pro-
posed by Li et al. [24]. The temperature equation for
liquid-vapor phase change in Li et al.’s model is [24]

∂t T + ∇ · (uT ) = ∇ · (k∇T ) + 1

ρcv

∇ · (λ∇T ) − ∇ · (k∇T )

+ T

[
1 − 1

ρcv

(
∂ pEOS

∂T

)
ρ

]
(∇ · u), (24)

where k is a constant without physical meaning.
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The nonphysical constant k in Eq. (24) is utilized to elim-
inate the error term in Gong and Cheng’s model. Comparing
the present temperature equation with Eq. (24), it can be found
that the nonphysical constant k in Eq. (24) is replaced by the
thermal diffusivity coefficient α in Eq. (21), which can avoid
the calculation of the Laplacian of temperature [∇(k∇T ) =
k∇2T ].

B. Improved thermal MRT LB equation

In this section, an improved thermal MRT LB equation
with a temperature distribution function g is utilized to solve
the temperature equation proposed in this work. The evolution

equation for the temperature distribution function is

g(x + eδt , t + δt ) − g(x, t )

= M−1

{
−�gM[g(x, t ) − geq(x, t )] +

(
I − �g

2

)
δt Gm

}
,

(25)

where geq is the equilibrium temperature distribution function,
�g is the relaxation matrix for the thermal MRT LB equation,
and Gm is the discrete source term.

To correctly recover the present temperature equation
without deviation term, the nondiagonal relaxation matrix
proposed by Huang and Wu [33] is utilized:

�g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 0 0 0 0 0 0 0 0
0 s1 0 0 0 0 0 0 0
0 0 s2 0 0 0 0 0 0
0 0 0 s3 s4

( s3
2 − 1

)
0 0 0 0

0 0 0 0 s4 0 0 0 0
0 0 0 0 0 s5 s6

( s4
2 − 1

)
0 0

0 0 0 0 0 0 s6 0 0
0 0 0 0 0 0 0 s7 0
0 0 0 0 0 0 0 0 s8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where s0, s1, ..., and s8 are the relaxation factors. The cor-
responding equilibrium temperature distribution function is
chosen as [33]

geq
i =

⎧⎪⎨
⎪⎩

5
9 T, i = 0,(

1
18 + u·ei

3c2

)
T, i = 1, 2, 3, 4,(

1
18 + u·ei

12c2

)
T, i = 5, 6, 7, 8.

(27)

The discrete source term Gm in Eq. (25) can be described
as

Gm = (φ,−2φ, 2φ, 0, 0, 0, 0, 0, 0)T (28)

where φ = (α∇T )·[∇(ρcv )]
ρcv

+ (T − ρH
cv

− p
ρcv

)(∇ · u) is the
source term of Eq. (21). The relationships between the
macroscopic and mesoscopic parameters are

s3 = s5 = 2c2
s δt

2α + c2
s δt

, (29a)

T =
∑

i

gi + δt

2
φ. (29b)

Note that, due to the temperature related terms, such as
(α∇T ) · [∇(ρcv )], in the source term φ, the calculation of
the macroscopic temperature via Eq. (29b) becomes implicit.
Instead of implementing an iteration procedure, the source
term φ in Eq. (29b) is approximated by its value at the pre-
vious time step in the present model. The applicability and
accuracy of such approximation will be numerically validated
in Sec. IV.

Considering that the thermal diffusivity coefficient α varies
between the liquid and vapor phases, an interpolation algo-
rithm is introduced to determine the relaxation factor. In the
present work, the thermal conductivity λ needs to be calcu-

lated first as

λ = λv + ρ − ρv

ρl − ρv

(λl − λv ). (30)

Then, the thermal diffusivity α is determined by

α = λ

ρcv

, (31)

and the relaxation factor can be obtained by Eq. (29a).
The Chapman-Enskog analysis for the improved thermal

MRT LB equation proposed in this section is performed in
Appendix. It can be found that the present temperature equa-
tion can be correctly recovered from the improved thermal
MRT LB equation with no deviation term. Moreover, a local
scheme for the gradient of temperature can also be obtained
from the Chapman-Enskog analysis, which is given by

∂xT = − s3

c2
s δt

(
m(1)

3 + s4

2
m(1)

4

)
, (32a)

∂yT = − s5

c2
s δt

(
m5

(1) + s6

2
m(1)

