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Symbolic pregression: Discovering physical laws from distorted video
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We present a method for unsupervised learning of equations of motion for objects in raw and optionally
distorted unlabeled synthetic video (or, more generally, for discovering and modeling predictable features in
time-series data). We first train an autoencoder that maps each video frame into a low-dimensional latent space
where the laws of motion are as simple as possible, by minimizing a combination of nonlinearity, acceleration,
and prediction error. Differential equations describing the motion are then discovered using Pareto-optimal
symbolic regression. We find that our pre-regression (“pregression”) step is able to rediscover Cartesian coordi-
nates of unlabeled moving objects even when the video is distorted by a generalized lens. Using intuition from
multidimensional knot theory, we find that the pregression step is facilitated by first adding extra latent space
dimensions to avoid topological problems during training and then removing these extra dimensions via principal
component analysis. An inertial frame is autodiscovered by minimizing the combined equation complexity for
multiple experiments.
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I. INTRODUCTION

A central goal of physics and science more broadly is to
discover mathematical patterns in data. For example, after
four years of analyzing data tables on planetary orbits, Kepler
started a scientific revolution in 1605 by discovering that
Mars’s orbit was an ellipse [1]. There has been great recent
progress in automating such tasks with symbolic regression:
discovery of a symbolic expression that accurately matches a
given data set [2–23]. Open-source software now exists that
can discover quite complex physics equations by combining
neural networks with techniques inspired by physics and in-
formation theory [22,23].

However, symbolic regression problems are of course just
a small subset of the problems scientists face. In this paper,
we focus on a different but closely related problem: how
to decide which parameters of the observed data we should
try to describe with equations. Wigner famously stated that
“the world is very complicated and ... the complications are
called initial conditions, the domains of regularity, laws of
nature” [24], so how can the discovery of these regularities
be automated? In Fig. 1, how can an unsupervised algorithm
learn that to predict the next video frame, it should focus
on the x and y coordinates of the rocket, not on its color or
on the objects in the background? More generally, given an
evolving data vector with N degrees of freedom, how can we
autodiscover which n < N degrees of freedom are most useful
for prediction? Renormalization addresses this question in a
particular context, but we are interested in generalizing this.

Suppose, for example, that we tried to rediscover Kepler’s
results by mounting a camera with a wide-angle lens in a dark
cloudless location, taking a digital snapshot of the sky at the
same sidereal time every night, so that distant stars appeared
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unmoving. How could a computer algorithm presented with a
series of images with say N = 107 pixels automatically learn
that the most useful degrees of freedom for prediction are
the position coordinates of the Moon and the visible plan-
ets (which Brahe carefully measured and tabulated), not the
blackness of the sky, the positions of stars, the color of Mars,
or the shape of the Moon?

The goal of our paper is to tackle this pre-regression
problem, which we will refer to as “pregression” for brevity.
Automated pregression enables laws of motion to be discov-
ered starting with raw observational data such as videos or
other time-series data. This can be viewed as a small step
toward a particular type of unsupervised learning of physics,
whereby an algorithm learns from raw observational data how
to predict the future from the past without any human super-
vision or prior knowledge [25–27].

There has been impressive recent progress on using neu-
ral networks for video prediction [28–42] and more general
physics problems [27,43–48]. However, these machine-
learned models tend to be inscrutable black boxes that provide
their human users with limited understanding. In contrast, the
machine learning approach in this paper aspires to intelligible
intelligence, i.e., learning a model of the system that is simple
enough for a human user to understand. Such intelligibility
(pursued in, e.g., [26,27,49–52]) is a central goal of physics
research, and has two advantages:

(1) Understanding how a model works enables us to trust
it more, which is particularly valuable when AI systems make
decisions affecting people’s lives [53–56].

(2) Simple intelligible models such as the laws of physics
tend to yield more accurate and generalizable predictions
than black-box over-parametrized fits, especially over long
timescales. This is why spacecraft navigation systems use
Newton’s law of gravitation rather than a neural-network-
based approximation thereof.
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FIG. 1. Our pregression algorithm seeks to autoencode a sequence of video frames (left) corresponding to a specific type of motion into a
low-dimensional latent space (middle) where the laws of motion (right) are as simple as possible, in this example those of a quartic oscillator.
In the middle figure each point corresponds to the x and y of the rocket in a given frame, while points having the same color or shading and
being connected by a line belong to the same trajectory.

