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Among various algorithms of multifractal analysis (MFA) for complex networks, the sandbox MFA algorithm
behaves with the best computational efficiency. However, the existing sandbox algorithm is still computationally
expensive for MFA of large-scale networks with tens of millions of nodes. It is also not clear whether MFA
results can be improved by a largely increased size of a theoretical network. To tackle these challenges, a
computationally efficient sandbox algorithm (CESA) is presented in this paper for MFA of large-scale networks.
Distinct from the existing sandbox algorithm that uses the shortest-path distance matrix to obtain the required
information for MFA of networks, our CESA employs the compressed sparse row format of the adjacency matrix
and the breadth-first search technique to directly search the neighbor nodes of each layer of center nodes, and then
to retrieve the required information. A theoretical analysis reveals that the CESA reduces the time complexity of
the existing sandbox algorithm from cubic to quadratic, and also improves the space complexity from quadratic
to linear. Then the CESA is demonstrated to be effective, efficient, and feasible through the MFA results of
(u, v)-flower model networks from the fifth to the 12th generations. It enables us to study the multifractality of
networks of the size of about 11 million nodes with a normal desktop computer. Furthermore, we have also found
that increasing the size of (u, v)-flower model network does improve the accuracy of MFA results. Finally, our
CESA is applied to a few typical real-world networks of large scale.
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I. INTRODUCTION

Since Song et al. [1] revealed the existence of the self-
similarity in complex networks, the fractality of complex
networks has attracted much attention with extensive inves-
tigations. This is due to its potential applications in various
areas of science and technology [2–13]. For some complex
systems with an inhomogeneous distribution of local density
of their certain physical quantities, however, a unique fractal
dimension is not sufficient to characterize their complexity.
As a generalization of fractal analysis, multifractal analysis
(MFA) is a useful and more powerful tool to systematically
describe the spatial heterogeneity of both theoretical and ex-
perimental fractal objects in many fields, such as economic
systems [14,15], biological systems [16–18], and physics and
chemistry [19–21]. In recent years, some studies have also
focused on the MFA of complex networks. MFA has been
shown to have better performance than fractal analysis in
characterizing the complexity of model and real-world net-
works [8,22–36]. Thus, if a network possesses the multifractal
property, we can use the generalized fractal dimensions Dq,
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instead of a single fractal dimension D0, to unfold effectively
the self-similar structure of the network, thus capturing the
fluctuations of local node density in the network.

A few MFA algorithms have been proposed so far to calcu-
late the generalized fractal dimensions Dq or mass exponents
τq of complex networks [8,23,24,26,27,31]. The most widely
used ones include the compact-box-burning (CBB) algorithm
[23], the improved box-counting (IBC) algorithm [8], and the
modified sandbox algorithm [26]. Box covering with mini-
mum number of boxes for calculating the fractal dimension
of complex networks is known to be an NP-hard problem.
More severely, in comparison with fractal analysis algorithms,
MFA algorithms have much higher computational complexity,
making MFA challenging. As described in Ref. [26], the CBB
and IBC algorithms must take a large amount of CPU time
and memory resources to find the minimum possible number
of boxes for covering the entire network because finding the
minimal box covering of a network is known to be NP-hard.
Among various MFA algorithms, the existing sandbox al-
gorithm behaves with the best computational efficiency for
MFA of small-scale networks as experimentally illustrated in
Ref. [26]. This is because that the sandbox algorithm only
randomly selects a number of nodes on a network as the center
nodes of sandboxes and then counts the number of nodes in
each sandbox within a given radius for MFA. Therefore, the
existing sandbox algorithm and its improved versions have
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been widely used to the calculation of the mass exponents τq

or the generalized fractal dimensions Dq of different types of
complex networks [10,26–28,30–34]. The calculated results
are then used for the investigation into the fractal and multi-
fractal properties of the networks.

