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Lattice Boltzmann model for conjugate heat transfer across thin walls
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A lattice Boltzmann (LB) model with an efficient and accurate interface treatment for conjugate heat transfer
across a thin wall between two different media is developed. The proposed interface treatment avoids fine
meshing and computation within the thin layer; instead, the energy balance within the thin layer and the conjugate
conditions on each interface are utilized to construct explicit updating schemes for the microscopic distribution
functions of the LB model at the interior lattice nodes of the two media next to the thin layer. The proposed
interface schemes reduce to the standard interface scheme for conjugate conditions in the literature in the limit
of zero thickness of the thin layer, and thus it can be considered a more general interface treatment. A simplified
version of the interface treatment is also proposed when the heat flux variation along the tangential direction
of the thin layer is negligible. Three representative numerical tests are conducted to verify the applicability and
accuracy of the proposed interface schemes. The results demonstrate that the intrinsic second-order accuracy
of the LB model is preserved with the proposed interface schemes for thin layers with constant tangential
fluxes, while for general situations with varying tangential fluxes, first-order accuracy is obtained. This interface
treatment within the LB framework is attractive in conjugate heat transfer modeling involving thin layers for its
simplicity, accuracy, and significant reduction in computational resources.
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I. INTRODUCTION

The process of heat transfer between two media separated
by a thin layer is encountered in numerous scientific and engi-
neering problems. Representative examples include design of
different types of heat exchangers with heat transfer between
countercurrent fluid streams or between a fluid and a moving
packed bed or falling particles that are separated by thin walls
[1–3], solar thermal receivers with modular absorbers of thin
metallic or ceramic tubes [4–7], latent or thermochemical en-
ergy storage units where the porous media are heated (cooled)
by an external hot (cold) fluid going through a thin-walled
channel [8–11], heat pipes with insulation layers [12,13], and
heat conduction in multilayer composite materials [14], just to
name a few. Thermal transport in those systems are essentially
conjugate heat transfer problems due to the different thermo-
physical and transport properties of the adjacent materials.
Modeling of the conjugate heat transfer across the thin layer
is a challenging task as the conjugate conditions need to be
satisfied on each side of the thin layer and its dimension can
be orders of magnitude smaller than the adjacent media, which
would typically require nonuniform or adaptive meshing.

The lattice Boltzmann method (LBM) has become an
alternative and attractive numerical method for heat and
mass transfer in the last decade [15–18]. In addition to the
inherited benefits of the LBM for fluid flow—ease of im-
plementation, convenience in boundary treatment involving
complex geometry, and the ability to be performed as a par-
allel computation leading to greatly reduced computational
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demand—the LBM is particularly attractive for heat and mass
transfer simulations due to the fact that the boundary and
interfacial macroscopic variables of interest [e.g., Dirichlet-
type boundary temperature (concentration), Neumann-type
boundary heat and mass fluxes, and interfacial temperature
(concentration) and their fluxes] can be directly related to
the microscopic distribution functions (DFs) in the LBM so
that those physical boundary and conjugate conditions can be
directly implemented or satisfied to the intrinsic second-order
accuracy [15,19–21]. Therefore, extensive interest and effort
have been devoted in the literature to develop effective and
accurate interface schemes in the LBM for conjugate heat
and mass transfer problems (see Refs. [22–27] and references
therein). While those interface schemes are directly appli-
cable to the above-mentioned conjugate heat transfer across
thin walls, they would require either very fine mesh in the
whole computational domain in order to resolve the thin
layer when using the standard uniform mesh in the Carte-
sian coordinates, or nonuniform meshing in the thin layer
and the other domains. For the latter, although various grid-
refinement, grid-stretching, and multiblock techniques have
been proposed and verified in the LBM for fluid flow and heat
and mass transfer [28–33], they require additional treatment of
the DFs and matching of the relaxation time coefficients in the
LBM in the regions near the interfaces, typically along with
the necessity of data interpolation and transfer between the
adjacent domains. An effective interface treatment in the LBM
framework for conjugate heat transfer across a thin layer using
the standard Cartesian uniform mesh and with acceptable grid
resolution is thus desired.

This paper aims to develop and verify a convenient and
accurate interface treatment in the LB model for conjugate
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heat transfer across thin layers without mesh allocation or
LBM computation within the thin layer. The conjugate con-
ditions on both sides of the thin layer are satisfied through
an energy balance analysis in the control volume enclosing
the sandwiched layer, and those relations are implemented to
develop explicit updating schemes for the DFs next to the thin
layer to complete the standard “collision-streaming” process
in the LBM nodes within the two media of major interest. The
applicability and accuracy of the proposed interface schemes
are verified through three representative numerical tests for
which analytical solutions are available.

The remainder of this paper is structured as follows. First,
the LB models for the scalar convection-diffusion equation
(CDE) in the Cartesian coordinate and the axisymmetric CDE
in the cylindrical coordinate systems are reviewed in Secs. II
and III, respectively, followed by a presentation of the specific
schemes for thermal boundary conditions and the standard
conjugate conditions for zero-thickness interfaces in Sec. IV.
Next, our proposed schemes for thin-layered interfaces are
detailed in Sec. V considering three different scenarios. Sec-
tion VI presents a detailed numerical verification and accuracy
analysis of the proposed schemes with three test cases. Con-
clusions are given in Sec. VII. The Appendix illustrates the
analytical solutions to the test cases in Secs. VI A and VI C.

II. LATTICE BOLTZMANN MODEL FOR THE STANDARD
CONVECTION-DIFFUSION EQUATION

The general convection-diffusion equation with source
terms for heat and mass transfer can be written as

∂φ

∂t
+ ∇ · (uφ) = ∇ · (Di j∇φ) + G, (1)

where φ is the dimensionless macroscopic variable of interest
such as normalized temperature or concentration, t the time,
u the velocity vector, Di j the diffusion coefficient, and G
represents any combination of source terms.

In the LB method, the following evolution equation is
proposed to model and recover the CDE (1) [15,18]:

gα (x + eαδt, t + δt ) − gα (x, t )

= [L · (g − geq )(x, t )]α + ωαG(x, t )δt, (2)

where the microscopic distribution function, gα (x, t ) ≡
g(x, ξα, t ), is defined in the discrete velocity space, ξ is the
particle velocity vector that is discretized to a small set of
discrete velocities {ξα|α = 0, 1, . . . , m−1}, eα the αth dis-
crete velocity vector, δt the time step, L the collision operator,
geq

α (x, t ) the equilibrium distribution function, and ωα the
weight coefficient. The macroscopic scalar variable is ob-
tained from

φ(x, t ) =
m−1∑
α=0

gα (x, t ), (3)

and the equilibrium DF can be expressed as [15,18]

geq
α = ωαφ

(
1 + eα · u

c2
s

)
. (4)

Regarding the collision operator L, there are three mod-
els that have been extensively studied, including the earliest

and most original Bhatnagar-Gross-Krook (BGK) (also com-
monly referred to as the single relaxation-time model) [34],
the two relaxation-time model [35], and the general multiple
relaxation-time (MRT) model [15,18]. In addition, different
lattice structures have also been examined with applications
in various situations (e.g., see Refs. [18,36]). In this work,
the D2Q5 MRT LB model originally proposed by Yoshida
and Nagaoka [15], which is attractive due to its simple im-
plementation and second-order accuracy, is used. Specifically,
a transformation matrix M is defined to map the DFs to
their moment space: m = M · g and meq = M · geq, and the
collision operator becomes

[L · (g − geq )]α = −[M−1SM · (g − geq )]α

= −[M−1S · (m − meq )]α, (5)

where S is a matrix of relaxation-time coefficients, τi j, which
are related to the diffusion coefficients Di j as in the following:

τi j = 1

2
δi j + δt

εDδx2
Di j, (6)

in order to recover the CDE. The constant coefficient εD =
1/3 and the equilibrium moments can be explicitly derived as
[18,19,22]

meq = [φ, uφ, vφ, 2φ/3, 0]T. (7)

The standard “collision-streaming” procedure is also used
in this work for efficient computational implementation, with

collision step:

ĝα (x, t ) = gα (x, t ) − [M−1S · (m − meq )(x, t )]α

+ ωαG(x, t )δt, and (8)

streaming step:

gα (x + eαδt, t + δt ) = ĝα (x, t ), (9)

where ĝα represents the postcollision state.