The video prediction papers most closely related to the
present work take one of two approaches. Some improve
accuracy and intelligibility by hardcoding coordinate-finding
or physics elements by hand to help learn, e.g., rigid-body
motion [57], physical object properties, or partial differen-
tial equations [58,59]. The alternative tabula rasa approach
assumes no physics whatsoever and attempts to learn phys-
ical object properties [60], object positions [61,62], object
relations [63], and time evolution [64–66] by learning a
low-dimensional representation or latent space which is un-
fortunately too complex or inscrutable to allow discovery of
exact equations of motion. The present paper builds on this
tabula rasa approach; our key contribution is to automatically
simplify the latent space, using ideas inspired by general rel-
ativity and knot theory, to make the dynamics simple enough
for symbolic regression to discover equations of motions.

The rest of this paper is organized as follows. In Sec. II,
we present our algorithm. In Sec. III, we test it on simulated
videos (such as the flying rocket example in Fig. 1) for motion
in a force-free environment, a gravitational field, a magnetic
field, a harmonic potential, and a quartic potential. We also
test the effects of adding noise and geometric image distortion.
We summarize our conclusions and discuss future challenges
in Sec. IV.

II. METHOD

The goal of our method is to start with raw video sequences
of an object moving in front of some static background, and
to, in a fully unsupervised manner (with no input besides the
raw video), discover the differential equation governing the
object’s motion. Our algorithm consists of two parts:

(1) a neural-network-based pregression step that learns to
map images into a low-dimensional latent space representing
the physically relevant parameters (degrees of freedom), and

(2) a symbolic regression step that discovers the law of
motion, i.e., the differential equation governing the time evo-
lution of these parameters.

A. Learning the latent space

Abstractly, we can consider each video frame as a single
point in an N-dimensional space, where N is the number of

color channels (3 in our case) times the number of pixels in
each image. If the motion involves only n � N degrees of
freedom (for example, n = 2 for a rigid object moving without
rotating in two dimensions), then all observed points in the
N-dimensional space lie on some n-dimensional submanifold
that we wish to discover, parametrized by an n-dimensional
parameter vector that we can consider as a point in an n-
dimensional latent space. Our neural network architecture for
learning the latent space is shown in Fig. 2, and consists of
three separate feedforward neural networks:

(1) an encoder E that maps images xi ∈ RN into latent
space vectors zi ∈ Rn,

(2) a decoder D that maps latent space vectors zi into
images xi, and

(3) an evolution operator U that predicts the next latent
space vector zi from the two previous ones (two are needed to
infer velocities).1

The encoder-decoder pair forms an autoencoder [67–75]
that tries to discover the n most dynamically relevant pa-
rameters from each movie frame, from which it can be
reconstructed as accurately as possible.

B. Quantifying simplicity

It is tempting to view the results of our pregression al-
gorithm as rather trivial, merely learning to extract x and
y coordinates of objects. This would be incorrect, however,
since we will see that the pregression rediscovers simple phys-
ical laws even from video images that are severely warped, as
illustrated in Fig. 3, where the learned latent space is a com-
plicated nonlinear function of the Cartesian coordinates. The
basic reason for this is that Fig. 2 makes no mention of any
preferred latent-space coordinate system. This reparametriza-
tion invariance is a double-edged sword, however: a core
challenge that we must overcome is that even if the system
can be described by a simple time evolution U , the basic

1The two last images are needed because the laws of physics
are second-order differential equations that can be transformed into
second-order difference equations; our method trivially generalizes
to using the last T inputs for any choice T = 1, 2, 3, . . ..
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FIG. 2. Architecture of our neural network: An encoder E that
maps images xi into latent space vectors zi, a decoder D that maps
latent space vectors zi back into images xi, and an evolution operator
U that predicts the next latent space vector from the two previous
ones.

architecture in Fig. 2 may discover something much more
complicated. To see this, suppose that there is an autoencoder
(E , D) and evolution operator U providing perfect image re-
construction and prediction, i.e., satisfying

D(E (xi )) = xi,

U (zi−2, zi−1) = zi,
(1)

and that U is a fairly simple function. If we now deform the
latent space by replacing z by z′ ≡ f (z) for some invertible
but horribly complicated function f , then it is easy to see that
the new mappings defined by

E ′(x) ≡ f (E (x)),

D′(z′) ≡ D( f −1(z′)),

U ′(z′) ≡ f (U ( f −1(z′))) (2)

will still provide perfect autoencoding and evolution

D′(E ′(xi )) = xi,

U ′(zi−2, zi−1) = zi (3)

even though the new evolution operator U ′ is now very
complicated. So in contrast with general relativity where
the equations of motion remain formally invariant under
reparametrization, here they do not.