Despite of its advantages, the existing sandbox algorithm
is still computationally expensive for large-scale complex
networks. So far, it has been applied only to small-scale net-
works. For example, the multifractality of the fifth generation
minimal model network with 12 501 nodes has been studied
by using the existing sandbox algorithm in Ref. [26]. Song
et al. [27] have proposed an improved sandbox algorithm to
uncover the multifractal property of the weighted astrophysics
collaboration network with 16 706 nodes. Huang et al. [30]
have applied the improved sandbox algorithm to the MFA of
the seventh generation weighted Koch networks with 32 769
nodes. Overall, the largest size of complex networks reported
using the existing sandbox algorithm and its improved ver-
sions for MFA is in the order of tens of thousands nodes.
As will be seen in Sec. II, for a complex network with N
nodes, the time complexity and space complexity of the ex-
isting sandbox algorithm are O(N3) and O(N2), respectively.
With the increase in the network size N , the required com-
puting resources characterized by O(N2) increases rapidly.
For example, for a complex network with a million (i.e., 106)
nodes, the required memory space resource is in the order of
a few terabytes (≈3.6 TB), which is not available in normal
desktop computers or even some high-performance comput-
ers. Thus, it becomes challenging to conduct the MFA for
large-scale complex networks with millions of nodes or even
tens of millions of nodes, such as the social networks, road
networks, and autonomous systems graphs provided on the
Stanford Large Network Dataset Collection [37]. Moreover, it
is also not clear whether MFA results can be improved by an
increased size N of theoretical networks. All of these require
a computationally efficient algorithm to conduct the MFA for
large-scale complex networks experimentally.

To tackle these challenges, a computationally efficient
sandbox algorithm (CESA) is proposed in this paper for MFA
of large-scale complex networks. We first briefly recapitulate
the existing sandbox algorithm for MFA of complex networks,
developing some insights into its time and space complexities
in Sec. II. Then Sec. III presents the CESA with a theoretical
analysis of its time and space complexities. This is followed
by Sec. IV with some MFA experiments on a normal desktop
computer with a four-core CPU and 16 GB memory. The
experiments are presented to verify the CESA, to evaluate the
impact of network size on accuracy of the algorithm, and to
investigate the computational performance with verification
networks generated from the (u, v)-flower network model.
The CESA is also applied to a few real-world complex net-
works of large scale. Finally, Sec. V concludes the paper.

II. INSIGHTS INTO THE COMPLEXITY
OF THE EXISTING SANDBOX ALGORITHM

This section briefly reviews the existing sandbox algorithm
[26] and provides some insights into its complexity. Mean-
while, we also analyze the main factors that lead to huge

computational burden for the existing sandbox algorithm to
perform the MFA of large-scale complex networks.

A. The existing sandbox algorithm

According to the existing sandbox algorithm [26], the gen-
eralized fractal dimensions Dq of a complex network G are
defined as

Dq = lim
r→0

ln〈[Mi(r)/N]q−1〉
ln(r/d )

1

q − 1
, q ∈ �, q �= 1, (1)

where d denotes the diameter of the network G, and Mi(r)
is the number of nodes covered by the sandbox with center
node i and radius r (1 � r � d ). Mi(r) is one of the key
parameters for estimating the generalized fractal dimensions
Dq of the network G. The pair of angle brackets 〈·〉 denotes
the operation of taking a statistical average over randomly
chosen centers of the sandboxes. As shown in Eq. (1), Dq

as a set of various dimensions describes the distribution of
the measures of these sandboxes. It reflects the fluctuations
of local node density in the network G. In particular, D0, D1,
and D2 represent the fractal dimension (or box-counting di-
mension), information dimension, and correlation dimension,
respectively. In Eq. (1) the information dimension D1 cannot
be directly calculated because q �= 1. In practice, the general-
ized fractal dimensions Dq (q → 1) are first calculated. After
that, the interpolation method is used to obtain D1. As a matter
of fact, we usually rewrite Eq. (1) as

ln(〈[Mi(r)]q−1〉) ∝ Dq(q − 1) ln(r/d ) + (q − 1) ln(N ). (2)

If the network G takes a multifractal structure, we can estimate
its mass exponents τq numerically through a linear regression
of ln(〈[Mi(r)]q−1〉) against ln(r/d ), and calculate its gener-
alized fractal dimensions Dq through a linear regression of
ln(〈[Mi(r)]q−1〉)/(q − 1) against ln(r/d ) [26], respectively.
Of course, we can also obtain the generalized fractal dimen-
sions Dq according to τq and Dq = τq/(q − 1) for q �= 1.