6

)
, (32b)

where m(1) = M(g − geq ) is the first-order moment function.
Note that the isotropic central scheme is widely utilized in pre-
vious works to calculated the gradient of temperature [9,24],
which is given by

∇T = 1

c2
s δt

∑
i

wiT (x + ei )ei. (33)

The coefficient wi in Eq. (33) depends on the lattice
scheme. Since the D2Q9 lattice is adopted in the present work,
this coefficient is the same as Eq. (6). Comparing Eq. (33) with
Eq. (32), it can be found that extra information from neighbor
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FIG. 1. Simulation of droplet evaporation in open space. Snap-
shots of the density contours obtained by Gong and Cheng’s model
[22] (a), Li et al.’s model [24] (b), the present LB model (c), and the
FDM (d). The snapshots are taken at t∗ = 0.1, 0.25, and 0.5 (from
left to right).

grids is required by Eq. (33). Therefore, with Eq. (32), better
locality can be achieved in the present model.

IV. RESULTS AND DISCUSSION

A. Droplet evaporation in open space

Droplet evaporation in open space is a classic benchmark to
validate the accuracy of the present LB model for liquid-vapor
phase change. In this case, the numerical results are expected
to accord with the D2 law which predicts that the square of
droplet diameter D decreases linearly with time [15,16,24]:(

D

D0

)2

= 1 − Kt, (34)

where D0 is the initial droplet diameter, t is the evaporation
time, and K is the slope indicating the evaporation rate.

In our simulation, a droplet (initial diameter D0 = 60) at
saturated temperature Ts = 0.86Tc is placed at the center of
a computational domain (Nx × Ny = 200 × 200) filled with
superheated vapor at uniform temperature Tv . The superheat

0 0.2 0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

FIG. 2. Simulation of droplet evaporation in open space. Vari-
ation of the square of the dimensionless diameter (D∗)2 with the
dimensionless time t∗.

of the vapor is set as Tv − Ts = 0.14Tc. According to the
requirements of the D2 law, the thermal conductivity is chosen
as a constant: λ = 1/3. A constant temperature (Tb = Tv) is
employed at the boundaries to drive the evaporation process.
The total simulation time is set as ttotal = 200 000δt .

Note that the present LB model is expected to be able to
accurately simulate the liquid-vapor phase change phenomena
with a tunable latent heat. To confirm it, the laten heat in the
present LB model is first set to the same value as it in the
previous LB models proposed by Gong and Cheng [22] and
Li et al. [24]. As a result, the evaporation rates predicted by
the present LB model and the previous LB models should be
the same as one another. The latent heat in the previous LB
models can be calculated through the method proposed by
Gong and Cheng [18], and the result shows that the latent heat
is hlv = 0.1677 in this case. For comparison, the snapshots
of the density contours obtained by the previous LB models
and the present LB model are shown in Fig. 1. Meanwhile
the variation of the square of the dimensionless diameter
(D∗)2 = (D/D0)2 with the dimensionless time t∗ = t/ttotal

is displayed in Fig. 2. A finite difference method (FDM),
where the fourth-order Runge-Kutta method is employed to
implement the discretization of time, is also used to solve
Eq. (21), and the numerical results by the FDM are considered
in the comparison to validate the present LB model. As the
figures show, the evaporation process described by the present
LB model is similar to those described by Li et al.’s model
[24] and the FDM, which indicates the good accuracy of the
present LB model. On the other hand, the evaporation rate
predicted by Gong and Cheng’s model [22] is much larger
than the two other LB models and the FDM. The major reason
causing the deviation of Gong and Cheng’s model [22] is the
incorrect treatment for the temperature equation analyzed in
Sec. III.

To further validate the ability of the present LB model to
control the latent heat and the accuracy of the approximation
for the source term in Eq. (29b), the numerical results by
the present LB model are further compared with those by
the FDM. Two different latent heats, hlv = 0.19 and 0.34,
are considered. The comparison is shown in Fig. 3. It can
be found from Fig. 3 that the results obtained by the present
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FIG. 3. Simulation of droplet evaporation in open space. Com-
parison of the present LB model and the FDM.

LB model agree well with the results obtained by the FDM,
which demonstrates that satisfactory accuracy can be achieved
by approximating the source term in Eq. (29b) by its value
at the previous time step. It can also be found in Fig. 3 that
the results with both latent heats are in good consistency with
the D2 law described by Eq. (34) which further validates the
ability of the present model to control the evaporation rate.
Therefore, in real applications the latent heat of the present
model can be flexibly determined through some dimensionless
parameters of real phenomena, such as the Jakob number
(Ja = cp,l�T/hlv). Note that the previous LB models pro-
posed by Gong and Cheng [22] and Li et al. [24] cannot
control the latent heat since it is coupled with the equation
of state in these models.