Not only can our architecture discover unnecessarily com-
plicated solutions, but it by default will. We jocularly termed

FIG. 3. Our method can rediscover simple laws of motion even
if the true images (left) are severely warped (middle) or corrupted by
superimposed noise in the form of smaller distractor rockets (right).

this the Alexander principle in honor of a child of one of
the authors whose sense of humor dictated that he comply
with requests in the most complicated way consistent with
the instructions. We will face multiple challenges of this type
throughout this paper, where our neural networks appeared
humorously spiteful simply because they statistically find the
most generic solution in a vast class of equally accurate
ones.

To tackle this problem, we wish to add a regularization
term to the loss function that somehow rewards simplicity and
penalizes complexity, ideally in a way that involves as few
assumptions as possible about the type of dynamics occurring
in the video. Defining the 2n-dimensional vector

wi ≡
(

zi−2

zi−1

)
∈ R2n, (4)

we can view the evolution function U (w) as a mapping from
R2n to Rn that we wish to be as simple as possible. A natural
physics-inspired complexity measure for U is its curvature

Lcurv ≡ Rα
μνβRμνβ

α , (5)

defined as the squared Riemann tensor that is ubiquitous in
differential geometry and general relativity, defined as

Rα
μνβ ≡ �α

νβ,μ − �α
μβ,ν + �

γ

μβ�α
νγ − �

γ

νβ�α
μγ , (6)

�α
μν ≡ 1

2 gασ (gσμ,ν + gσν,μ − gμν,σ ), (7)

g ≡ JJt , (8)

where J is the Jacobian of U , the matrix g is the induced met-
ric on the latent space Rn, indices are raised by multiplying by
g−1, commas denote derivatives as in standard tensor notation,
and the Einstein summation convention is used. Natural alter-
natives are the squared Ricci curvature RμνRμν or the scalar
curvature R ≡ gμνRμν , where Rμν ≡ Rα

μαν .
Unfortunately, these curvature measures are numerically

cumbersome, since they require taking 3rd derivatives of the
neural-network-defined function U and the Riemann tensor
has n4 components. Fortunately, we find that a simpler mea-
sure of complexity performs quite well in practice, as reflected
by the following loss function:

L ≡ Lrecon + αLpred + βLnl + γLacc. (9)

These four terms are averages over all time steps i of the
following dimensionless functions:

Lrecon
i ≡ |xi − D(E (xi ))|

|xi| , (10)

Lpred
i ≡ |zi − U (zi−2, zi−1)|

|zi−1 − zi−2| , (11)

Lnl
i ≡ 1

4n3
|zi−1 − zi−2| ||∇J(wi )||1, (12)

Lacc
i ≡ 1

n
||U (wi) − Mwi||1, (13)

α, β, γ are tunable hyperparameters, and n is the dimen-
sionality of the latent space. Here Lrecon is the reconstruction
error, Lpred is the prediction error, and both Lnl and Lacc are
measures of the complexity of U . Lnl is a measure of the
nonlinearity of the mapping U , since its Jacobian J will be
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TABLE I. Physical systems tested.

Equations of
motion Correct Rediscovered

Uniform
motion

ẍ = 0 ẍ = 0
ÿ = 0 ÿ = 0

Gravity ẍ = 5
9 ẍ = −1

ÿ = − 5
9 ÿ = −1

Magnetic
field

ẍ = −ẏ ẍ = 1
3 ẏ

ÿ = ẋ ÿ = − 1
3 ẋ

Harmonic
oscillator

ẍ = −4x ẍ = − 4
9 x

ÿ = −y ÿ = − 1
9 y

Quartic
oscillator

ẍ = − 4×10−4

9 x(x2 + y2) ẍ ≈ −0.00001x(x2 + y2)

ÿ = − 4×10−4

9 y(x2 + y2) ÿ ≈ −0.00001y(x2 + y2)

constant if the mapping is linear. Note that Lnl = 0 implies
that Lcurv = 0, since if J is constant, then �α

μν = 0 and the
curvature vanishes. Physically, Lnl = 0 implies that the dy-
namics is described by coupled linear difference equations,
which can be modeled by coupled linear differential equations
and encompass behavior such as helical motion in magnetic
fields, sinusoidal motion in harmonic oscillator potentials,
and parabolic motion under gravity. Lacc is a measure of the
predicted acceleration, since there is no acceleration if the
mapping is U (w) = Mw, where

M ≡ (−I 2I), (14)

and I is the n × n identity matrix. For example, xi = 2xi−1 −
xi−2 gives uniform 1D motion (with i indicating the time step
at which the x coordinate is recorded). An alternative imple-
mentation not requiring Jacobian gradient evaluation would

be Lnl
i ≡ 1

2n2 ||J(wi+1) − J(wi )||22, and an alternative acceler-
ation penalty would be Lacc

i ≡ 1
n |U (0)|2 + 1

2n2 ||M − J(wi )||22.
In summary, our regularizers Lnl and Lacc attempt to make the
time evolution as simple as possible, forcing the complexity
into the autoencoder.