The existing sandbox algorithm for the MFA of network
G requires an input that is the shortest-path distance matrix
of the network. Therefore, it is essential to calculate this
shortest-path distance matrix by using some algorithms, e.g.,
the Floyd’s algorithm [38]. Thus, the main steps of the existing
sandbox algorithm are described as follows:

(i) Calculate the shortest-path distance matrix of
network G

(ii) Set the radius r (1 � r � d ) of the sandbox
(iii) A number of nodes are randomly selected as the cen-

ters of sandboxes to form the center-node set Sc(r)
(iv) For each center node i [i ∈ Sc(r)], count the number

of nodes Mi(r) covered by the sandbox with center node i
and radius r according to the shortest-path distance matrix of
network G

(v) For each q, calculate the statistical average
〈[Mi(r)]q−1〉 of [Mi(r)]q−1 over all sandboxes of radius
r

(vi) For all different values of r, repeat steps (iii) to (v) to
calculate the statistical averages 〈[Mi(r)]q−1〉

(vii) Calculate τq or Dq with a linear regression according
to Eq. (2).
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FIG. 1. An example of the existing sandbox scheme.

This process is illustrated with a simple example in Fig. 1.
For a simple network given in Fig. 1(a), assume that nodes 4
and 8 are selected as the center nodes when r = 1. In this case,
the number of nodes in the sandbox of center node 4, M4(1),
is 4, and similarly, for center node 8, M8(1) = 3, as shown in
Fig. 1(b). Furthermore, assume that nodes 3 and 8 are chosen
as the center nodes when r = 2, M8(2) = 6 and M3(2) = 6
both can be determined as given in Fig. 1(c).

B. Complexity analysis of the existing sandbox algorithm

To demonstrate the computational burden of the existing
sandbox algorithm reviewed above, its computational com-
plexity is analyzed. As usual, we assume that the parameter q
is in the range of [−10, 10] with a step of 1/3 in this study. Let
Nq denote the number of values of q and Nc denote the number
of center nodes in the set Sc(r). The sandbox algorithm takes
the shortest-path distance matrix as its input. For a network
G of size N , it is known that the time complexity of the
computation for the shortest-path distance matrix is O(N3)
and the space complexity is O(N2). The time complexity of
setting the value of r from 1 to d in the steps (ii) through
(vi) is O(d ). The time complexity of step (iv) is O(NcN ).
The time complexity of step (v) is O(NqNc). Therefore, the
overall time complexity of the algorithm can be expressed
as O(N3 + d (NcN + NqNc)). Here, d indicates the network
diameter. It is usually much smaller than the total number of
nodes N of network G. Nq is constant and does not increase
with the network size N . Nc is usually set to be proportional to
the network size N . Therefore, the overall time complexity
of the algorithm can be further expressed as O(N3). The
overall space complexity of the algorithm is O(N2), which
is mainly determined by the size of the shortest-path dis-
tance matrix of network G. This implies that the required
CPU time and memory space for the algorithm increases
rapidly with the increase in the network size N . Consequently,
the computing and memory burden is considerably heavy
for large-scale complex networks. Because the shortest-path
distance matrix of network G is a full matrix, it cannot be
compressed easily and is thus memory consuming. For an

unweighted network G with 100 000 nodes as the example, the
required memory space for its shortest-path distance matrix
is in the order of a few tens of gigabytes. Our experimental
tests show that the actual memory requirement for this net-
work is approximately 37.3 GB, challenging normal desktop
computers. This is also the main reason why the existing sand-
box algorithm has only been applied to small-scale networks
so far.

III. COMPUTATIONALLY EFFICIENT
SANDBOX ALGORITHM

As shown in Eq. (2), the Mi(r), namely, the number of
nodes covered by the sandbox with center node i and radius
r, is a key parameter for calculating the mass exponents τq of
network G. It is directly obtained according to the shortest-
path distance matrix of network G as described in step (iv)
of the existing sandbox algorithm. In fact, the Mi(r) can also
be calculated by accumulating the number of neighbor nodes
from the zeroth layer to the rth layer of center node i. Here
the lth layer neighbor nodes of node i are these nodes whose
distance from the node i equals to l . It is known that the
breadth-first search (BFS) is an algorithm for searching tree or
graph data structures [39]. It starts from a root node and then
searches its neighbor nodes before searching the next layer
neighbors. Therefore, we can apply the BFS algorithm with
the center node i as the root to obtain the neighbor nodes of
each layer of center node i. Thus, the key parameter Mi(r) can
be easily calculated. As will be seen later in Sec. III B, another
parameter d does not affect the MFA results. It can also be
approximately estimated through applying BFS algorithm to
all center nodes in the center-node set Sc. Therefore, we can
redesign the computational process of sandbox scheme by
directly searching the neighbor nodes of each layer of center
node i (i ∈ Sc). This computational scheme eliminates the
process of getting the shortest-path distance matrix, thus re-
ducing the computational complexity of the existing sandbox
algorithm.

