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Expectation propagation on the diluted Bayesian classifier

Alfredo Braunstein ,1,2,3 Thomas Gueudré ,1,* Andrea Pagnani ,1,2,3 and Mirko Pieropan 1,†

1Department of Applied Science and Technologies, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
2Italian Institute for Genomic Medicine, IRCCS Candiolo, SP-142, I-10060 Candiolo, Italy

3Istituto Nazionale di Fisica Nucleare Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy

(Received 29 September 2020; accepted 15 February 2021; published 2 April 2021)

Efficient feature selection from high-dimensional datasets is a very important challenge in many data-driven
fields of science and engineering. We introduce a statistical mechanics inspired strategy that addresses the
problem of sparse feature selection in the context of binary classification by leveraging a computational scheme
known as expectation propagation (EP). The algorithm is used in order to train a continuous-weights perceptron
learning a classification rule from a set of (possibly partly mislabeled) examples provided by a teacher perceptron
with diluted continuous weights. We test the method in the Bayes optimal setting under a variety of conditions
and compare it to other state-of-the-art algorithms based on message passing and on expectation maximization
approximate inference schemes. Overall, our simulations show that EP is a robust and competitive algorithm
in terms of variable selection properties, estimation accuracy, and computational complexity, especially when
the student perceptron is trained from correlated patterns that prevent other iterative methods from converging.
Furthermore, our numerical tests demonstrate that the algorithm is capable of learning online the unknown
values of prior parameters, such as the dilution level of the weights of the teacher perceptron and the fraction of
mislabeled examples, quite accurately. This is achieved by means of a simple maximum likelihood strategy that
consists in minimizing the free energy associated with the EP algorithm.
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I. INTRODUCTION

The problem of extracting sparse information from high
dimensional data is among the most interesting challenges
in theoretical computer science with many applications rang-
ing from computational biology to combinatorial chemistry,
neuroscience, and natural language processing [1,2]. As a spe-
cific example, next generation sequencing and, in general, the
ongoing technological revolution related to high-throughput
technologies in biology pose very stringent requirements to
the algorithmic techniques that are supposed to analyze the
data that are produced and made publicly available through
easily accessible databases. Just to give some orders of
magnitude, a typical genetic screening for cancer-related
pathologies—freely available from The Cancer Genome Atlas
web site [3]—involves measurement of activity or genetic
sequence variation over ≈23 000 genes measured on patient
cohorts that typically count around 1000 individuals divided
into cases and controls (lung and colorectal cancer are an
exception, with ≈10 000 individuals screened in each dataset).
Here, a typical task is to determine the genotypic signature
related to the disease that typically involves O(102) genes
from 23 000 measured probes. Such problem can be simply
formulated in terms of the following classification problem:
given the activity and/or the genetic alterations of an indi-
vidual, find a simple rule involving a small—possibly the
smallest—subset of genes to assess the probability for the
individual to develop the disease. There are two main diffi-
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culties in this task: (i) typically genes act in a combinatorial
and nonlinear manner and (ii) individual samples turn out to
be statistically very correlated.

Historically, the problem of sparse feature selection in
classification tasks has been divided into two complementary
computational methods [2]: (i) wrappers that exploit the learn-
ing mechanism to produce a prediction value related score
for the sought signature and (ii) filters where the signature
extraction is a data preprocessing, typically unrelated to the
classification task.

From the point of view of information theory, the problem
of sparse feature selection in classification is strictly related
to compressive sensing (CS), one of the most studied methods
for data acquisition, with interesting applications in several
other research fields [4,5]. CS was originally proposed as a
new low-rate signal acquisition technique for compressible
signals [4,6,7] and is formulated as follows: given M < N ,
a vector z ∈ RM , and a linear operator of maximal rank X ∈
RM×N often referred to as the measurement or sensing matrix,
the CS problem consists in determining the unknown sparse
vector w ∈ RN that is linked to its compressed projection z
by means of the linear transformation z = Xw, where X and
z are assumed to be known. Although research in CS has still
many open challenges to face, very stringent results are known
about the general conditions for the existence and uniqueness
of the solution. Among the different algorithms that have been
proposed in order to reconstruct efficiently the signal, many
use techniques borrowed from the statistical mechanics of
disordered systems [8–11].