III. LATTICE BOLTZMANN MODEL FOR THE
AXISYMMETRIC CONVECTION-DIFFUSION EQUATION

For the wide range of engineering applications involving
conjugate heat transfer between different fluids or a fluid
and a porous bed separated by an annular medium, such as
heat exchangers, tubular solar collectors (reactors), etc., the
heat transfer process is axisymmetric, and thus axisymmetric
lattice Boltzmann models, as discussed by multiple authors
[37–40], can be very advantageous. In this work, we apply the
D2Q5 MRT axisymmetric model proposed by Li et al. [37].
The typical axisymmetric CDE can be described as

∂φ

∂t
+ ∂

r∂r
(rurφ) + ∂

∂z
(uzφ)

= ∂

r∂r

(
rDrr

∂φ

∂r

)
+ ∂

∂z

(
Dzz

∂φ

∂z

)
+ G, (10)

where r and z represent the radial and axial directions, re-
spectively, Drr and Dzz are the diagonal diffusion coefficients
of the tensor Di j , and ur and uz are the respective velocity
components. The proposed model effectively rearranges this
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equation to fit the form shown in Eq. (1) as

∂φ

∂t
+ ∂

∂r
(urφ) + ∂

∂z
(uzφ)

= ∂

∂r

(
Drr

∂φ

∂r

)
+ ∂

∂z

(
Dzz

∂φ

∂z

)
+ Sa1 + Sa2 + G, (11)

with Sa1 = − urφ

r , Sa2 = Drr
r

∂φ

∂r , which are now in terms of
the pseudo-Cartesian coordinate system with two additional
source components. For the above CDE, the MRT evolution
equation for the DFs is thus redefined as

gα (x + eαδt, t + δt ) − gα (x, t )

= [L · (g − geq )(x, t )]α + ωα[Sa1(x, t )

+ Sa2(x, t ) + G(x, t )]δt, (12)

where [L · (g − geq )(x, t )]α takes the form as described in
Eq. (5). The leading-order solution of the CDE can be ob-
tained from Eq. (3). The additional source terms can be
described in terms of the DFs as

Sa1 = −urφ

r
= −ur

r

m−1∑
α=0

gα (x, t ) = −ur

r

m−1∑
α=0

geq
α (x, t ) (13)

and

Sa2 = Drr

r

∂φ

∂r
= −1

r

(
1 − 1

2τrr

)
δx

δt

m−1∑
α=0

eαrgneq
α

= −1

r

(
1 − 1

2τrr

)
δx

δt

m−1∑
α=0

eαr
[
gα − geq

α

]
. (14)

The reader is referred to Refs. [37–41] for further discus-
sion on the axisymmetric model and associated comparisons
of accuracy behavior.

IV. THERMAL BOUNDARY CONDITIONS AND
STANDARD CONJUGATE CONDITIONS

For both Dirichlet and Neumann-type thermal boundary
conditions, second-order accurate boundary treatments based
on the interpolation of postcollision distribution functions
were proposed and verified in Ref. [19]. By treating the in-
terface as a zero-thickness shared boundary, those boundary
schemes were applied to relate the interfacial scalar values
and their fluxes to the DFs at the lattice nodes next to the
interface for conjugate conditions. In this work, we make
use of those relationships on each side of the thin wall and
construct convenient interface schemes. For completeness, the
boundary and interface schemes are summarized below and
the derivation of the specific thin-wall conjugate condition
schemes will be provided in the next section.

For the Dirichlet boundary condition φw = 	d , the follow-
ing was proposed [19]:

gᾱ (x f , t + δt ) = cd1ĝα (x f , t ) + cd2ĝα (x f f , t )

+ cd3ĝᾱ (x f , t ) + cd4εD	d , (15)

FIG. 1. Domain setup and layout of lattice nodes for conjugate
heat transfer across a flat, thin plate.

and the Neumann boundary scheme can be written as

gᾱ (x f , t + δt ) = cn1ĝα (x f , t ) + cn2ĝα (x f f , t )

+ cn3ĝᾱ (x f , t ) + cn4(δt/δx)	nᾱ, (16)

where eᾱ = −eα pointing from the boundary node to the in-
terior lattice nodes x f and x f f (see Fig. 1), the coefficients cdi

and cni (i = 1, 2, 3, and 4) are only related to the local lattice
link fraction 
, and 	nᾱ = D∂φ/∂x|eᾱ

is the boundary flux in
the lattice velocity vector eᾱ direction [19].

Specifically, Li et al. [19] proposed three particular
schemes based on an adjustable parameter, cd 1, for the Dirich-
let scheme which are determined with

Scheme 1: cd1 = {−2
,(0�
�0.5),
−1/2
,(
>0.5), (17a)

Scheme 2: cd1 = −2(1 − 
), and, (17b)

Scheme 3: cd1 = −1, (17c)

with the other coefficients thus related to the parameter as

cd2 = −2
cd1 + 1

2
 + 1
, cd3 = cd1 + 2


2
 + 1
,

and cd4 = −cd1 + 1

2
 + 1
. (18)

For the results presented in this work, Scheme 2 will be uti-
lized and previous accuracy analysis [18,19,22,27] has shown
accurate results with the other schemes. For the Neumann
scheme, the coefficients can be uniquely determined to pre-
serve the second-order accuracy as

cn1 = 1, cn2 = −2
 − 1

2
 + 1
,

cn3 = 2
 − 1

2
 + 1
, and cn4 = 2

2
 + 1
. (19)

The conjugate interface conditions can be expressed in
general formulation as [27]

φ f = φs + φjump, and (20)
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n · (k∇φ + ρcpuφ) f = n · (k∇φ + ρcpuφ)s + n · qT
jump,

for heat transfer, or
(21a)

n · (Dm∇φ + uφ) f = n · (Dm∇φ + uφ)s + n · qC
jump,

for mass transfer, (21b)

where k is the thermal conductivity of the materials, ρ the
density, cp the specific heat, and φjump and qjump the pos-
sible scalar and flux jump conditions at the interface. The
subscripts f and s refer to the conterminous domains sharing
a common boundary, typically referred to as the fluid-solid
adjacent boundaries, and n represents the unit normal vector.
For simplified situations when the velocity component normal
to the interface is zero and no jump conditions are present,
Eqs. (20) and (21) reduce to

φ f = φs, (22)

n · (D∇φ) f = σn · (D∇φ)s, (23)

where D = k
ρcp

, σ = (ρcp)s
(ρcp) f

in heat transfer and D = Dm, σ = 1

in mass transfer.
The interface for conjugate conditions can be considered

as a shared boundary for the adjacent domains; thus, the
following are noted based on the Dirichlet scheme:

gᾱ (x f , t + δt ) = cd1ĝα (x f , t ) + cd2ĝα (x f f , t )

+ cd3ĝᾱ (x f , t ) + cd4εD	df , in domain 1,

(24a)

gα (xs, t + δt ) = c∗
d1ĝᾱ (xs, t ) + c∗

d2ĝᾱ (xss, t )

+ c∗
d3ĝα (xs, t ) + c∗

d4εD	ds, in domain 2,

(24b)

and the Neumann scheme yields

gᾱ (x f , t + δt )

= cn1ĝα (x f , t ) + cn2ĝα (x f f , t )

+ cn3ĝᾱ (x f , t ) + cn4(δt/δx)	nᾱ, in domain 1, (25a)

gα (xs, t + δt )

= c∗
n1ĝᾱ (xs, t ) + c∗

n2ĝᾱ (xss, t )

+ c∗
n3ĝα (xs, t ) + c∗

n4(δt/δx)	nα, in domain 2, (25b)

where 	df = 	ds are the interface scalar temperature and
	nα = −	nᾱ are the interfacial fluxes, both of which can be
conveniently evaluated within the LB framework; the coeffi-
cients c∗

di and c∗
ni(i = 1, 2, 3, and 4) are related to cdi and cni as

c∗
di = cdi(
∗) = cdi(1−
), and c∗

ni = cni(
∗) = cni(1−
).
Combining Eqs. (20), (21), (24), and (25), one can ob-

tain a system of equations to analytically solve for the DFs
gᾱ (x f , t + δt ) and gα (xs, t + δt ). Note that Eqs. (22)–(25) are
used in the formulations presented in this paper. For brevity,
here we present the following interface scheme for decoupled
conjugate conditions (i.e., when the lattice vectors eᾱ and

eα are aligned with the normal n of the interface) [22]:

gᾱ (x f , t+δt ) = A f
1 ĝα (x f , t ) + A f

2 ĝα (x f f , t ) + A f
3 ĝᾱ (x f , t )