With the consideration that typical complex networks are
sparse networks, the usage of sparse matrix as the represen-
tation of network G has the potential to significantly reduce
the space complexity. The compressed sparse row (CSR) for-
mat, which is the current standard storage format for sparse
matrices in numerical analysis and computer science, can
reduce the substantial memory requirement and enable fast
row access [40]. It is convenient to extract the elements in each
row. This is also beneficial for the design of our computational
scheme. Therefore, the CSR format of the adjacency matrix
of network G can be used as the input of this computational
scheme to reduce the space complexity. We call our computa-
tional scheme a computationally efficient sandbox algorithm
(CESA).

A. Input of the CESA

Since unweighted networks are considered in this study,
the elements of adjacency matrix A[N][N] of network G with
N nodes and E edges consist of only “1”s and “0”s, with the
“1” indicating that an edge exists between node i and node j
and the “0” representing no direct connection between them.
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FIG. 2. Obtaining C[2E ] and R[N + 1] from the adjacency ma-
trix A[N][N].

So the majority of the elements of the sparse network G are
“0”s.

The CSR format of network G consists of three one-
dimensional arrays, namely, the column indices, the row
offsets, and the values of nonzero elements. It can be eas-
ily converted from its adjacency matrix A[N][N] or sparse
adjacency matrix. As described above, the value of nonzero
elements in this study is “1”. Thus, the CSR format used here
is composed of two arrays: the array of column indices C[2E ]
to store the column indices j of the “1”s in the adjacency ma-
trix, and the array of row offsets R[N + 1] to store the starting
offset of a new row ci,0 in C[2E ]. Using two arrays instead of
three arrays further reduces the space requirement. Figure 2
illustrates how to obtain C[2E ] and R[N + 1] of network G
from its adjacency matrix A[N][N]. The last element of R[N +
1] is 2E , i.e., twice of the number of edges in the network G.
In this way, it is easy to extract the direct neighbors of node
i, which are C[R[i]] to C[R[i + 1] − 1]. Another important
feature of the CSR format is that the elements of each row
in the column indices can be out of order. Therefore, C[2E ]
and R[N + 1] of network G can also be converted from its
unordered sparse adjacency matrix As[2E ][2], further saving
the sorting time. Here the sparse adjacency matrix As[2E ][2]
is composed of the positions of “1”s in the adjacency matrix
A[N][N], including the row indices i and the column indices
j. Because the sparse adjacency matrix As[2E ][2] usually
requires less memory than the adjacency matrix A[N][N] for
a sparse network, we get C[2E ] and R[N + 1] of the network
from its sparse adjacency matrix As[2E ][2] in our practical
calculations.

As a result, the computational complexity to obtain the
input (i.e., the C[2E ] and R[N + 1]) of the CESA is signifi-

FIG. 3. Obtaining the Mi(r) with the BFS algorithm for the cen-
ter node i ∈ Sc.

cantly reduced. The time complexity is reduced from O(N3)
to O(E ) and the space complexity is reduced from O(N2) to
O(E + N ). For example, for an unweighted network G with
100 000 nodes and 1 000 000 edges, the required memory for
storing C[2E ] and R[N + 1] is as low as a few megabytes. Our
experimental tests show that the actual memory requirement
is approximately 8.0 MB for C[2E ] and R[N + 1]. This is
compared to 37.3 GB for the shortest-path distance matrix.

B. Algorithm design

In the CESA, we employ the BFS algorithm to obtain the
Mi(r) as required in Eq. (2). Figure 3 shows the BFS process
of searching the neighbor nodes of each layer of center node i.
More specifically, the BFS algorithm is applied with the center
node i as the root. All other nodes of network G are divided
into different layers. Then the shortest-path distance between
center node i and the other nodes can be easily obtained. As
seen from Fig. 3, the number of nodes in the lth layer, ni(l ),
matches with the number of nodes whose distance from the
center node i equals to r = l . In this way, the number of nodes
within the radius r of the center node i can be calculated by
accumulating the number of nodes in each layer as shown in
Eq. (3):

Mi(r) =
∑

ni(l ), ∀l � r,∀r � d. (3)

Now, the CESA algorithm is summarized as follows:
(i) Obtain the C[2E ] and R[N + 1] of network G
(ii) A number of nodes are randomly selected as elements

of the center-node set Sc

(iii) Set the node i (i ∈ Sc) as the center node of the sand-
box

(iv) Based on the inputs C[2E ] and R[N + 1], conduct the
BFS with the center node i as the root and then calculate the
Mi(r) through Eq. (3)

(v) For each q, calculate the [Mi(r)]q−1

(vi) For all different center nodes i, repeat steps (iv) to (v)
to calculate the [Mi(r)]q−1

(vii) Calculate the statistical averages 〈[Mi(r)]q−1〉 of
[Mi(r)]q−1 over all sandboxes of radius r and then use them
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to calculate the τq or Dq with a linear regression according to
Eq. (2).