More recently, the so-called 1-bit CS (1BCS) has been
proposed as a strategy to deal with the problem of inferring
a sparse signal knowing only the sign of the data of the linear
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measurements: σ = sgn(Xw), where sgn(z) is a vector with
elements zi/|zi| for zi �= 0. Besides being of interest for signal
transmission related problems where discarding the amplitude
of the signal can significantly reduce the amount of informa-
tion to be stored or relayed [12,13], this problem can also be
interpreted in terms of sparse boolean classification tasks. The
most widely adopted inference scheme in CS is the so-called
lasso regression or L1-norm minimization [14], as originally
proposed in the context of 1BCS in [12]. However, it is clear
that the most efficient solution from the point of view of
optimal dilution of the problem should be achieved by a L0

pseudonorm, where nonzero parameters are indeed penalized
independently of their nonzero value. Unfortunately, dealing
with the nonconvex L0 regularization is not so simple as it
typically leads to phase transitions that make the problem
computationally intractable. A practical solution to the prob-
lem is to restrict the space of parameters to a discrete set,
where effectively the L0 pseudonorm is equivalent to the more
amenable L1 case [15–19]. As far as continuous parameters
are concerned, different strategies have been proposed. First,
from the statistical physics community side, an approach pur-
suing this direction consists in a perceptron the continuous
parameters of which are masked by boolean variables mim-
icking dilution [20–23]. Attempts to characterize theoretically
the phase space diagram and the structure of the transition
through the replica method have been reported in [24–26].
Variations of the generalized approximate message passing
technique (GAMP) were employed in [27], as it provides a
tractable and efficient way to perform minimum mean squared
error (MMSE) estimation on the variables to be retrieved
when the matrix of patterns is large and Gaussian independent
and identically distributed (i.i.d.). However, for more gen-
eral pattern matrices, GAMP convergence is not guaranteed,
which has led to the extension of algorithms of the vector
AMP (VAMP) type [28] to generalized linear models [29,30],
including perceptron learning.

On the computer science side, many other algorithms for
1BCS combining the enforcement of sparsity and of sign
consistency constraints were also proposed, building upon
analogous algorithms developed for standard CS. Examples
of methods for error-free sparse signal retrieval from one-bit
quantized measurements include greedy approaches which
iteratively determine the most appropriate sparse support
given the sign measurements, such as matching sign pursuit
[31], as well as binary iterative hard thresholding [32], where
an L1-based convex consistency-enforcing objective function
minimization is alternated with a thresholding operation that
selects the K largest elements. The problem of noisy 1BCS
was addressed, for instance, in [33–35]. However, among
these examples, only [35] proposes an algorithm which does
not require the prior knowledge of the number of corrupted
sign measurements. Here, the one-bit measurement errors
are modeled by introducing a sparse vector s the nonzero
components of which produce the sign mismatches as σ =
sgn(Xw + s). The algorithm attempts to identify the sign
errors and to retrieve the sparse signal w using a variational
expectation-maximization (EM) based inference scheme.

In this paper we propose a wrapper strategy where both
the variable selection and the classification tasks are simulta-
neously performed through expectation propagation (EP), an

iterative scheme to approximate intractable distributions that
was introduced first in the field of statistical physics [36,37]
and shortly after in the field of theoretical computer science
[38]. In analogy to what was presented in [39] in the context
of sampling the space of high dimensional polytopes, we
show that, by approximating the computationally intractable
posterior distribution P(w|σ, X) through a tractable multivari-
ate probability density Q(w|σ, X), we are able to solve both
efficiently and accurately the 1BCS problem. We compare our
results to those obtained from the AMP and VAMP based
schemes proposed in [27] and [30], respectively, and to those
given by the EM based approach of [35]. We provide the
factor graphs associated with these algorithms in Fig. 1. We
show through simulations that one of the main strengths of the
EP-based approach is that it is effective on a wider family of
measurement matrices with respect to other relatively similar
algorithms such as VAMP and AMP.