+ B f
1 ĝᾱ (xs, t ) + B f

2 ĝᾱ (xss, t ) + B f
3 ĝα (xs, t ),

(26a)

gα (xs, t+δt ) = As
1ĝᾱ (xs, t ) + As

2ĝᾱ (xss, t ) + As
3ĝα (xs, t )

+ Bs
1ĝα (x f , t ) + Bs

2ĝα (x f f , t ) + Bs
3ĝᾱ (x f , t ),

(26b)

with

A f
i =

(
σcdi

cd4c∗
n4

+ cni

c∗
d4cn4

)/
P

B f
i = σ

(
c∗

ni − c∗
di

c∗
d4c∗

n4

)/
P

As
i =

(
c∗

di

c∗
d4cn4

+ σc∗
ni

cd4c∗
n4

)/
P

Bs
i =

(cni − cdi

cd4cn4

)/
P

, (i = 1, 2, 3), (27a)

and

P = σ

cd4c∗
n4

+ 1

c∗
d4cn4

. (27b)

V. CONJUGATE CONDITIONS ACROSS THIN WALLS

In this section, convenient and accurate LB schemes are
derived to satisfy the conjugate conditions across a thin region
sandwiched between two domains of major interest. The main
attractiveness of the proposed treatment is that it does not
require additional meshing, node distribution, or numerical
computation within the thin layer; instead, the energy bal-
ance within and the conjugate conditions on both sides of
the thin layer are utilized to construct suitable schemes to
complete the streaming step [see Eq. (9)] for the DFs at the
lattice nodes next to the thin layer. Specifically, we consider
three basic scenarios representing different configurations and
applications. The first two setups are selected to show the
treatments for thin flat plates and annular layers, for which
the standard and axisymmetric LB models in Secs. II and III
are implemented, respectively. In addition, the heat flux in
the tangential direction is assumed to be zero or constant so
that the heat flow rates in the normal direction on both sides
of the thin layer are balanced in those two cases, while the
third setup is for the general situation with varying normal and
tangential fluxes. For brevity, only steady cases are considered
and the scalar and flux jumps at both interfaces for all cases are
assumed to be zero. A similar approach can be used to develop
a scheme to resolve the transient variations, using information
from the past time steps, such as an additional discretization
of the transient term with the Euler method.

A. Conjugate heat transfer through flat, thin layer
with constant tangential flux

The thin-layered setup is shown in Fig. 1, where 	 refers
to the normal heat fluxes at the interfaces of concern. The s
and f subscripts refer to the upper and lower domains that

043304-4



LATTICE BOLTZMANN MODEL FOR CONJUGATE HEAT … PHYSICAL REVIEW E 103, 043304 (2021)

are resolved with the LBM, and the thin subscript denotes the
sandwiched middle layer.

Assuming zero normal velocity, the normal heat fluxes at
the two interfaces in Fig. 1 can be related to that through the
thin layer as

	 f = −D f
∂φ f

∂n f
= −σ f ,thin	thin = σ f ,thinDthin

∂φthin

∂nthin
(28a)

and

	s = −Ds
∂φs

∂ns
= σs,thin	thin = −σs,thinDthin

∂φthin

∂nthin
, (28b)

where

σ f ,thin = (ρcp)thin

(ρcp) f

and σs,thin = (ρcp)thin

(ρcp)s

. (28c)

Note that while we use the “fluid” and “solid” notations for
consistency with previous papers, both domains can be fluidic
or solid as will later be demonstrated.

The combination of Eqs. (28a), (28b) would yield

	 f = −σ f ,thin

σs,thin
	s = − (ρcp)s

(ρcp) f

	s. (29)

The above can also be directly obtained from the overall
energy balance through the thin layer.

Also, with the assumption that the heat flow rate in the tan-
gential direction of the thin layer is constant, the heat flow rate
in the normal direction would be constant for steady cases. It
is pointed out that the “thin-wall” assumption refers to cases
where the heat flow rate is constant (or has little deviation) in
the normal direction of the sandwiched layer. This condition
can be exhibited for thicker walls; however, for such cases,
a more direct approach is to allocate lattice nodes within the
middle layer and implement the standard conjugate interface
scheme on both sides of that layer. Furthermore, integration
of the heat flow rate over the entire thin layer yields

	thin = − kthin

(ρcp)thin

φs − φ f

hthin
= −Dthin

φs − φ f

hthin
. (30)

Substitution of Eq. (30) into (28a), (28b) gives

	 f = σ f ,thinDthin
φs − φ f

hthin
(31a)

and

	s = −σs,thinDthin
φs − φ f

hthin
. (31b)

Clearly, the relationships in Eqs. (29) and (31a), (31b)
now constitute two conjugate conditions for the tempera-
ture and flux components φ f , φs, 	 f , and 	s similar to the
standard conjugate conditions for a zero-thickness interface
in Eqs. (22), (23). Following the derivation of the interface
schemes in the previous section, we propose similar interface

schemes for conjugate heat transfer through thin walls as in
Eqs. (26a), (26b), now with the new coefficients

A f
i =

(
εDhthin

cn4c∗
n4

+ Q

c∗
d4cn4

)
cni

P
+

(
σQ

cd4c∗
n4

)
cdi

P

B f
i =

(
σQ

c∗
d4c∗

n4

)
(c∗

ni − c∗
di )

P

As
i =

(
εDhthin

cn4c∗
n4

+ σQ

cd4c∗
n4

)
c∗

ni

P
+

(
Q

c∗
d4cn4

)
c∗

di

P

Bs
i =

( Q

cd4cn4

) (cni − cdi )

P

(i = 1, 2, 3),

(32a)

where

Q = σs,thinDthin
δt

δx
, P = εDhthin

cn4c∗
n4

+ Q

c∗
d4cn4

+ σQ

cd4c∗
n4

, (32b)

and cdi = cdi(
 f ), cni = cni(
 f ), c∗
di = c∗

di(
s) = cdi(1 − 
s),
c∗

ni = c∗
ni(
s) = cni(1 − 
s), i = 1−4, which directly allow

for the unknown DFs gᾱ (x f , t + δt ) and gα (xs, t + δt ) to be
obtained to complete the “streaming” step without the need
for additional node allocation or LBM computation within the
thin layer.

It is worth noting that in the limit of zero thickness
(hthin = 0), Eqs. (31a), (31b) would yield φ f = φs, and the
proposed scheme in Eqs. (32a), (32b) reduces to

A f
i =

(
σcdi

cd4c∗
n4

+ cni

c∗
d4cn4

)/
P

B f
i = σ

(
c∗

ni − c∗
di

c∗
d4c∗

n4

)/
P

As
i =

(
c∗

di

c∗
d4cn4

+ σc∗
ni

cd4c∗
n4

)/
P

Bs
i =

(cni − cdi

cd4cn4

)/
P

(i = 1, 2, 3), (33a)

with

P = σ

cd4c∗
n4

+ 1

c∗
d4cn4

. (33b)

It is observed that the coefficients in Eqs. (33a), (33b)
match exactly with those in Eqs. (27a), (27b). Thus, the
present interface scheme is able to recover that for the stan-
dard conjugate conditions with zero-thickness interface.

As will later be discussed in Sec. VI A, Eqs. (26), (32)
can be used to retain the innate second-order accurate LBM
scheme for straight interfaces for all 
 values. However, it is
also favorable to present a simplified case for 
 = 0.5 for sim-
ple and efficient implementation. Assuming 
 f = 
s = 0.5,
Eqs. (26), (32) reduce to

gᾱ (x f , t + δt ) = εDhthin + (1 − σ )Q

εDhthin + (1 + σ )Q
ĝα (x f , t )

+ 2σQ

εDhthin + (1 + σ )Q
ĝᾱ (xs, t ), (34a)

gα (xs, t + δt ) = εDhthin − (1 − σ )Q

εDhthin + (1 + σ )Q
ĝᾱ (xs, t )

+ 2Q

εDhthin + (1 + σ )Q
ĝα (x f , t ). (34b)
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FIG. 2. Domain setup and layout of lattice nodes in the axisym-
metric LB model for conjugate heat transfer across an annular thin
medium.

Again, in the limit of hthin = 0, it becomes

gᾱ (x f , t + δt ) = 1 − σ

1 + σ
ĝα (x f , t ) + 2σ

1 + σ
ĝᾱ (xs, t ), (35a)

gα (xs, t + δt ) = −1 − σ

1 + σ
ĝᾱ (xs, t ) + 2

1 + σ
ĝα (x f , t ). (35b)

This is consistent with the decoupled conjugate scheme at

 = 0.5 originally proposed in Ref. [22].