For the second step of the CESA, a number of nodes
are randomly selected as elements of the center-node set Sc,
of which the size Nc is proportional to the network size N .
The center-node set Sc remains the same in the following
steps once it is determined. This reduces the complexity of
the existing sandbox algorithm. Since the statistical average
values 〈[Mi(r)]q−1〉 are used for linear regressions as shown
in Eq. (2), this change does not impact the final multifractal
results from the statistical perspective. This can be verified by
our experiments in Sec. IV.

In addition, with the shortest-path distance matrix in the
existing sandbox algorithm, the network diameter d in Eq. (2)
can be obtained straightaway. However, this is not directly
available for the CESA with the CSR format as the input.
At first glance, this parameter d is necessary for analyzing
the multifractal results as required in Eq. (2). In fact, this
parameter does not affect the MFA results because it is fixed
for a given network G. Furthermore, it is seen from the Eq. (1)
that the range of radius r used for linear regressions should be
selected in the small-scale range of r. Of course, we can also
use the observed network diameter d ′ as an approximation
of the actual network diameter d , which is updated to the
maximum depth of the trees obtained by the BFS rooted by
center node i ∈ Sc in step (iv). As a result, whether d ′ equals to
d or not depends on whether one of the nodes with the longest
distance in network G is selected as a center node in Sc. This
can be certainly guaranteed when the size of center-node set
Sc, Nc, equals to the network size N . Or it can be guaranteed by
adding the node with longest distance into the center-node set
Sc. Actually, our experiments to be presented later in Sec. IV
show that d ′ is almost equal to d when Nc equals to 10% of
the network size N .

C. Complexity analysis of CESA

As mentioned above, the time complexity of getting the
input of the CESA is O(E ). The BFS is run for each of the
center nodes in the set Sc, implying that it executes Nc times
altogether. Since the time complexity of the BFS algorithm
is known to be O(N + E ), the overall time complexity of
the CESA can be expressed as O(E + Nc(N + E + Nq )). For
large-scale complex networks, Nq is negligible compared to
(N + E ). Thus, the overall time complexity of the CESA
can be further expressed as O(Nc(N + E )). As Nc is usually
smaller than N and E is much smaller than N2, the time
complexity O(Nc(N + E )) of the CESA is much smaller than
the time complexity O(N3) of the existing sandbox algorithm.
For the extreme case when all the nodes are selected as center
nodes (Nc = N), the overall time complexity of the CESA
would be O(N (N + E )), which is still much less than O(N3)
of the existing sandbox algorithm.

The overall space complexity of our CESA is O(N + E ),
which is mainly determined by the size of the CSR format,
i.e., the C[2E ] and R[N + 1]. For many complex networks,
it is much smaller than the space complexity O(N2) of the
existing sandbox algorithm. This can be verified from many
real-world networks that are sparse in nature.

It is known that a network of size N has at most N (N −
1)/2 undirected edges. In this case, all nodes in the network
are pairwise connected by an edge. Therefore, if the number
of edges of network G we considered is approximately O(N2),
the overall time and space complexities of the CESA would
be O(NcN2) and O(N2), respectively. Further, when combined
with the Nc = N mentioned above, the overall time and space
complexities are going to be O(N3) and O(N2), respectively.
This is the worst case, which makes the CESA consuming
the same time and space complexities as the existing sandbox
algorithm. This is to say that even in the worst case, our CESA
is still no worse than the existing sandbox algorithm. How-
ever, since most model and real-world networks are sparse
networks, our CESA generally has great advantages in time
and space costs.

In summary, through the redesign of the computational
process and using the two arrays of the CSR format of the
adjacency matrix as the input, the time complexity is reduced
from O(N3) to O(Nc(N + E )) and the space complexity is
reduced from O(N2) to O(N + E ). These make the CESA
more efficient in both time and space for calculating the
mass exponents τq or the generalized fractal dimensions Dq

of large-scale complex networks.