III. RESULTS

A. Latent space learning

We first tested our algorithm for four physical systems
obeying linear differential equations, corresponding to motion
with no forces, in a gravitational field, in a magnetic field, and
in a 2D harmonic oscillator potential (see Table I and Fig. 4).
To make things harder to solve, we defined “down” at a 45◦
angle for the gravity case.

For each type of motion, we generated between 100 and
150 trajectories, with around 30 video frames each, corre-
sponding to equally spaced, consecutive time steps. For each
trajectory video, the shape of the rocket and the background
were kept fixed, but the position of the rocket was changed ac-
cording to the corresponding physical law of motion, starting
with a random initial velocity and a random initial position
within the image boundaries. Our training set thus contains a
total of 3000–5000 images for each type of motion; sample
trajectories are shown in Fig. 4 (top), where each dot repre-
sents the x and y coordinate of the rocket in a given frame and
points of the same color or shading connected by a line belong
to the same trajectory. After simulating the trajectories and
generating a 1000 × 1000 pixel image of each video frame
(Fig. 1 for an example), we downsampled the image resolution
to 64 × 64 pixels (Fig. 5) before passing them to our neural
network.

The encoder network consists of five convolutional ReLU
layers with kernel size 4 and padding 1, four with stride 2,

No force Gravity Magnetic 
field

2D harmonic
oscillator

Quartic
oscillator

FIG. 4. Example of original (top) and rediscovered (bottom) trajectories in the latent spaces. In the top panel, each point represents the x
and y coordinates of the rocket in each frame. In the bottom panel, each point corresponds to the two main principal components discovered in
the 5D latent space. In both cases, points of the same color or shading and connected by a line belong to the same trajectory.
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DownsampledOriginal Reconstructed

FIG. 5. Example of original, downsampled, and reconstructed
image.

followed by one with stride 1. At the end there is a fully
connected linear layer that reduces the output of the encoder
to a vector of size equal to the dimension of the latent space.
The number of channels goes from 3 for the input image
to 32, 32, 64, 64, and 256 for the convolutional layers. The
decoder network is a mirror image of the encoder in terms
of layer dimensions, with the convolution layers replaced by
deconvolution layers. The evolution operator has three fully
connected 32-neuron hidden layers with softplus activation
function and a linear n-neuron output layer. We implemented
these networks using PyTorch using a batch size of 256 and
the Adam optimizer. For these four linear types of motion, we
set γ = 0 and α = β = 10−3 and trained for 4000 epochs with
a learning rate of 10−3, multiplying α and β by 10 after every
1000 epochs. We then trained for 3000 additional epochs
while dividing the learning rate by 10 every 1000 epochs.

In the end, our algorithm successfully learned useful 2D
latent spaces (see Fig. 4, bottom), reconstructed images with
2% rms relative error that were visually nearly indistinguish-
able from the truth (see Fig. 5), and achieved sub-percent
prediction errors (Lpred ≈ 0.11%, 0.48%, 0.31%, 0.71%, and
0.76% for the uniform motion, gravity, magnetic field, and
quartic oscillator cases, respectively). However, this required
overcoming two separate obstacles.

We initially lacked the factor |zi−1 − zi−2| in Eq. (11), so
by the Alexander principle, the neural network learned to

drive the prediction loss Lpred toward zero by collapsing the
latent space to minuscule size. The |zi−1 − zi−2| factor solves
this problem by making the prediction loss dimensionless and
invariant under latent space rescaling.

B. Knot theory to the rescue

The second obstacle was topological. If you drop a
crumpled-up towel (a 2D surface in 3D space) on the floor,
it will not land perfectly flat, but with various folds. Analo-
gously, the space of all possible rocket images forms a highly
curved surface in the N-dimensional space of images, so when
a randomly initialized neural network first learns to map it into
a 2D latent space, there will be numerous folds. For example,
the left panel of Fig. 6 shows 16 trajectories (each shown
in a different color or shading) corresponding to the rocket
moving uniformly in straight lines. The middle panel shows
these same trajectories (with the same colors or shades as in
the left panel) in the latent space first discovered by our neural
network when we allowed only two latent space dimensions.
Some pairs of trajectories which are supposed to be straight
parallel lines (left panel) are seen to cross in a catlike pattern
in the latent space (middle panel) even though they should
not cross. During training, the network tries to reduce predic-
tion and complexity loss by gradually distorting this learned
latent space to give trajectories the simplest possible shapes
(straight lines in this case), but gets stuck and fails to unfold
the latent space. This is because the reconstruction loss Lrecon

effectively causes distinct images to repel each other in the
latent space: if two quite different rocket images get mapped
to essentially the same latent-space point, then the decoder
will epically fail for at least one. Unfolding would require
temporarily moving one trajectory across another, thus greatly
increasing the loss. This is analogous to topological defects in
physics that cannot be removed because of an insurmountable
energy barrier.