The scheme in Eqs. (34a), (34b) is a convenient simpli-
fication for faster simulations and when it is undesirable to
track the specific locations of the boundaries relative the LB
grid, but it is stressed that second-order accuracy will only be
achieved under the specific case of 
 = 0.5 with an expected
decreased convergence order for 
 � 0.5 and curved geome-
try.

B. Conjugate heat transfer through annular thin layer
with constant tangential flux

While the proposed model in Sec. V A can resolve the thin
region in typical planar coordinates, it is also advantageous to
present a model for cylindrical coordinates, since a common
application that this framework can be applied to is the solu-
tion of the CDE for “thin-walled pipes.” For the axisymmetric
model, we present the domain schematic and lattice layout as
shown in Fig. 2.

It should be noted that the fluxes at the two interfaces on
each side of the thin region are not the same; rather, the heat
flow rate is conserved. Thus, the fluxes can be directly related
as before with an additional radius ratio as

k f
∂φ f

∂n f

∣∣∣∣
r=R f

=
(

Rs

R f

)
ks

∂φs

∂ns

∣∣∣∣
r=Rs

, (36)

which can be written in a form similar to Eq. (29) as

	s = −
(

R f

Rs

)
	 f

σ f ,thinσs,thin
. (37)

Similarly, assuming constant tangential flux along the in-
terface, the normal heat flow rate is uniform throughout the
thin layer; thus, the normal flux can be calculated with the
temperatures at the interfaces as

R f k f
∂φ f

∂n f

∣∣∣∣
r=R f

= kthin
φs − φ f

ln(Rs
/

R f )
. (38)

Now that two relations have been obtained relating the
fluxes (	 f ,	s) and macroscopic variables (φ f , φs), we can
develop similar conjugate schemes as given in Eqs. (26a),
(26b) with the new coefficients within the axisymmetric LB
model:

A f
i =

[
εDR f Rs ln(Rs/R f )

cn4c∗
n4

+ R f Q

c∗
d4cn4

]
cni

P
+

(
RsσQ

cd4c∗
n4

)
cdi

P

B f
i =

(
RsσQ

c∗
d4c∗

n4

)
(c∗

ni − c∗
di )

P

As
1 =

[
εDR f Rs ln(Rs/R f )

cn4c∗
n4

+ RsσQ

cd4c∗
n4

]
c∗

ni

P
+

(
RsσQ

c∗
d4c∗

n4

)
c∗

di

P

Bs
i =

(
R f Q

cd4cn4

)
(cni − cdi )

P
, (39a)

where

Q = σs,thinDthinδt/δx,

P = R f Q

c∗
d4cn4

+ RsσQ

cd4c∗
n4

+ εDR f Rs ln(Rs/R f )

cn4c∗
n4

. (39b)

Similarly, for the special case of 
 f = 
s = 0.5, Eqs.
(26), (39) reduce to

gᾱ (x f , t + δt )

= εDR f Rs ln(Rs/R f ) + Q(R f − σRs)

εDR f Rs ln(Rs/R f ) + Q(R f + σRs)
ĝα (x f , t )

+ 2σQRs

εDR f Rs ln(Rs/R f ) + Q(R f + σRs)
ĝᾱ (xs, t ), (40a)

gα (xs, t + δt )

= εDR f Rs ln (Rs/R f ) − Q(R f − σRs)

εDR f Rs ln (Rs/R f ) + Q(R f + σRs)
ĝᾱ (xs, t )Rs

+ 2QR f

εDR f Rs ln (Rs/R f ) + Q(R f + σRs)
ĝα (x f , t ). (40b)

C. Conjugate heat transfer through flat, thin layer
with nonuniform tangential flux

While a number of cases can be simulated using the frame-
work shown in Secs. V A and V B, a need may arise where
the tangential flux is nonuniform so that the heat fluxes in
the normal direction on each side of the thin layer are not
balanced (see illustration in Fig. 3 below where ql �= qr so that
qd �= qu). It should be emphasized that the well-posedness of
the conjugate heat transfer problem typically does not allow
the specification of the tangential flux in addition to the con-
jugate conditions in the normal direction on both sides of the
thin layer. For these cases, an approximation of the tangential
flux based on interpolation of the fluxes in the adjacent lattice
nodes can be used. We begin with a modified setup shown in
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FIG. 3. Domain setup and layout of lattice nodes for conjugate
heat transfer across a flat, thin plate with general nonuniform tangen-
tial flux involved.

Fig. 3, where qi denotes the heat flux on the surfaces with l ,
r, u, and d representing the left, right, upward, and downward
walls, respectively.

As shown in Secs. V A and V B, in order to resolve
the thin layer, two relations must be present that can re-
late the unknown distribution functions gᾱ (x f , t + δt ) and
gα (xs, t + δt ). To develop the first relation, we view the sec-
tion noted in Fig. 3 from a control volume perspective, for
which the energy balance at steady state gives

qdδx + qlhthin − quδx − qrhthin = 0, (41)

where q = −k ∂φ

∂n = −(ρcp)D ∂φ

∂n . It is noted that qd and qu can
be related to the microscopic DFs following the Neumann-
type flux relations in Eq. (16). Substitution of those into
Eq. (41) gives the following relation between gᾱ (x f , t + δt )
and gα (xs, t + δt ):

gᾱ (x f , t + δt ) = (ql − qr )
hthincn4

(ρcp) f

δt

(δx)2

− σcn4

c∗
n4

{gα (xs, t + δt ) − [c∗
n1ĝᾱ (xs, t )

+ c∗
n2ĝᾱ (xss, t )+c∗

n3ĝα (xs, t )]}+[cn1ĝα (x f , t )

+ cn2ĝα (x f f , t ) + cn3ĝᾱ (x f , t )]. (42)

Additionally, it can be assumed that the heat flow rate (pro-
portionally to flux in planar domain) distribution is continuous
across the thin layer, and thus ql and qr can be approximated
from the interpolation of the fluxes at the nearby lattice nodes.
Taking ql as an example in Fig. 4, a local area-based interpo-
lation of the heat fluxes at those nodes gives

ql = −kthin
∂φ

∂x

∣∣∣∣∣ xl f +x f
2

= − kthin

Als + Al f + As + A f

(
Als

∂φ

∂x

∣∣∣∣
x f

+ Al f
∂φ

∂x

∣∣∣∣
xs

+ As
∂φ

∂x

∣∣∣∣
xl f

+ A f
∂φ

∂x

∣∣∣∣
xls

)
. (43a)

FIG. 4. Illustration of the area-based interpolation for q1.

Similar interpolation can be applied to obtain qr :

qr = −kthin
∂φ

∂x

∣∣∣ x f +xr f
2

= − kthin

Ars + Ar f + As + A f

(
Ars

∂φ

∂x

∣∣∣∣
x f

+ Ar f
∂φ

∂x

∣∣∣∣
xs

+ As
∂φ

∂x

∣∣∣∣
xr f

+ A f
∂φ

∂x

∣∣∣∣
xrs

)
. (43b)

Furthermore, it is noted that all the lattice nodes xl f , xls,
x f , and xs are interior nodes within the two domains. The
scalar gradients ∂φ/∂x at the interior nodes can be conve-
niently obtained from the microscopic DFs as verified in
Refs. [15,42,43]. In this work, we use the formula proposed
in Ref. [42] to obtain those in Eq. (43):

−D f ,s
∂φ

∂xi
=

(
1 − 1

2τ f ,s

)
δx

δt

m−1∑
α=1

eαi
(
gα − geq

α

)
. (44)

Hence, the combination of Eqs. (42)–(44) would give the
first relationship between the two unknowns gᾱ (x f , t + δt )
and gα (xs, t + δt ). To construct the second relationship, the
scalar values at the interfaces of the thin layer, φ f ,thin and
φs,thin, should be included. However, it should be noted that
with varying tangential flux involved, the simple relation in
Eq. (30) can no longer be used. To deal with this, we approxi-
mate the flux components qd and qu as

qd = −kthin
∂φ

∂y

∣∣∣∣
f ,thin

= −2kthin
φcent − φ f ,thin

hthin
(45a)

and

qu = −kthin
∂φ

∂y

∣∣∣∣
s,thin

= −2kthin
φs,thin − φcent

hthin
, (45b)

where φcent is the introduced scalar value at the center of the
thin layer (see Fig. 3).