IV. EXPERIMENTAL STUDIES

This section conducts experiments to verify the effective-
ness and efficiency of our CESA for MFA of large-scale
complex networks. We use the (u, v)-flower model networks
as verification networks. Both the computational accuracy and
complexity of the proposed CESA are investigated. Then the
CESA is applied to a few real-world complex networks of
large scale. For all these experiments, the number of selected
center nodes Nc equals 10% of the network size N , i.e., Nc =
0.1N .

A. Algorithm verification

In 2007, Rozenfeld et al. proposed the (u, v)-flower net-
work model with the aim to understand the self-similarity and
dimensionality of complex networks [5]. The network model
is constructed recursively with known network scalability and
deterministic multifractality. Thus, it has been used to verify
the performance of some MFA algorithms [23,26,36]. In this
study, we use the (u, v)-flower network model to generate
verification networks of different scales for our experiments.
These verification networks are generated recursively starting
from a ring network with u + v nodes and u + v edges. Fig-
ure 4 illustrates how the (u, v)-flower network with u = 2 and
v = 2 is constructed recursively. From generation to genera-
tion, each edge in the previous generation is replaced by two
parallel paths with length u and v, respectively. In this way, the
number of edges E and the network size N in each generation
can be respectively calculated by

E = (u + v)g, (4)

N =
(

u + v − 2

u + v − 1

)
(u + v)g + u + v

u + v − 1
. (5)
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FIG. 4. The first, second, and third generation (u, v)-flower net-
work with u = 2 and v = 2.

As seen from Eqs. (4) and (5), with the increase in the gen-
eration g, the number of edges E increases exponentially, and
the network size N grows nearly exponentially. Therefore, the
(u, v)-flower network model is quite suitable for generating
large-scale networks in the verification of the feasibility of
the proposed CESA. Another advantage of using (u, v)-flower
networks as verification networks is that its mass exponents,
τq, can be theoretically determined as [23,26]

τq =
⎧⎨
⎩

(q − 1) ln(u+v)
ln u , q < ln(u+v)

ln 2 ,

q ln((u+v)/2)
ln u , q � ln(u+v)

ln 2 .

(6)

Thus, we can verify the effectiveness and accuracy of the
proposed CESA by comparing the theoretical mass exponents
τq in Eq. (6) with the numerical ones calculated from our
CESA.

We first generate the 12th generation (u, v)-flower network
with u = 2 and v = 2. The 12th generation (u, v)-flower net-
work has 11 184 812 nodes and 16 777 216 edges. From our
theoretical complexity analysis, the required memory space
for the shortest-path distance matrix in the existing sandbox
algorithm is in the order of a few hundreds of terabytes
(≈455.1 TB). It is far beyond the computation capacity of
the existing sandbox algorithm on normal desktop computers
or even some high-performance computers. Now we use our
CESA to perform the MFA for the network. According our
theoretical analysis, the required memory space for the sparse
data structure as input to the CESA is in the order of 100
megabytes (≈170.7 MB).

From our CESA, Fig. 5 depicts the linear regressions
of ln(〈[Mi(r)]q−1〉) versus ln(r/d ), where the observed net-
work diameter d ′ is used as an approximation of d . These
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FIG. 5. Solid lines (black lines) show the linear regressions for
calculating the mass exponents τq of the 12th generation (u, v)-flower
network with u = 2 and v = 2. The range between two dashed lines
is used for linear regressions.

experimental results show good linearity. Here we select
[2, 400] as the range of radius r for linear regressions as shown
in Fig. 5. Then we obtain the numerical mass exponents τq

by the linear regressions in this linear rang based on Eq. (2).
Figure 6 illustrates the numerical and theoretical results of
mass exponents τq with respect to q. It is seen from Fig. 6
that the mass exponents τq of the 12th generation (u, v)-flower
network calculated by the CESA (circles) match well with
the theoretical ones (solid line) obtained from Eq. (6). This
not only verifies the feasibility of our CESA on MFA of
large-scale networks, but also experimentally demonstrates
its accuracy and effectiveness. Although the computational
process of our CESA and the existing sandbox algorithm
are different, they share the same mathematical theory as
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theoretical result
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FIG. 6. Mass exponents τq for the 12th generation (u, v)-flower
network with u = 2 and v = 2. Solid line (black line) represents
the mass exponent τq given by Eq. (6). The circles represent the
numerical estimation of the τq calculated by the CESA. Each error
bar takes twice the length of the standard deviation for all the results.
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FIG. 7. Error analysis for the mass exponents τq of the (u, v)-
flower network with u = 2 and v = 2 from 684 nodes of the fifth
generation to 11 184 812 nodes of the 12th generation: (a) rela-
tive standard error Ers, (b) absolute square error Eas, (c) absolute
error Ea.

introduced in Sec. II A. This demonstrates that the proposed
CESA in this study improves the computational efficiency
without causing any sacrifice on the accuracy of the MFA
results of complex networks. In addition, we also calculate
the standard deviations of these mass exponents τq. The cal-
culated standard deviations are also shown as error bars in
Fig. 6, where each error bar takes twice the length of the
standard deviation for all the results. However, these error
bars are so short that they are almost invisible and become
horizontal bars in the circles as shown in Fig. 6, implying that
our results of mass exponents τq calculated by the CESA are
stable.