Fortunately, knot theory comes to the rescue: a famous
theorem states that there are no d-dimensional knots in an
n-dimensional space if n > 3

2 (1 + d ) [76]. For example, you

Principal component
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Magnetic field

2D harmonic oscillator

G
ravitational field

N
o forces

1 2 543

Quartic
oscillator

10-3
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10

1

0.1

FIG. 6. The topological problems (middle) that prevented directly learning a 2-dimensional latent space (left) can be understood via knot
theory and eliminated by instead discovering the two main principal components (right) in a learned 5-dimensional latent space. The left
panel shows 16 force-free rocket trajectories, with points denoting the rocket center in each frame and points of the same color or shading
corresponding to the same trajectory. The middle panel shows the corresponding points zi produced by our encoder network trained with a 2D
latent space. The right panel shows the eigenvalues obtained from a PCA on a five-dimensional learned latent space, revealing that the latent
space is rather 2-dimensional because two principal components account for most of the variance.
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cannot tie your shoelaces (d = 1) if you live in n = 4 dimen-
sions. Our topological pregression problem corresponds to the
inability of the neural network to untie a d-dimensional knot
in n dimensions, where d is the dimensionality of the image
submanifold of RN (d = 2 for our examples). We therefore
implemented the following solution, which worked well for
all our examples: First run the pregression algorithm with a
latent space of dimension n′ > 3

2 (1 + d ) (we found n′ = 5 to
be enough for us) and then extract an n-dimensional latent
space using principal component analysis (PCA). This cor-
responds to incentivizing the aforementioned towel to flatten
out while still in the air and then rotating it to be parallel to the
floor before landing. Figure 6 (right) shows that upon applying
PCA to the points in the 5-dimensional latent space, two
principal components dominate the rest (accounting for more
than 90% of the variance), revealing that all rocket images get
mapped roughly into a 2D plane (Fig. 4) in a 5D latent space.

To quantify the robustness of this finding, we repeated the
magnetic field pregression analysis 10 times for each n′ value,
with random neural network initializations, obtaining success
rates of 0% for n′ = 2, 20% for n′ = 3, 80% for n′ = 4, and
100% for n′ = 5. In other words, although it is possible to get
lucky with smaller n′, reliable success occurred only when n′
exceeded the knot-theory bound 3

2 (1 + d ) = 4.5.

C. Nonlinear dynamics and the accuracy-simplicity trade-off

Increasing the two parameters β and γ in Eq. (9) penalizes
complexity (Lnl and Lacc) more relative to inaccuracy (Lrecon

and Lpred). For our quartic oscillator example (Fig. 1), achiev-
ing Lnl = 0 is impossible and undesirable, since the correct
dynamics is nonlinear with ∇J �= 0, so we wish to find the
optimal tradeoff between simplicity and accuracy. We did this
by training as above for 7000 epochs but setting β = 0, then
keeping γ = β and further training 14 networks in parallel
for a geometric series of β values from 0.01 to 200. These
14 networks were trained for 3000 epochs with learning rate
starting at 10−3 and dropping tenfold every 1000 epochs.

Since, as mentioned above, there is a broad class of equally
accurate solutions related by a latent space reparametrization
z 	→ f (z), we expect that increasing β from zero to small val-
ues should discover the simplest solution in this class without
decreasing prediction or reconstruction accuracy. This is the
solution we want, in the spirit of Einstein’s famous dictum
“everything should be made as simple as possible, but not sim-
pler.” Further increasing β should simplify the solution even
more, but now at the cost of leaving this equivalence class,
reducing accuracy. Our numerical experiment confirmed this
expectation: we could increase regularization to β = 50 (the
choice shown in Fig. 1) without significant accuracy loss, after
which the inaccuracy started rising abruptly. It should be noted
that a similar Pareto approach could be used for the other four
linear types of motions, but in those cases, the Pareto frontier
would be trivial, given that the right solution (minimum loss)
corresponds to having no nonlinearity (minimum complexity).