Combining Eqs. (45a) and (45b), one obtains the relation

qu + qd = −2kthin

hthin
(φs,thin − φ f ,thin ). (46)
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Since qd , qu, φ f ,thin, and φs,thin can all be obtained from the microscopic DFs in the LBM, we can rewrite Eq. (46) as

gα (xs, t + δt ) − c∗
n1ĝᾱ (xs, t ) − c∗

n2ĝᾱ (xss, t ) − c∗
n3ĝα (xs, t )

c∗
n4

(ρcp)s

− gᾱ (x f , t + δt ) − cn1ĝα (x f , t ) − cn2ĝα (x f f , t ) − cn3ĝᾱ (x f , t )

cn4
(ρcp) f

= −2kthin

hthin

δt

δx

[
gα (xs, t + δt ) − c∗

d1ĝᾱ (xs, t ) − c∗
d2ĝᾱ (xss, t ) − c∗

d3ĝα (xs, t )

εDc∗
d4

− gᾱ (x f , t + δt ) − cd1ĝα (x f , t ) − cd2ĝα (x f f , t ) − cd3ĝᾱ (x f , t )

εDcd4

]
. (47)

Combining Eqs. (42) and (47), the general interface
scheme for conjugate heat transfer through a thin wall can be
written as

gᾱ (x f , t + δt ) = A f
1 ĝα (x f , t ) + A f

2 ĝα (x f f , t ) + A f
3 ĝᾱ (x f , t )

+B f
1 ĝᾱ (xs, t ) + B f

2 ĝᾱ (xss, t ) + B f
3 ĝα (xs, t )

+ (ql − qr )

(ρcp) f

δt

(δx)2

(
εDhthin

c∗
n4

+ 2Q

c∗
d4

)
hthin

2P
,

(48a)

gα (xs, t + δt ) = As
1ĝᾱ (xs, t ) + As

2ĝᾱ (xss, t ) + As
3ĝα (xs, t )

+Bs
1ĝα (x f , t ) + Bs

2ĝα (x f f , t ) + Bs
3ĝᾱ (x f , t )

+ (ql − qr )

(ρcp) f

δt

(δx)2

(
εDhthin

cn4
+ 2σQ

cd4

)
hthin

2σP
,

(48b)

with the same coefficients as presented in Eqs. (32a), (32b) for
A f

i , B f
i , As

i , and Bs
i , i = 1−3.

Similar to the previous sections, a simplified scheme is
ascertained if 
 f = 
s = 0.5, such that Eqs. (48a), (48b)
reduce to

gᾱ (x f , t + δt ) = εDhthin + (1 − σ )Q

εDhthin + (1 + σ )Q
ĝα (x f , t )

+ 2σQ

εDhthin + (1 + σ )Q
ĝᾱ (xs, t )

+ (ql − qr )

(ρcp) f

δt

(δx)2

hthin

2

εDhthin + 2Q

εDhthin + (1 + σ )Q
,

(49a)

gα (xs, t + δt ) = εDhthin − (1 − σ )Q

εDhthin + (1 + σ )Q
ĝᾱ (xs, t )

+ 2Q

εDhthin + (1 + σ )Q
ĝα (x f , t )

+ (ql − qr )

(ρcp) f

δt

(δx)2

hthin

2σ

εDhthin + 2σQ

εDhthin + (1 + σ )Q
.

(49b)

VI. NUMERICAL VERIFICATION AND DISCUSSION

In order to demonstrate the numerical validity and accu-
racy of the thin-wall schemes, three test cases with analytical

solutions available are examined: Sec. VI A: 1D diffusion in a
three-layered slab, Sec. VI B: 2D axisymmetric diffusion with
a sandwiched thin region, and Sec. VI C: 2D convection diffu-
sion within a channel where two different fluids are separated
by a thin layer. The first test studies the scheme presented in
Sec. V A, where the tangential flux within the thin area is zero.
Test VI B studies the same concept with applications in circu-
lar domains with the axisymmetric LBM model, thus studying
the applicability of the proposed scheme in Sec. V B. The final
test analyzes the accuracy and convergence behavior of the
general scheme in Sec. V C with nonuniform tangential fluxes.
Moreover, since the scheme in Sec. V A can be considered an
approximation of the general scheme in Sec. V C when ne-
glecting the tangential flux variations, a direct comparison of
those two schemes is also conducted with both implemented
in the last test. The advantage and improvement of the general
scheme over its simplified version is verified from an accuracy
standpoint.

A. 1D diffusion in a three-layered slab

The planar configuration and the lattice domain is illus-
trated in Fig. 5, where H1, H2, and H3 are the respective

FIG. 5. Schematic depiction of the computational domain and
the lattice distribution for 1D diffusion in a three-layered slab.
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FIG. 6. Dimensionless temperature profiles within the three-
layered slab for conjugate heat transfer across the thin middle layer
with varied thermal conductivity ratios.

domain heights with distinct materials of thermal conductivi-
ties k1, k2, and k3.

The boundary and interfacial link fraction offsets 
3,top,

1,bottom, 
12, and 
23 represent the local distances of the
boundary and interface nodes to the closest LBM nodes as
shown. For LBM computation, Dirichlet conditions are ap-
plied on both the top and bottom walls following φ1(y = 0) =
0 and φ3(y = H = H1 + H2 + H3) = 1; periodic boundary
conditions are imposed on the left and right walls; and the pro-
posed interface scheme in Eqs. (26a), (26b) with coefficients
determined in Eqs. (32a), (32b) for flat, thin layers resolves the
dual set of conjugate conditions. To obtain nontrivial results, a
quadratic heat source is also imposed. The analytical solution
is provided in the Appendix.

For illustration, Fig. 6 presents profiles of φ1,2,3(y) for
eight sets of thermal conductivity ratios, k31 = k3/k1, for
the materials in the first and third domains with 
3,top =

1,bottom = 
12 = 
23 = 0.5. For the simulation, the domain
heights are fixed as H1 = H3 = 128δx and H2 = 16δx. The
remaining parameters used are k21 = k2/k1 = 250 for k31 >

1, k23 = k2/k3 = 250 for k31 < 1, τ1 = τ3 = 0.65, and σ =
k31. For clarification, Q is determined for all simulations
presented from the relation σs,thinDthin

δt
δx = (ρcp)thinDthinδt/δx

(ρcp)s
=

kthinδt/δx
(ρcp)s

, where kthin = k2. The reader should note that with
the proposed interface scheme in this work, no lattice nodes
or LBM computation are needed for the thin layer. For the
quadratic source S(y) = [ 12a

L2 ( y
L )2 + 6b

L2 ( y
L ) + 2c

L2 ] in domains I
and III, a = 1, b = 0, and c = 0 were used. It is discerned that
the LBM results agree very well with the exact solutions.

For further inspection, Fig. 7 shows the profiles of
φ1,2,3(y) with varied thin-layer thicknesses H2. This sim-
ulation maintains the same resolution in domains I and
III as H1 = H3 = 128δx, and domain II is varied as H2 =
(1, 2, 8, 32, 64, 128, 256, 1024)δx. The other simulation pa-

FIG. 7. Dimensionless temperature profiles, φ1,2,3, at varied thin-
region thicknesses.

rameters are set as k31 = 1, k21 = 5, τ1 = τ3 = 0.65, σ = 1,
a = 1, b = 0, and c = 0. A key point to be made here is that
the interface scheme across the thin layer proposed in this
work is derived from integration of the temperature gradient
over the thin-layer domain [see Eq. (30)], which is an ex-
act relation when no varying tangential heat flux is present
(qr = ql ). This is the reason that the LBM results shown in
Fig. 7 retain a high degree of accuracy even at large H2 values
without associated meshing in the domain. The large H2 val-
ues shown in Fig. 7 are presented to demonstrate this point;
however, care should be taken as the formulation would not
be well-posed for cases with thick walls and non-negligible
amounts of tangential heat flux variation. A similar statement
can be made for an unsteady formulation with thick walls.