Next, we focus on the accuracy of the MFA results of the
proposed CESA for (u, v)-flower networks with increasing
network sizes. For this purpose, we generate (u, v)-flower
networks with u = 2 and v = 2 from the fifth to the 12th
generations, and apply the CESA to perform the MFA for
these networks. In order to quantify the accuracy of the CESA
for the MFA of these networks with different sizes, the relative
standard error Ers [26], the absolute square error Eas, and
the absolute error Ea are analyzed between theoretical and
numerical values of mass exponents τq. Let τ t

q and τ n
q denote

the theoretical and numerical values of mass exponents τq,
respectively. Also, let τ̄ t denote the average of τ t

q. Then errors
Ers, Eas, and Ea are respectively defined by

Ers =

√
1

Nq

∑
q

(
τ t

q − τ n
q

)2

√
1

Nq

∑
q

(
τ t

q − τ̄ t
)2

, (7)

Eas =
∑

q

(
τ t

q − τ n
q

)2
, (8)

Ea =
∑

q

|τ t
q − τ n

q |. (9)

Figure 7 depicts these errors between the numerical mass
exponents τq of CESA and theoretical ones of (u, v)-flower
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FIG. 8. (a) Time complexity of the CESA and the existing sand-
box algorithm when Nc = N . (b) CPU time of the CESA when
Nc = N/10.

network as the network size N increases. The experimen-
tal errors of CESA, including Ers, Eas, and Ea, decrease
significantly as the network size N increases from 684 nodes
of the fifth generation to 11 184 812 nodes of the 12th gen-
eration. This indicates that the CESA improves the accuracy
of the MFA results with the increase in the network size
N . Therefore, calculating large-scale networks for MFA is
beneficial.

We take the execution time of the CESA as an indication
of its time complexity. On a normal desktop computer with
a four-core CPU and 16 GB memory, the execution time
performance for computing the mass exponents τq of (u, v)-
flower networks with u = 2 and v = 2 from the seventh (with
10 924 nodes and 16 384 edges) to the 12th generation (with
11 184 812 nodes and 16 777 216 edges) is recorded. The ex-
perimental results of the execution time are compared with the
theoretical time complexity of the CESA [O(Nc(N + E ))] and
the existing sandbox algorithm [O(N3)].

Figure 8(a) compares the theoretical time complexity of the
CESA and the existing sandbox algorithm, where the Nc = N
is considered. Here a semilog graph is used since the network
size, N , and the number of edges, E , increase significantly
from generation to generation as shown in Eqs. (4) and (5). As
a result, the time complexity of the CESA, O(Nc(N + E )), and
that of the existing sandbox algorithm, O(N3), both increase
nearly exponentially. Even in the extreme case of Nc = N ,
however, it is observed that O(N3) has greater slope than
O(Nc(N + E )), indicating that the computational burden of
the existing algorithm increases much faster than that of the
CESA.

Figure 8(b) shows the CPU time of the CESA on our desk-
top computer when 10% of the nodes are selected as center
nodes (i.e., Nc = 0.1N). For the seventh generation (u, v)-
flower network, the execution time of the CESA is about 1 s
when the network size and the number of edges are both in the
order of ten thousands. It increases to 111 h for the 12th gen-
eration when both values increase to more than ten millions.
With an effort of 111 h, our CESA gives the computing results.
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In contrast, the existing sandbox algorithm fails to handle this
network completely. Overall, the slope of the CPU time of our
CESA is more close to that of the O(Nc(N + E )) as shown in
Fig. 8, which experimentally verifies that the time complexity
of the CESA is reduced to quadratic.

In addition, it is worth mentioning that although the desk-
top computer used for these experiments is equipped with a
four-core CPU and 16 GB memory, the real-time monitoring
of the computing process shows that only 13% of the CPU
resource and 10% of the memory are actually used by the
CESA for MFA of the 12th generation (u, v)-flower network.
Therefore, the network size that can be analyzed with the
proposed CESA on a normal desktop computer can be much
greater, enabling MFA for complex networks of a larger scale.