As mentioned before, the present LB model requires less
computational resource and has better locality than the previ-
ous LB models. Therefore, a higher efficiency is expected for
the present LB model. To confirm it, a comparison between
the run time of the present LB model and the previous LB
models is shown in Table I. An OpenMP C++ parallel code
is executed using the GNU compiler on a computer with
Intel® Xeon® E5-2697 v3 processor (CPU) @ 2.60 GHz base
frequency and 128.0 GB shared memory (RAM). The results
in Table I show the computational cost per time step for this
case. As it can be seen, the present LB model achieves the
highest efficiency while Gong and Cheng’s model [22] and Li
et al.’s model [24] have a similar performance.

B. Droplet evaporation on heated surface

Droplet evaporation on a heated surface is another bench-
mark used to validate the present LB model for liquid-vapor
phase change. In this case, the numerical results are compared

TABLE I. Comparison between the computational efficiency of
the present and previous LB models. The CPU time (in seconds)
per iteration for a 2002 grid on a shared-memory computer using
12 processors.

Present model Gong and Cheng [22] Li et al. [24]

CPU time (s) 3.14 × 10−3 3.72 × 10−3 3.62 × 10−3

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

FIG. 4. Simulation of droplet evaporation on a heated substrate.
Variation of the dimensionless radius r∗ with the dimensionless
time t∗

1 .

with the experimental results obtained by Dash and Garimella
[34]. In their experiment, a small droplet is heated on a hy-
drophobic substrate with an initial contact angle of 120◦. The
environmental temperature is 21 ± 0.5 ◦C while the substrate
temperature is 40 ◦C. In the simulations, we set a computation
domain with Nx × Ny = 300 × 150. A droplet of diameter
D0 = 70 at temperature Ts = 0.86Tc is initially located on a
heated surface surrounded by saturated vapor. To agree with
the experiment, the Jakob number [Ja = cp,l (Tw − Ts)/hlv ,
where Tw is the wall temperature] in the simulations is set
as the same as the Jakob number in the experiment which
is Ja = 0.036 in this case. The Dirichlet boundary condition
for temperature and no-slip boundary condition for velocity
are applied at the bottom boundary, while other boundaries
are considered as no-gradient boundaries for both temperature
and velocity.

The present LB model is first compared with the previous
LB models proposed by Gong and Cheng [22] and Li et al.
[24]. Therefore, the latent heat is set as hlv = 0.1677 to be
consistent with the previous LB models and the corresponding
wall temperature is set as Tw = 0.8925Tc. The variation of
the dimensionless radius r∗ = r/r0 with the dimensionless
time t∗

1 = t/t0 (r0 and t0 are the initial radius and the total
evaporation time, respectively) is displayed in Fig. 4. Note that
in our simulation a large transition of the dimensionless radius
r∗ caused by the initial-condition effect is observed at the be-
ginning of the evaporation process. Therefore, the comparison
is considered after the initial-condition effect is ignorable. The
errors between the numerical results and experimental results
are shown in Fig. 5, which is defined by

Error = |r∗
numerical − r∗

experimental|. (35)

Considering that the interface is diffusive in the LB model,
the radius of the droplet at the final evaporation stage will
not be considered to guarantee the accuracy of the tracked
position of phase interface. As Figs. 4 and 5 show, the results
obtained by the present LB model and the previous LB models
agree well with the experimental results. Note that in Fig. 4
the dimensionless radius r∗ and the dimensionless time t∗

1
are utilized in the comparison where the dimensionless time
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FIG. 5. Simulation of droplet evaporation on a heated substrate.
The errors between the numerical results and experimental results.

t∗
1 is normalized by the total evaporation time t0. However,

the total evaporation time predicted by each model is dif-
ferent. Therefore, the present LB model is further compared
with the previous LB models with another dimensionless
time t∗

2 which is normalized by a constant total simulation
time ttotal = 130 000δt (t∗

2 = t/ttotal). The results by the FDM
are also considered in this comparison shown in Fig. 6. It
can be found that the evaporation process described by the
present model agrees well with the evaporation processes
described by Li et al.’s model [24] and the FDM, while
a larger deviation can be observed for Gong and Cheng’s
model [22].