The paper has the following structure: after this introduc-
tion, in Sec. II we define the problem, and introduce the EP
algorithm. In Sec. III we present extensive numerical simu-
lations both in the noiseless and noisy case. Here both i.i.d.
and correlated measurement matrices are analyzed. Finally, in
Sec. IV we summarize the results of the paper and draw the
conclusions.

II. METHODS

A. The diluted perceptron as a linear estimation problem and
its statistical mechanics setup

We consider a student perceptron with N input units and
continuous weights w ∈ RN . We assume that the connections
are diluted and that only a fraction ρ of them are nonzero.
We also assume that M real-valued patterns xτ ∈ RN are
presented to the perceptron and that a binary label στ , τ =
1, . . . , M has already been assigned to each of them as a
result of the classification performed by a teacher perceptron
with sparse continuous weights B. The task of the student
perceptron is to learn the input-output association based on the
examples (xτ , στ ), τ = 1, . . . , M provided by the teacher:

στ = sgn(wT xτ ), τ = 1, . . . , M, (1)

where we use the convention that sgn(0) = 1. For each exam-
ple τ , the rule (1) is equivalent to the condition(

στ xT
τ

)
w � 0 . (2)

We now introduce the auxiliary variables, yτ := (στ xT
τ )w, and

the data matrix

Xσ =

⎛
⎜⎜⎝

σ1xT
1

σ2xT
2

...

σMxT
M

⎞
⎟⎟⎠ . (3)

Through the previous definitions, we can define the following
linear estimation problem:

y = Xσw, (4)

where the variables to be inferred are both y and w. As we
will show below, the positivity constraints in Eq. (2) will be
enforced in terms of a prior distribution on the y variables.
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(a) (b)

(c)
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FIG. 1. Factor graphs associated with (a) EP, (b) AMP, (c) grVAMP, and (d) R1BCS. Variable nodes are represented as circles and function
nodes are represented as squares and the notation has been made consistent with that employed in this paper. (a) Tilted distributions in EP
(see Sec. II B for more details), where ψ denotes the exact prior and φ the approximated Gaussian prior factors in the EP approximation.
(b) Factor graph related to AMP. In 1bitAMP, � are spike-and-slab priors and P(σμ|w, xμ) = �(σμxT

μw). (c) Factor graph related to the
grVAMP approximation, where we have emphasized the VAMP and MMSE modules composing the algorithm, � are the same as in (b),
and P(σμ|zμ) = �(σμzμ). In (b) and (c), � denotes either the pseudoprior in Eq. (8) or the one in Eq. (10). (d) Factor graph of the function
appearing in the lower bound maximized in R1BCS. The distributions p(wi|αi )p(αi ) and p(sμ|βμ)p(βμ) are hierarchical Gaussian-inverse-
Gamma priors assigned to the weights and to the noise components sμ, respectively, appearing in σ = sgn(Xw + s). The quantities αi and βμ

are hyperparameters, whereas the quantities δμ are variational parameters optimized in the maximization step of the algorithm.
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The linear estimation problem expressed in Eq. (4) can be
addressed in a Bayesian setting: by introducing the variable
vector h = (w1, . . . ,wN , y1, . . . , yM )T and the energy func-
tion,

E (w, y) = ‖y − Xσw‖2 = hT E−1h,

E−1 =
(

XT
σ Xσ −XT

σ

−Xσ I

)
, (5)

the likelihood of the set of N weights of the perceptron can
be expressed as the Boltzmann distribution associated with
E (w, y), which reads

L(w) = P(σ1, . . . , σM |w) = 1

Z
e−βE (w,y), (6)

where, from a statistical physics standpoint, β plays the role
of an inverse temperature. In the absence of noise, it is conve-
nient to consider the zero temperature limit of this likelihood