To further assess the accuracy of the proposed interface
scheme, we define the relative L2-norm error as

E2 =
[∑

x,y (φLBM − φex)2∑
x,y φ2

ex

]1/2

, (50)

where E2 contains the relative errors of the thermal field
where LBM nodes are present. The Dirichlet boundary con-
ditions applied at the bottom and top of the domain have been
studied extensively [19,22]; therefore, they are not studied
again here. For convenience, we let 
1,bottom = 1–
12 and

3,top = 1–
23 to keep H1 and H3 as integers. The effects
of different interfacial offsets, 
, are investigated with the
E2 error distribution. However, it should be noted that these
are strictly chosen for numerical verification and no limit is
imposed on the scheme related to interfacial offsets. Several
wall thicknesses are studied, ranging from H1/H2 = H3/H2 =
5, 25, 50, and 100 and for interfacial offsets ranging between

 = 0.01, 0.25, 0.50, 0.75, and 0.99. Figure 8 presents
the results of the study for simulation parameters k21 = 8,
k31 = 0.02, τ1 = 0.75, τ3 = 0.875, σ = 0.0133̄, a = 1, b = 0,
and c = 0.
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FIG. 8. Relative L2-norm errors for varying wall thicknesses. (a) H1/H2 = H3/H2 = 5, (b) H1/H2 = H3/H2 = 25, (c) H1/H2 = H3/H2 =
50, and (d) H1/H2 = H3/H2 = 100, vs the grid resolution, 1/H , at different lattice link fraction 
12 and 
23 values.

It is consistently observed that all the interfacial offsets
and wall thicknesses studied demonstrate second-order accu-
racy. Some variation in the overall error is evident between
different cases; however, the magnitudes can be considered
relatively small, ranging between 10–5 and 10–6 when H1 +
H3 = 512δx. The authors also note that various k1, k2, k3, σ ,
τ1, and τ3 parameters were applied and second-order accuracy
was obtained for all cases; however, we omit the additional
results for brevity.

B. 2D axisymmetric diffusion with a sandwiched circular layer

To validate the proposed interface scheme in Sec. V B
for annular thin layers with the axisymmetric LBM, a three-
region annulus test case is proposed as displayed in Fig. 9,
where R refers to the radii of the setup with corresponding
subscripts i, 1, 2, and o differentiating the radii. It is pointed
out that the LBM model implemented is one-dimensional
since no variation is observed in the θ direction. Similar to the
previous section, Dirichlet boundary conditions are applied at
both the inner and outer annulus surfaces as φ(r = Ri ) = φi

and φ(r = Ro) = φo; periodic boundary conditions are ap-
plied in the length direction (into the page) maintaining an
infinitely long cylinder; and the interface scheme described in
Sect. V B is used to account for the conjugate conditions and
heat transfer across the thin layer.

For steady axisymmetric diffusion with conjugate condi-
tions at the interfaces, the exact solution can be solved as

φi1(r) = C1

k1
ln (r) + C2, Ri � r < R1, (51a)

φ12(r) = C1

k2
ln (r) + C3, R1 � r < R2, (51b)

φ2o(r) = C1

k3
ln (r) + φo, R2 � r < Ro, (51c)

where

C1 = φo
ln(R1/Ri )

k1
− ln (R1/R2 )

k2
− ln(R2 )

k3

, (52a)

C2 = φi − C1

k1
ln (R1), (52b)

FIG. 9. Schematic depiction of the circular domain with axisym-
metric diffusion in a three-layered bounded annulus.
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FIG. 10. Dimensionless temperature profiles, φ1,2,3, as a function
of domain height, r/Ro, for varied thermal conductivity ratios.

C3 = C1

[
ln(R1/Ri )

k1
− ln (R1)

k2

]
− φi. (52c)

Dirichlet boundary conditions of φi = 0 and φo = 1 are ap-
plied for all studies presented in this section, and the proposed
conjugate interface scheme in Sec. V B is implemented. First,
a visual illustration of the temperature distribution is shown
in Fig. 10 for fixed radii of Ri = 24, R1 = 120, R2 = 144, and
Ro = 240 all in LB unit. The relaxation-time coefficients τ1

and τ3 in the LBM for domains I and III are fixed as τ1 = 0.65
and τ3 = 1.0, the thermal conductivity of domain II is fixed
as k21 = k2/k1 = 100 for k31 � 1 and k23 = k2/k3 = 100 for
k31 � 1, and the heat capacity ratio is varied as σ = 0.3k31.
To analyze the scheme sensitivity and robustness, a wide
range of k31 ratios are tested as shown. As expected, excellent
agreement between the simulated and theoretical temperature
profiles is observed.

To evaluate the order of accuracy of the proposed inter-
face scheme, the L2-norm errors are ascertained by varying
multiple setup parameters. First, we study the effect of the
link fractions on the accuracy of the proposed scheme. As
in Sec. VI A, we maintain the relationship that the domain
itself is an integer by constraining the physical offsets at
Ri and Ro as 
1,bottom = 1–
12 and 
3,top = 1–
23. These

constraints are strictly for ease of results formatting and there
is no inherent limit that the radial differences must be in-
tegers. Figure 11 shows the results of E2 versus the grid
resolution 1/RLB,nodes ≡ 1/[(R1 − Ri ) + (Ro − R2)] for link
fractions 
 = 0.01, 0.25, 0.50, 0.75, and 0.99 with differ-
ing thicknesses of the thin region as (Ro − Ri )/(R2 − R1) =
9 and (Ro − Ri )/(R2 − R1) = 3. The relaxation-time coeffi-
cients and material ratios are fixed as τ1 = 0.75, τ3 = 1.25,
k21 = 8, k31 = 0.04, and σ = 0.013̄3. Clearly, second-order
accuracy is preserved for all cases tested. The retainment
of this inherent second-order accuracy is observed since the
model exactly resolves the heat transfer within the thin layer
[see Eq. (36)] when the heat flow rate is constant at steady
state in the radial direction for the problem.

To further gain an understanding of the effect of wall
thickness and to compare the present “nonmeshing” scheme
to the original interface scheme in LBM, we compare the
L2-norm errors obtained using both the interface scheme pre-
sented in this work and an LBM model including lattice nodes
within the sandwiched thin layer with two sets of conjugate
conditions resolved by the zero-thickness interface scheme
[see Eqs. (26), (27)]. For simplicity, we choose the inner-
outer radius ratio as Ro/Ri = (Ro − Ri )/(R2 − R1) + 1 for all
simulations and the interfacial offsets are all set to 0.5 so
that the lengths of the regions containing lattice nodes are
all integers. The ratio of the thin-layer thickness to overall
domain extent are varied as (Ro − Ri )/(R2 − R1) = 3, 6, 9,
12, and 15. The relaxation-time coefficients and heat capac-
ity ratios are τ1 = 0.625 and τ3 = 0.85, and σ = (5/14)k31,
respectively. Figure 12 presents the results of the study, with
Figs. 12(a) and 12(c) constraining the thermal conductivities
as k21 = 100, k31 = 25 and Figs. 12(b) and 12(d) as k21 = 4,
k31 = 0.04. Figures 12(a) and 12(b) correspond to the results
obtained with the framework developed in Sec. V B, while
Figs. 12(c) and 12(d) are from the zero-thickness interface
setup as described, which requires lattice nodes within the
middle layer and two sets of conjugate conditions. It is evident
that both methods demonstrate second-order accuracy. From
a magnitude of error standpoint, both schemes demonstrate
considerably low errors and their magnitudes are very close to
each other. Furthermore, it can be observed that the results in
Figs. 12(c) and 12(d) are less sensitive to the geometry change

FIG. 11. L2-norm errors for varying thin annulus thicknesses, (a) (Ro − Ri )/(R2 − R1) = 9 and (b) (Ro − Ri )/(R2 − R1) = 3, vs the grid
resolution, 1/RLB,nodes ≡ 1/[(R1 − Ri ) + (Ro − R2)].

043304-11



DAVID KORBA AND LIKE LI PHYSICAL REVIEW E 103, 043304 (2021)

FIG. 12. L2-norm errors for varying thermal conductivity ratios, (a) k21 = 100, k31 = 25 and (b) k21 = 4, k31 = 0.04, vs the grid resolution,
1/RLB,nodes ≡ 1/[(R1 − Ri ) + (Ro − R2)], for the finite-thickness scheme; (c) k21 = 100, k31 = 25, and (d) k21 = 4, k31 = 0.04, vs the grid
resolution, 1/(Ro–Ri ), for the zero-thickness scheme.

[different (Ro − Ri )/(R2 − R1) ratios] when using the original
zero-thickness scheme compared to those in Figs. 12(a) and
12(b) with the present scheme, i.e., the curves are packed
within a thinner band. This study confirms the applicability
and accuracy of the proposed interface scheme, which can
significantly simplify the interface treatment and save com-
putational resources.