D. Image warping and noise

As mentioned in Sec. II B, the fact that our algorithm
rewards simplicity in the evolution operator U rather than the

encoder-decoder pair should enable it to discover the simplest
possible latent space even if the space of image (x, y) coor-
dinates is severely distorted. To test this, we replaced each
image with color c[x, y] (defined over the unit square) by a
warped image c′[x, y] defined by

c′[x, y] ≡ c[g(x) + x(1 − x)y, g(y) + y(1 − y)x],

g(u) ≡ u(11 − 18u + 12u2)/5 (15)

as illustrated in Fig. 3 (middle panel), and analyzed the 3000
warped video frames of the rocket moving in a magnetic
field. As expected, the pregression algorithm recovered a non-
warped latent space just as in Fig. 4, so this extra complexity
was entirely absorbed by the decoder-encoder, which success-
fully learned the warping function c 	→ c′ of Eq. (15) and its
inverse.

We also tested the robustness of our pregression algorithm
to noise in the form of smaller rockets added randomly to
each video frame. We used 3 different types of distractor
rockets as noise, and added between zero and 10 to each
image as illustrated in Fig. 3 (right panel). The result was
that the pregression algorithm learned to reconstruct the latent
space just as before, focusing only on the large rocket, and
reconstructing images with the distractor rockets removed.

E. Automatically discovering equations and inertial frames

Let us now turn to the task of discovering physical laws that
are both accurate and simple. Although the five rocket-motion
examples took place in the same image space, the Alexander
principle implies that the five latent spaces (bottom panels
in Fig. 4) will generally all be different, since we trained a
separate neural network for each case. Specifically, we expect

FIG. 7. Video trajectories in the 2D harmonic oscillator potential
(top) look differently when mapped into the latent space using the
encoder trained on that same data (right) than when mapped using
the encoder trained on uniform force-free motion (left). However,
the two latent spaces are equivalent up to an affine transformation.
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FIG. 8. Left: The five latent spaces can be unified by using affine transformations. The complexity of the equations in this unified space is
minimized when having no further shift (2nd panel) or rotation (3rd panel), but a ∼3% shear (right).

the latent spaces to each differ by some affine transformation
r 	→ Ar + a for some constant vector a and 2 × 2 matrix
A, since affine transformations do not affect the amount of
nonlinearity or acceleration required and thus leave our com-
plexity loss functions Lacc and Lcurv unchanged.

Figure 7 shows the same sequence of images of the rocket
moving in the 2D harmonic oscillator potential mapped into
two latent spaces, learned by training our pregression algo-
rithm on either that same 2D oscillator data (right panel) or on
the force-free data (left panel). As expected, their trajectories
are seen to differ by an affine transformation. Indeed, the left
panel of Fig. 8 shows that the latent spaces discovered by
all our 5 experiments are interrelated by affine transforma-
tions. Here we have mapped all latent space coordinates ri,
i = 1, . . . , 5, into a single unified latent space r = Airi + ai

by introducing five 2 × 2 matrices Ai and 2D translation
vectors ai to match up corresponding rocket positions [each
color is associated with an encoder trained on a specific type
of motion: force free (red), 2D oscillator (blue), magnetic
(yellow), gravitational field (green), and quartic oscillator
(black)]. Specifically, without loss of generality, we take one
of the latent spaces (derived from the harmonic oscillator) to
be the unified one (so r1 = r, A1 = I, a1 = 0), and solve for
the other Ai and ai by minimizing the total mismatch

M ≡
5∑

i=2

〈
�(|Airi + ai − r1|) + �

(∣∣A−1
i (r1 − ai ) − ri

∣∣)〉,
(16)

where the average is over all our rocket images mapped
through the the five encoders. If the loss function penalizing
mismatch distance were �(r) = r2, Eq. (16) would simply be
a χ2 minimization determining Ai and ai via linear regres-
sion, except that we have also penalized inaccuracy in the
inverse mapping (second term) to avoid biasing Ai low. To
increase robustness toward outliers, we instead followed the
prescription of [26] by choosing �(r) ≡ 1

2 log2 [1 + (r/ε)2]
and minimizing M with gradient descent, using an annealing
schedule ε = 101, 100, ..., 10−10.

Next, we estimated the velocity ṙ and acceleration r̈ at each
data point by cubic spline fitting to each trajectory r(t ) in the
unified latent space, and found candidate differential equa-
tions of the form r̈ = f (ṙ, r) using the publicly available AI
Feynman symbolic regression package [22,23]. To eliminate
dependence on the cubic spline approximation, we then re-

computed the accuracy of each candidate formula f by using it
to predict each data point from its two predecessors using the
boundary-value ODE solver “scipy.integrate.solve_bvp” [77],
selecting the most accurate formula for each of our five exam-
ples.