L(w)
β→∞−−−→ δ(y − Xσ w), where δ(x) denotes the Dirac delta

distribution.
We also introduce prior distributions in order to encode

the constraints to which the variables wi, i = 1, . . . , N , and
yτ , τ = 1, . . . , M, are subject. The sparsity assumption on the
weights w is expressed in terms of a spike-and-slab prior [40]:

�(wi ) = (1 − ρ)δ(wi ) + ρ

√
λ

2π
e− λw2

i
2 , i = 1, . . . , N. (7)

If the labels of the teacher are not corrupted by noise, then
the auxiliary variables y need to fulfill the positivity constraint
(2), which can be expressed in terms of the pseudoprior:

�(yτ ) = �(yτ ), τ = 1, . . . , M. (8)

On the other hand, if noise at the output of the teacher percep-
tron is present, one may assume that the labels provided by
the teacher perceptron are assigned according to the following
process [41],

σ̃ =
{

sgn(BT x) with probability η

−sgn(BT x) with probability 1 − η,
(9)

and that the student receives the altered examples
(xμ, σ̃μ), μ = 1, . . . , M. In this case, if the process that
flips the labels is known, then it may be encoded in the
pseudoprior � as follows:

�(yμ) = η�(yμ) + (1 − η)�(−yμ). (10)

In general, the parameters ρ, λ, and η are not known and
need to be learned by the student perceptron in the training
phase. Finally, by Bayes’s rule, the posterior distribution of
both weights and auxiliary variables reads

P(w, y) = 1

ZP
δ(y − Xσw)

N∏
i=1

�i(wi )
M∏

τ=1

�τ (yτ ). (11)

B. Learning the weights via expectation propagation

Zero temperature formulation

We wish to infer the values of the weights by estimating the
expectation values of the marginals of the distribution (11),
as this strategy minimizes the associated mean squared error.
However, the latter marginalizations are intractable and we

need to resort to approximation methods. Here we propose
an expectation propagation scheme based on the zero tem-
perature formulation presented in [42] in order to solve the
problem.

Starting from the linear system Xσw = y, we notice that it
can be written as the homogeneous system

Gh = 0, (12)

where G = (−Xσ |I) and I is the M × M identity matrix.
The intractable posterior distribution reads

P(h) = 1

ZP
δM (Gh)

∏
i∈W

�i(hi )
∏
τ∈Y

�τ (hτ ), (13)

where W = {1, . . . , N}, Y = {N + 1, . . . , N + M} and δM (z)
denotes the M-dimensional Dirac delta distribution. We intro-
duce Gaussian approximating factors,

φi(hi ) = exp

(
− (hi − ai )2

2di

)
, (14)

and a fully Gaussian approximation of the posterior distribu-
tion (13), in which all priors � and � are replaced by factors
of the form (14):

Q(h) = 1

ZQ
δM (Gh)

∏
i∈W

φ(hi; ai, di )
∏
τ∈Y

φ(hτ ; aτ , dτ ). (15)

Q(h) can be equivalently expressed as

Q(h) = 1

ZQ
δM (Gh) exp

(
−1

2
(w − w̄)T �−1

W (w − w̄)

)
,

(16)
where the covariance matrix �W and the mean w̄ in Eq. (16)
are given, respectively, by

�−1
W =

∑
i∈W

1

di
eieT

i + XT
σ

(∑
i∈Y

1

di
eieT

i

)
Xσ , (17)

and by

w̄ = �W

(∑
i∈W

ai

di
ei +

∑
i∈Y

ai

di
XT

σ ei

)
. (18)

Here, ei denotes the ith basis vector of the standard basis of
RN (resp. RM) if i ∈ W (resp. i ∈ Y ). Notice that the marginal
distributions of Q(h) for each variable hi are also Gaussian,
with means h̄i given by

h̄i =
{
w̄i, i ∈ W

eT
i Xσ w̄, i ∈ Y,

(19)

and variances �ii given by

�ii =
{

eT
i �W ei, i ∈ W,(
eT

i Xσ

)
�W

(
XT

σ ei
)
, i ∈ Y,

(20)

where for i ∈ Y we took advantage of the linear constraints
y = Xσw. Notice that the full (N + M ) × (N + M ) covari-
ance matrix � (the diagonal entries of which are defined in
the previous equation) reads