Then, the present LB model is compared with the FDM
to validate the accuracy of the approximation for the source
term in Eq. (29b) and the ability of the present LB model to
control latent heat. For this comparison, two latent heats hlv =
0.19 and 0.27 are considered and the corresponding Jakob
numbers are 0.0031 and 0.0022, respectively. The variation
of the dimensionless radius r∗ with the dimensionless time
t∗
2 = t/ttotal is shown in Fig. 7. It can be observed from Fig. 7

that the results obtained by the present LB model are in good
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FIG. 6. Simulation of droplet evaporation on a heated substrate.
Variation of the dimensionless radius r∗ with the dimensionless
time t∗

2 .
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FIG. 7. Simulation of droplet evaporation on a heated substrate.
Comparison of the present LB model with FDM.

agreement with the results obtained by the FDM for both two
different latent heats, which further demonstrates the accuracy
of the approximation for the source term in Eq. (29b). It
can be also found in Fig. 7 that the vaporization rates are
well controlled by the present model with the tunable latent
heat.

C. Bubble nucleation and departure

In this section, numerical simulations are carried out for
bubble nucleation and departure involved in nucleate boiling
to validate the present LB model. The simulation domain
is set as Nx × Ny = 150 × 300 filled with saturated water at
Ts = 0.86Tc. The corresponding surface tension of the case is
σlv = 0.0546, which can be obtained through the Laplace’s
law for the sphere bubble (σlv = �p × R). For simplicity,
the thermal diffusivity and specific heat are set as constant:
α = 0.1 and cv = 5, respectively. A higher temperature Tw =
1.25Tc is applied to the center five grids of the bottom
wall while an adiabatic boundary condition is applied to
the rest of the bottom wall. The equilibrium contact angle
is set as 45◦. To simulate the bubble departure, a buoyant

FIG. 8. Simulation of bubble nucleation and departure (g =
2.75 × 10−5, hlv = 0.120). Snapshot of the density contours. The
snapshots are taken at t = 140 000δt , t = 146 000δt , t = 148 500δt

(from left to right).
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FIG. 9. Simulation of bubble nucleation and departure (g =
2.75 × 10−5, hlv = 0.145). Snapshot of the density contours. The
snapshots are taken at t = 161 000δt , t = 164 000δt , t = 166 000δt

(from left to right).

force defined by Fb = (ρ − ρave)g is applied, where ρave is
the average density in the domain and g = (0,−g) is the
gravity acceleration. To further validate the ability of the
present LB model to control the latent heat, two different
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(a)

(b)

FIG. 10. Simulations of bubble nucleation and departure. Varia-
tion of detachment bubble diameter with gravity acceleration. hlv =
0.120 (a) and hlv = 0.145 (b).

latent heats hlv = 0.120 and 0.145 are considered in this case,
where the corresponding Jakob numbers are 0.592 and 0.490,
respectively.

The snapshots of the density contours obtained by the
present LB model with latent heats hlv = 0.120 and 0.145 are
shown in Figs. 8 and 9, respectively. It can be found that a
small bubble is first formed at the center of the wall. Then, a
neck caused by the buoyancy gradually appears and finally
breaks. These processes of bubble growth and detachment
observed from Figs. 8 and 9 agree well with those described
in the previous works [22–24]. It can be found that the bubble
detachment time with larger latent heat hlv = 0.145 will be
longer than that with hlv = 0.120.

Another expected result to validate the present LB model
for liquid-vapor phase change is the relationship between de-
tachment bubble diameter and gravity acceleration (i.e., Dd ∝
g−0.5) [22,24,26,27]. Therefore, the simulations of bubble nu-
cleation and departure are also carried out under a series of
gravity acceleration. The variation of the detachment bubble
diameter with the gravity acceleration is shown in Fig. 10. The
results obtained by the present LB model are compared with a
fitted line. From Fig. 10, it can be found that the relationships
between the detachment bubble diameter and the gravity ac-
celeration are well predicted by the present LB model for two
different latent heats, which further demonstrates the accuracy
of the present LB model with different latent heats.