In addition to the interior temperature field, various de-
sign applications require that interfacial temperatures and
heat fluxes for solid components, such as metal-oxide-
semiconductor field-effect transistors and stator coil windings,
be effectively predicted to verify that they are within their re-
quired thermal operating ranges. Using Eqs. (24) and (25), the
macroscopic temperature and flux can be “back-calculated”
using the known postcollision DFs and the solved DFs
gᾱ (x f , t + δt ) and gα (xs, t + δt ) at the new time step from the
interface scheme in Sec. V. To gain an understanding of the
order of accuracy of these interfacial quantities, two additional
sets of L2-norm errors are defined as

E2_t int =
[∑

interface (φintLBM − φintex )2∑
interface φ2

intex

]1/2

, (53)

E2_qint =
⎡
⎣∑

interface

(
ki

∂φi

∂ni

∣∣
LBM − ki

∂φi

∂ni

∣∣
ex

)2

∑
interface

(
ki

∂φi

∂ni

∣∣
ex

)2

⎤
⎦

1/2

, (i = 1, 2),

(54)

which can be used to evaluate the L2-norm errors on each of
the two interfaces of the thin layer. Using identical parameters
to those of Fig. 12(a), the errors are plotted for the inter-
facial temperature and flux in Figs. 13 and 14, respectively.
Figures 13(a) and 14(a) represent the scalar and flux quanti-
ties at r = R1 calculated with the updated streaming function
gᾱ (x f , t + δt ) and similarly so in Figs. 13(b) and 14(b) for
the quantities at r = R2 with gα (xs, t + δt ). It is observed
that second- and third-order convergence rates with low error
magnitude are obtained for E2_tint and E2_qint, respectively, for
the case of zero-tangential flux studied here. The third-order
convergence is due to the selection of 
 = 0.5 everywhere
and the other simulation parameters. Additional tests were
also conducted with arbitrary 
 values and in general only
second-order accuracy is preserved; for brevity, the results
are not shown here. Overall, this test further strengthens the
propensity of the scheme for wide use, as it is still strongly
applicable in situations where the interface temperature and
heat flux need to be determined at the thin layer.

C. 2D convection diffusion within a channel
with plug-flow fluids

To evaluate the applicability and accuracy of the general
interface scheme in Sec. V C for cases with nonuniform tan-
gential flux, a 2D dual-section convection-diffusion problem
with a plug flow is simulated based on previous works [19,22].
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FIG. 13. L2-norm errors for the interfacial scalar values (a) φintf at r = R1 and (b) φints at r = R2 vs the grid resolution 1/RLB,nodes ≡
1/[(R1 − Ri ) + (Ro − R2)] with simulation parameters k21 = 4, k31 = 0.04, τ1 = 0.625, τ3 = 0.85, and σ = (5/14) k31.

The test case presented in Refs. [19,22] is extended to include
an additional domain (three total domains) with the allowance
of varied heights as schematically depicted in Fig. 15. Si-
nusoidal Dirichlet boundary conditions are applied to both
the top and bottom walls as φ1(x, y = 0) = φ3(x, y = H ) =
cos(kx), with k = 2π/L, and periodic boundary conditions
are applied at the left and right sides of the domains.

Assuming a constant plug flow u = (U, 0) in domains I
and III and u = (0, 0) in domain II, the characteristic Péclet
number is defined as Pe = UH/D1 with H = H1 + H2 + H3.
The exact solution for the scalar field is given in the Appendix.

For illustration, Fig. 16 shows the LBM solution for the
dimensionless temperature field at Pe = 10 for a domain of
H1 = H3 = 128δx and H2 = δx with all boundary and inter-
face link fractions 
 = 0.5. The parameters used also include
k21 = 10, k31 = 1, σ = 1, and τ1 = τ3 = 0.55. It is observed
that the LBM solution overlays directly on the exact solution
with no noticeable variations. It is also noted that this test case
does include variation in the heat flow rate in the x direction
within the thin layer, therefore making it a suitable benchmark
example to examine the general interface scheme developed in
Sec. V C.

A comprehensive study of the numerical stability is out
of the scope of this work, while similar stability behavior
presented in Ref. [22] for the zero-thickness conjugate scheme
can be expected for the present schemes. The numerical
stability can usually be improved by choosing approximate
relaxation-time coefficients as demonstrated in Ref. [22]. For
conjugate heat transfer between phases or materials with very
large transport property ratios, the decoupled interface scheme
presented in Ref. [44] can be implemented and the present
interface scheme can be easily extended to incorporate that.
In addition, the area-based interpolation for the approximation
of the tangential fluxes (qr and ql in Fig. 3) could also lead to
instability when the relative dimension of the thin layer to the
neighboring domains is large enough.

The order of accuracy of the LBM solution for the in-
terior temperature fields in domains I and III is examined
first. Figure 17 shows the L2-norm errors defined in Eq. (51)
for varying H2 with Pe = 20, k31 = 2/3, k21 = 10, σ = 2/3,
and τ1 = 0.60, τ3 = 0.60. It should be emphasized that three
different interface schemes were implemented: in Fig. 17(a),
the tangential flux variation is neglected and the scheme in
Sec. V A was used, while in Fig. 17(b), the general scheme

FIG. 14. L2-norm errors for the interfacial flux values (a) qintf at r = R1 and (b) qints at r = R2 vs the grid resolution 1/RLB,nodes ≡
1/[(R1 − Ri ) + (Ro − R2)] with the same parameters in Fig. 13.
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FIG. 15. Schematic depiction of the computational domain and
the lattice distribution for convection-diffusion in a three-layered
channel with two fluid domains.

in Sec. V C with interpolation-based approximation of the
tangential fluxes, ql and qr , in each LB unit cell was applied
[see Eqs. (40a), (40b)]; moreover, in Fig. 17(c), the general
scheme in Sec. V C was also implemented but with exact
tangential fluxes of ql and qr rather than their approximations.
In general, the exact tangential flux is not available, but this
can serve as a valuable reference case to compare with the
simulated cases. Several key points can be observed from
Fig. 17: (1) the error magnitude is significantly reduced in
Fig. 17(b) compared to Fig. 17(a); (2) the errors are less
sensitive to the variation of the thin-layer thickness H2 in
Fig. 17(b) compared to Fig. 17(a), both confirming the neces-
sity of including the tangential flux variation in the interface
scheme; (3) compared to the idealized situation in Fig. 17(c)
with second-order convergence, only first-order accuracy is
obtained for both schemes proposed in Sec. V A and Sec. V C,
implying that the approximation of the tangential fluxes is
responsible for the reduction in the order of accuracy. There-
fore, it can be concluded that the present interface scheme is
first-order accurate for general cases.

FIG. 16. Comparison of LBM results and exact solution for the
dimensionless temperature field of φ at Pe = 10.

Furthermore, Figs. 18 and 19 present the interfacial scalars
and fluxes (run on a 256×256 LBM grid), respectively,
with simulation parameters Pe = 10, H2 = 0.5δx, σ = 3.5k31,
τ1 = 0.57, and τ3 = 0.52. Three specific cases with vary-
ing thermal conductivity ratios were tested: Case 1: k31 = 1,
Case 2: k31 = 0.01, and Case 3: k31 = 100. Again, to further
elucidate the comparison of two proposed interface schemes
in Sec. V C (denoted by “LBM,NF” for nonuniform tangen-
tial flux) and its simplified version in Sec. V A (denoted by
“LBM,CF” for constant tangential flux), both are plotted in
the scalar and flux plots in Figs. 18 and 19. It is apparent
that the LBM solutions with the general scheme in Sec. V C
implemented matches very well with the exact solution, while
some noticeable discrepancy is observed for the solutions
obtained with the “constant tangential flux” scheme. This is
innately due to the nature of both schemes, with the general
scheme in Sec. V C being able to account for the tangential
flux variation.

Furthermore, to verify the order of accuracy of the evalu-
ated interfacial scalar and flux values when using the general
interface scheme in Sec. V C, the L2-norm errors E2_tint and
E2_qint defined in Eqs. (53), (54) are computed and presented
in Figs. 20 and 21, respectively.