B. Applications

Finally, we apply our CESA to conduct the MFA for a
few real-world complex networks of large scale. Provided on
the Stanford Large Network Dataset Collection [37], these
complex networks include:

(1) LiveJournal social network with 3 997 962 nodes and
34 681 189 edges

(2) Orkut social network with 3 072 441 nodes
and 117 185 083 edges

(3) YouTube social network with 1 134 890 nodes and
2 987 624 edges

(4) California road network with 1 965 206 nodes
and 2 766 607 edges

(5) Pennsylvania road network with 1 088 092 nodes and
1 541 898 edges

(6) Texas road network with 1 379 917 nodes
and 1 921 660 edges and

(7) the autonomous systems graph by Skitter with
1 696 415 nodes and 11 095 298 edges.

For these large-scale networks, the existing sandbox algo-
rithm fails to give MFA results on a normal desktop computer
due to the high complexity of the algorithm. In comparison,
our CESA works well on a normal desktop computer for all
these networks due to the much reduced algorithm complex-
ity.

Figure 9 shows the MFA results of our CESA for these
complex networks under q = 0. It is observed from this figure
that the road networks show an apparent power-law behavior
for q = 0, indicating their fractal characteristics. However,
there is a lack of a good power-law relation in these networks
for some nonzero values of q (q �= 0). In our understanding,
this phenomenon is not uncommon in many real-world net-
works. However, it is still not clear why these networks do not
possess the clear multifractality like some model networks,
e.g., the (u, v)-flower model network. To answer this ques-
tion, deeper investigations into various real-world and model
networks need to be conducted. It is also seen from Fig. 9 that
the investigated social networks, namely, LiveJournal, Orkut,
YouTube, and Skitter, do not have the clear fractality. They
look more like a shifted power-law (i.e., modified power-law
or Mandelbrot’s law) behavior or a pure exponential decay as
mentioned in Ref. [1]. This is not surprising because Song
et al. have pointed out that the lack of clear fractality in some
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FIG. 9. MFA results of some real-world and large-scale networks
for q = 0 by using the CESA.

networks might be due to incomplete information of these
networks [1].

In summary, with its much reduced complexity over ex-
isting sandbox algorithm, our CESA presented in this paper
enables us to reveal the fractality and multifractality of these
and other real-world complex networks of large scale.

V. CONCLUSIONS

A computationally efficient sandbox algorithm (CESA) has
been presented in this paper for MFA of large-scale complex
networks. Distinct from the existing sandbox algorithm that
uses the shortest-path distance matrix to obtain the required
information for MFA of complex networks, our CESA applies
the BFS to directly search the neighbor nodes of each layer of
center nodes, and then to retrieve the required information.
Our CESA’s input is a sparse data structure derived from the
CSR format for compressed storage of the adjacency matrix
of large-scale networks. As a result, the complexity is sig-
nificantly reduced. For a complex network with N nodes, E
edges, and Nc center nodes, the time complexity is reduced
from O(N3) to O(Nc(N + E )), and the space complexity re-
duced from O(N2) to O(N + E ). Nc is usually smaller than
N . As most model and real-world networks are sparse, E
is much smaller than N2. Therefore, the reduction of both
time complexity and space complexity from our CESA is
significant over the existing sandbox algorithm. Experiments
of our CESA have been conducted for the MFA of some
model and real-world large-scale networks. The MFA results
of (u, v)-flower model networks from the fifth to the 12th
generations verify that the CESA is not only effective but
also computationally efficient and feasible. More specifically,
the presented CESA has been successfully applied to the
MFA on a normal desktop computer for the 12th generation
(u, v)-flower network with 11 184 812 nodes and 16 777 216
edges. Such a scale of complex networks is far beyond the
limit of the existing sandbox algorithm on the same desktop
computer. A further analysis of CPU time and mass exponents
has shown that the CESA reduces the time complexity to
quadratic without sacrificing the accuracy of the MFA results.
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Moreover, we have also found that the accuracy of the MFA
results can be improved significantly with the increase in the
size of a theoretical network, further verifying the value of this
study on a computationally efficient algorithm for the MFA
of large-scale complex networks. Finally, the proposed CESA
has been applied to a few real-world complex networks of
large scale. The clear fractality has been observed for large-
scale road networks of some cities.
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