Applying an affine transformation r 	→ Ar + a to both
the data and these equations of course leaves the prediction
accuracy unchanged, so we now exploit this to further reduce
the total information-theoretic complexity of our equations,
defined as in [23,26] and summarized in Table II. Figure 8
(2nd panel) shows a contour plot of the equations’ complexity
as a function of an overall shift (darker means smaller). We
observe a clear optimum for the shift vector a, corresponding
to eliminating additive constants in the harmonic and quartic
oscillator equations. For example, ẍ = −x is simpler than ẍ =
2.236 − x. The 3rd panel of Fig. 8 shows the total equation
complexity (as a stacked histogram) as a function of an overall
rotation of the coordinate axes. We see several minima: the
gravitational example likes 45◦ rotation because this makes
the new horizontal acceleration vanish, but the other exam-
ples outvote it in favor of a 0◦ rotation to avoid xy cross
terms.

Only three degrees of freedom now remain in our matrix
A: two for shear (expanding along some axis and shrinking by
the inverse factor along the perpendicular axis) and one for an
overall scaling. We apply the “vectorSnap” algorithm of [23]
to reveal rational ratios between parameters and then select
the shear that maximizes total accuracy. As can be seen in the
contour plot in the right panel of Fig. 8 (darker color means
lower complexity), ∼3% shear is optimal. Finally, we apply
the overall scaling that minimizes total complexity, resulting
in the rediscovered laws of motion shown in the right column
of Table I. The table shows that these are in fact exactly the
laws of motion used to generate our training set images (up to
some noise in the quartic term prefactor caused by the cubic
spline interpolation), but reexpressed in a latent space that is
larger by a factor 9

5 than the one we used, and has its x axis
flipped, which further simplifies our formulas (for example,
the rediscovered gravitational acceleration is 1 instead of 5

9 ).
We note that the formulas in Table I were discovered

fully automatically in the sense that no hyperparameters were
adjusted in any of the steps (except for the latent space dimen-
sionality being reset to exceed the knot-theory requirement as
mentioned above). These laws of motion were autodiscovered
in three conceptually different steps:
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TABLE II. Complexity definitions.

Object Symbol Description length DL

Natural number n log2 n

Integer m log2(1 + |m|)
Rational number m/n DL(m) + DL(n) = log2[(1 + |m|)n]

Real number r log+ ( r
ε
), log+(x) ≡ 1

2 log2 (1 + x2)

Parameter vector p
∑

i DL(pi )

Parametrized function f (x; p) DL(p) + k log2 n; n basis functions appear k times

(1) Train a neural network to find an accurate black-box
fit. There is a continuum of equally accurate fits corresponding
to latent-space reparametrization invariance.

(2) Exploit this reparametrization invariance to minimize
complexity caused by unnecessary nonlinearity. There re-
mains a continuum of equally accurate fits corresponding to
latent-space affine transformations.

(3) Exploit this affine invariance to minimize total sym-
bolic complexity in the fitted equations.

Steps 2 and 3 both reveal dynamical simplicity by absorb-
ing ever more of the complexity into the autoencoder.

IV. SUMMARY

We have presented a method for unsupervised learning of
equations of motion for objects in raw and optionally distorted
unlabeled video. This automatic undistortion may be helpful
for modeling real-world video afflicted by stereoscopic pro-
jection, lens artifacts, varying lighting conditions, etc., and
also for learning degrees of freedom such as 3D coordinates
and rotation angles. Our method is in no way limited to video,
and can be applied to any time-evolving data set, say N num-
bers measured by a set of sensors, where one is interested in
discovering predictable features in this time-series data and
learning their laws of motion in as simple form as possible.

Although we focused on dynamics, it could also be in-
teresting to generalize our approach to other situations, by
attempting to infer other properties of the system rather than
its future state. Another interesting avenue for future work is
to explore whether the above-mentioned topological intuition
provided by knot theory can help improve autoencoders more
generally, and whether the above-mentioned regularization of

curvature or nonlinearity can prove useful in other machine-
learning contexts.