From the results shown, first-order convergence is ob-
served for all cases for E2_tint, and second-order convergence
for E2_qint, with an increase in error magnitude as H2 is in-
creased. The higher convergence order of the interfacial flux
is similar to that presented in Figs. 13 and 14. As expected,
the degradation in the order of accuracy can be attributed to
the addition of nonminuscule tangential heat flux along the
sandwiched layer interfaces and the associated interpolation
of the ql and qr components used to construct the general
interface scheme. Nonetheless, the proposed schemes in this
work show considerable promise with low error magnitude
and the benefit with greatly reduced computational demand
compared to a typical computational setup of including LB
nodes in all domains.

VII. CONCLUSIONS

In this paper, a computationally efficient interface treat-
ment within the lattice Boltzmann method framework was
proposed to resolve the conjugate conditions that are evident
on opposing sides of a thin layer of material bound by sepa-
rate and distinct domains of interest. The proposed treatment
is attractive as it satisfies the conjugate conditions on both
sides and avoids fine meshing and computation within the
thin layer. Three particular interface schemes were developed,
presented in Secs. V A through V C. In Sec. V A, the scheme
was presented for planar coordinates specifically for cases
with zero or constant heat flux tangential to the thin-layer
interface. Section V B thus presents a similar analysis for
cylindrical coordinates. Finally, Sec. V C presents a general
interface scheme with flux correction that is applicable to a
wider range of applications involving conjugate heat transfer
across thin layers without any constraint on the tangential flux
variation.

A detailed order of accuracy analysis was then presented
for three representative benchmark cases. The quantities in-
vestigated include the interior temperature fields as well as
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FIG. 17. L2-norm errors for the interior temperature field, E2, at varied H2 and Pe = 20 vs the grid resolution, 1/H, for different interface
schemes (a) neglecting tangential fluxes as in Sec. V A, (b) general scheme in Sec. V C, and (c) general scheme in Sec. V C but with exact
tangential fluxes used.

FIG. 18. Profiles of the interfacial scalar φint at (a) y = H1 and (b) y = H1 + H2 for τ1 = τ3 = 0.55 at Pe = 10.
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FIG. 19. Profiles of the interfacial flux (k∂φ/∂y)int at (a) y = H1 and (b) y = H1 + H2 for τ1 = τ3 = 0.55 at Pe = 10.

the evaluated interfacial temperatures and fluxes. The first
two cases have no flux variation in the tangential direction;
thus, the proposed schemes are able to preserve the intrin-
sic second-order accuracy of the LB model. The final test
case shows the advantage of the correction scheme and it
was verified that the proposed scheme is first-order accurate
for general cases. Overall, the demonstrated results show the
validity of the proposed interface treatment, which shows
a strong propensity for numerical solvers with a focus on

improved computational efficiency with retainment of a high
degree of accuracy.
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FIG. 20. L2-norm errors for the interfacial scalar values (a) φintf at y = H1 and (b) φints at y = H1 + H2 versus the grid resolution with the
general interface scheme in Sec. V C. Simulation parameters include Pe = 20, k31 = 2/3, k23 = 15, σ = 2/3, τ1 = 0.60, τ3 = 0.60.
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FIG. 21. L2-norm errors for the interfacial fluxes in the normal direction (a) qintf at y = H1 and (b) qints at y = H1 + H2 vs the grid resolution
with the general interface scheme in Sec. V C with the same simulation parameters as in Fig. 20.

APPENDIX: ANALYTICAL SOLUTIONS TO THE TEST CASES IN SECS. VI A AND VI C

For diffusion within the three-layered domain in Fig. 5, the governing CDEs are written as

∂

∂y

(
k1

∂φ1

∂y

)
+ k1S(y) = 0, 0 � y < H1, (A1a)

∂

∂y

(
k2

∂φ2

∂y

)
+ k2S(y) = 0, H1 � y < H1 + H2, (A1b)

∂

∂y

(
k3

∂φ3

∂y

)
+ k3S(y) = 0, H1 + H2 � y � H = (H1 + H2 + H3), (A1c)

with

S(y) =
[

12a

H2

( y

H

)2
+ 6b

H2

( y

H

)
+ 2c

H2

]
, 0 � y < H1, (A2a)

S(y) = 0, H1 � y < H1 + H2, (A2b)

S(y) =
[

12a

H2

( y

H

)2
+ 6b

H2

( y

H

)
+ 2c

H2

]
, H1 + H2 � y � H. (A2c)

With standard conjugate conditions at the two interfaces, the exact solutions for the thermal field can be expressed as

φ1(y) = −
[

a

H4
y4 + b

H3
y3 + c

H2
y2

]
+ C1y, (A3a)

φ2(y) = C2y + C4, (A3b)

φ3(y) = −
[

a

H4
y4 + b

H3
y3 + c

H2
y2

]
+ C3y + C5, (A3c)

where

C1 = η1 + η2 + η3 + η4
(H2

k2
+ H3

k3

) + η5
(H3

k3

)
H1 + k1

k2
H2 + k1

k3
H3

(A4a)

C2 = k1C1 − η4

k2
, C3 = k1C1 − η4 − η5

k3
, (A4b)

C4 = H1C1 − k1

k2
(H1C1) + H1η4

k2
− η2, C5 = η1 − H

3
(k1C1 − η4 − η5), (A4c)

η1 = 1 + a + b + c, η2 = a

H4
H1

4 + b

H3
H1

3 + c

H2
H1

2, (A4d)

η3 = − a

H4
(H1 + H2)4 − b

H3
(H1 + H2)3 − c

H2
(H1 + H2)2, (A4e)
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η4 = k1

[
4a

H4
H1

3 + 3b

H3
H1

2 + 2c

H2
H1

]
, (A4f)

η5 = −k3

[
4a

H4
(H1 + H2)3 + 3b

H3
(H1 + H2)2 + 2c

H2
(H1 + H2)

]
. (A4g)

For convection-diffusion within the channel with the three-layered domain in Fig. 13, the governing CDEs are

U
∂φ1

∂x
= D1

(
∂2φ1

∂x2
+ ∂2φ1

∂y2

)
for 0 � y < H1, (A5a)

0 = D2

(
∂2φ2

∂x2
+ ∂2φ2

∂y2

)
for H1 � y < H1 + H2, (A5b)

U
∂φ3

∂x
= D3

(
∂2φ3

∂x2
+ ∂2φ3

∂y2

)
for H1 + H2 � y < H = (H1 + H2 + H3). (A5c)

Also with standard conjugate conditions at the two interfaces, the exact solution for the thermal domain can be solved as

φex,1(x, y) = Re{eikx[C3eλ1y + (1 − C3)e−λ1y]}, (A6a)

φex,2(x, y) = Re{eikx[C2eλ2y + C1e−λ2y]}, (A6b)

φex,3(x, y) = Re
{
eikx

[(
a5 − a5

2C4
)
eλ3y + C4e−λ3y

]}
, (A6c)

where “Re” denotes the real part of a complex number, and the coefficients are

λ1,2,3 = k

√
1 + iU1,2,3

D1,2,3k
, k = 2π/L, (A7a)

a1 = e−λ1H1 , a2 = e−λ2H1 , a3 = e−λ2(H1+H2 ), a4 = e−λ3(H1+H2 ), a5 = e−λ3H , (A7b)

b1 = a1

a2 − a1
2a2

, b2 = a1a2
2

a2 − a1
2a2

, b3 = − a1
2a2

a2 − a1
2a2

, (A7c)

b4 = k2λ2a1

k1λ1
(
a2 + a1

2a2
) , b5 = − k2λ2a1a2

2

k1λ1
(
a2 + a1

2a2
) , b6 = a1

2a2

a2 + a1
2a2

, (A7d)

d1 = a4

a3a4
2 − a3a5

2
, d2 = a3

2a4

a3a4
2 − a3a5

2
, d3 = − a3a5

a3a4
2 − a3a5

2
, (A7e)

d4 = k2λ2a4

k3λ3
(−a3a5

2 − a3a4
2
) , d5 = − k2λ2a3

2a4

k3λ3
(−a3a5

2 − a3a4
2
) , d6 = − a3a5(−a3a5

2 − a3a4
2
) , (A7f)

C1 =
( d6−d3

d1−d4

) − ( b6−b3
b1−b4

)
( b5−b2

b1−b4

) − ( d5−d2
d1−d4

) , C2 = C1(b5 − b2) + b6 − b3

b1 − b4
, (A7g)

C3 = k2λ2(a1C2 − a1a2
2C1) + a1

2a2

k1λ1(a2 + a1
2a2)

, C4 = a4C2 + a3
2a4C1 − a3a5

a3a4
2 − a3a5

2
. (A7h)
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