V. CONCLUSION

In this work, an improved thermal MRT LB model for
liquid-vapor phase change is proposed. For the velocity field,
the pseudopotential model proposed by Huang and Wu [12]
is utilized to capture the hydrodynamic behavior. For the
temperature field, a temperature equation is first derived for
liquid-vapor phase change, where the latent heat is decoupled
with the equation of state by a linear assumption described in
Eq. (17), which improves the flexibility of the present model
to control the vaporization rate. The error terms in the previous
model are eliminated in the present model. What’s more, the
Laplacian term of temperature is not needed in the present
temperature equation and the gradient term of temperature is
calculated through a local scheme. To solve the temperature
equation accurately and efficiently, an improved thermal MRT
equation with nondiagonal relaxation matrix is developed.
The implicit calculation of temperature caused by the source
term is avoided by approximating the source term in Eq. (29b)
by its value at the previous time step. Numerical tests demon-
strate that the liquid-vapor phase change phenomena can be
accurately simulated by the present LB model with a tunable
latent heat. It is found that a higher computation efficiency is
achieved by the present LB model.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS OF EQ. (25)

Applying the Taylor series expansion to Eq. (25), we have

(I∂t + D)m + δt

2
(I∂t + D)2m + O

(
δ2

t

)
= −�g

δt
(m − meq ) +

(
I − �g

2

)
Gm, (A1)

where D = M[diag(e0 · ∇, . . . , e8 . . . ∇)]M−1, m = Mg is
the moment function, and meq = Mgeq is the equilibrium
moment function. By introducing the following Chapman-
Enskog expansions:

∂t = ε∂t1 + ε2∂t2, ∇ = ε∇1,

m =
+∞∑
n=0

εnm(n), φ = εφ(1), Gm = εG(1)
m , (A2)

and substituting them into Eq. (A1), Eq. (A1) can be rewritten
in the consecutive orders of the small expansion parameter ε:

ε0 : m(0) = meq, (A3a)

ε1 : (I∂t1 + D1)m(0) − Gm = −�g

δt

(
m(1) + δt

2
Gm

)
,

(A3b)

ε2 : ∂t2m(0) + (I + D1)

(
I − �g

2

)(
m(1) + δt

2
G(1)

m

)

= −�g

δt
m(2). (A3c)

Considering Eqs. (29b) and (A2), it can be obtained that
[35]

m(1)
0 + δt

2
φ(1) = 0, m0

(n) = 0(∀n � 2). (A4)

Then, according to Eq. (A3b), we have
∂t1T + ∇1 · (uT ) = φ(1), (A5a)

∂t1(T ux ) + c2
s ∂x1T = − s3

δt
m3

(1) +
(

1 − s3

2

)
s4

δt
m(1)

4 , (A5b)

∂t1(T uy) + c2
s ∂y1T = − s5

δt
m(1)

5 +
(

1 − s5

2

)
s6

δt
m(1)

6 , (A5c)

−∂t1(T ux ) = − s4

δt
m(1)

4 , (A5d)

−∂t1(T uy) = − s6

δt
m(1)

6 . (A5e)

From Eq. (A3c), it is obtained that

∂t2T + ∇1 ·
[(

1 − s3
2

)(
m(1)

3 + s4
2 m(1)

4

)
(
1 − s5

2

)(
m(1)

5 + s6
2 m(1)

6

)
]

= 0. (A6)

To simplify Eq. (A6), the following relations are intro-
duced by adding Eqs. (A5d) and (A5e) to Eqs. (A5b) and
(A5c), respectively:

c2
s ∂x1T = − s3

δt

(
m(1)

3 + s4

2
m(1)

4

)
, (A7a)

c2
s ∂y1T = − s5

δt

(
m(1)

5 + s6

2
m(1)

6

)
. (A7b)

Substituting Eqs. (A7a) and (A7b) into Eq. (A6), we have

∂t2T = ∇1 ·
[(

1
s3

− 1
2

)
δt c2

s ∂x1T(
1
s5

− 1
2

)
δt c2

s ∂y1T

]
. (A8)

Considering Eq. (29a), Eq. (A8) can be further simplified
as

∂t2T = ∇1 · (α∇1T ). (A9)

Adding Eq. (A9) to Eq. (A5a), we have

∂t T + ∇ · (uT ) = ∇ · (α∇T ) + φ. (A10)

Obviously, Eq. (A10) is the same as Eq. (21), which proves
that the targeted temperature equation proposed in the present
work can be correctly recovered from the thermal MRT LB
equation [i.e., Eq. (25)] with no deviation term. Note that
the local algorithm described in Eq. (32) can be obtained by
Eq. (A7).
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