The reparametrization invariance of general relativity
teaches us that there is an infinite class of coordinate systems
that provide equally valid physical descriptions. In our case,
such reparametrization invariance of our autodiscovered latent
space is a nuisance because, in contrast to general relativity,
the laws of motion are not reparametrization invariant and can
be made arbitrarily complicated. We broke this degeneracy
by quantifying and minimizing the geometric and symbolic
complexity of the dynamics. Although different systems were
simplest in different coordinate systems, we found that mini-
mizing total complexity for all of them recovered a standard
isotropic inertial frame. An interesting topic for future work
would be to explore whether our brains’ representations of
physical systems are similarly optimized to make prediction
as simple as possible.
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[39] V. Vukotić, S.-L. Pintea, C. Raymond, G. Gravier, and J. C.
Van Gemert, One-step time-dependent future video frame pre-
diction with a convolutional encoder-decoder neural network,
in International Conference on Image Analysis and Processing
(Springer, Berlin, Germany, 2017), pp. 140–151.

[40] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell,
and S. Levine, Stochastic variational video prediction,
arXiv:1710.11252.

[41] M. Oliu, J. Selva, and S. Escalera, Folded recurrent neural
networks for future video prediction, in Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV) (CVF, Berlin,
Germany, 2018), pp. 716–731.

[42] Z. Liu, X. Chai, and X. Chen, Deep memory and prediction
neural network for video prediction, Neurocomputing 331, 235
(2019).

[43] J. Carrasquilla and R. G. Melko, Machine learning phases of
matter, Nat. Phys. 13, 431 (2017).

043307-9

https://doi.org/10.1088/1478-3975/8/5/055011
http://arxiv.org/abs/arXiv:1210.7273
https://doi.org/10.1038/ncomms9133
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1063/1.5027470
https://doi.org/10.1038/s41567-018-0081-4
https://doi.org/10.1021/acs.jpclett.9b02232
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1038/nature14539
https://doi.org/10.1103/PhysRevE.100.033311
https://doi.org/10.1103/PhysRevLett.124.010508
http://arxiv.org/abs/arXiv:1412.6604
http://arxiv.org/abs/arXiv:1605.08104
http://arxiv.org/abs/arXiv:1612.01756
http://arxiv.org/abs/arXiv:1706.08033
http://arxiv.org/abs/arXiv:1710.11252
https://doi.org/10.1016/j.neucom.2018.11.065
https://doi.org/10.1038/nphys4035


SILVIU-MARIAN UDRESCU AND MAX TEGMARK PHYSICAL REVIEW E 103, 043307 (2021)

[44] E. P. L. Van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Learning
phase transitions by confusion, Nat. Phys. 13, 435 (2017).

[45] E. van Nieuwenburg, E. Bairey, and G. Refael, Learning phase
transitions from dynamics, Phys. Rev. B 98, 060301(R) (2018).

[46] G. Torlai and R. G. Melko, Learning thermodynamics with
Boltzmann machines, Phys. Rev. B 94, 165134 (2016).

[47] T. Ohtsuki and T. Ohtsuki, Deep learning the quantum phase
transitions in random electron systems: Applications to three
dimensions, J. Phys. Soc. Jpn. 86, 044708 (2017).

[48] V. Dunjko and H. J. Briegel, Machine learning and artificial in-
telligence in the quantum domain: A review of recent progress,
Rep. Prog. Phys. 81, 074001 (2018).

[49] I. Yildirim, K. A. Smith, M. Belledonne, J. Wu, and J. B.
Tenenbaum, Neurocomputational modeling of human physical
scene understanding, in 2nd Conference on Cognitive Compu-
tational Neuroscience (CCN, 2018).

[50] D. Zheng, V. Luo, J. Wu, and J. B. Tenenbaum, Unsuper-
vised learning of latent physical properties using perception-
prediction networks, arXiv:1807.09244.

[51] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum,
A compositional object-based approach to learning physical
dynamics, arXiv:1612.00341.

[52] Z. Zhang, Y. Zhao, J. Liu, S. Wang, R. Tao, R. Xin, and J.
Zhang, A general deep learning framework for network re-
construction and dynamics learning, Appl. Network Sci. 4, 1
(2019).

[53] S. Russell, D. Dewey, and M. Tegmark, Research priorities for
robust and beneficial artificial intelligence, AI Mag. 36, 105
(2015).

[54] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J.
Schulman, and D. Mané, Concrete problems in AI safety,
arXiv:1606.06565.

[55] M. Boden, J. Bryson, D. Caldwell, K. Dautenhahn, L. Edwards,
S. Kember, P. Newman, V. Parry, G. Pegman, T. Rodden et
al., Principles of robotics: Regulating robots in the real world,
Connect. Sci. 29, 124 (2017).

[56] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A.
Santoro, R. Faulkner et al., Relational inductive biases, deep
learning, and graph networks, arXiv:1806.01261.

[57] K. S. Bhat, S. M. Seitz, J. Popović, and P. K. Khosla, Computing
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