� =
(

�W �W XT
σ

Xσ�W Xσ�W XT
σ

)
. (21)
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We now introduce N + M tilted distributions Q(i)(h) for i = 1, . . . , N + M. In particular, if i ∈ W , we have

Q(i)(h) = 1

ZQ(i)
δM (Gh)�i(hi )

∏
i∈W \{i}

φ(hi; ai, di )
∏
τ∈Y

φ(hτ ; aτ , dτ ), (22)

whereas, if i ∈ Y ,

Q(i)(h) = 1

ZQ(i)
δM (Gh)�i(hi )

∏
i∈W

φ(hi; ai, di )
∏

τ∈Y \{i}
φ(hτ ; aτ , dτ ). (23)

The tilted distributions can be expressed as the product of one of the priors and a Gaussian cavity distribution:

Q(i)(h) = ψi(hi )Q̃
(i)(h), (24)

where ψ ∈ {�,�} and we have denoted the cavity distribution associated with the ith variable by Q̃(i):

Q̃(i)(h) = 1

ZQ(i)
δM (Gh) exp

(
−1

2
(w − w̄(i) )T

(
�

(i)
W

)−1
(w − w̄(i) )

)
. (25)

A factor graph representation of the tilted approximation to the posterior distribution is given in Fig. 1(a).
The cavity covariance matrices are given by the following expressions:

(
�

(i)
W

)−1 =
⎧⎨
⎩
∑

j∈W \{i}
1
d j

e jeT
j + XT

σ

(∑
j∈Y

1
d j

e jeT
j

)
Xσ , if i ∈ W,∑

j∈W
1
d j

e jeT
j + XT

σ

(∑
j∈Y \{i}

1
d j

e jeT
j

)
Xσ , if i ∈ Y.

(26)

whereas the cavity means read

w̄(i) =
⎧⎨
⎩

�
(i)
W

(∑
j∈W \{i}

a j

d j
e j + ∑

j∈Y
aj

d j
XT

σ e j

)
, if i ∈ W,

�
(i)
W

(∑
j∈W

aj

d j
e j + ∑

j∈Y \{i}
a j

d j
XT

σ e j

)
, if i ∈ Y.

(27)
Similarly to what we obtained for the marginals of Eq. (16),

we have that the marginals of Eq. (25) are Gaussian distribu-
tions with means

h̄(i)
i =

{
w̄

(i)
i , if i ∈ W

eT
i Xσ w̄(i), if i ∈ Y,

(28)

and variances

�
(i)
ii =

{
eT

i �
(i)
W ei, if i ∈ W,(

eT
i Xσ

)
�

(i)
W

(
XT

σ ei
)
, if i ∈ Y.

(29)

The yet to be determined means a and variances d of
the Gaussian approximating factors (14) are determined by
minimizing the Kullback-Leibler divergence DKL(Q(i)||Q) for
all i = 1, . . . , N + M. It can be shown that each of these
minimizations is equivalent to matching the first and second
moments of the tilted and of the fully Gaussian approximated
distributions:

〈hi〉Q(i) = 〈hi〉Q,
〈
h2

i

〉
Q(i) = 〈

h2
i

〉
Q. (30)

The EP update equations follow from the moment match-
ing conditions (30). In particular, recalling that the marginals
of Q(h) are Gaussian distributions, one can express ai and di

in terms of the means and variances of Q(i) and in terms of
the means and variances of the associated tilted distributions.
Indeed, using the fact that the product of Gaussians is a Gaus-
sian and the moment matching conditions, we obtain the EP

update rules for the variances d and the means a:

di =
(

1〈
h2

i

〉
Q(i) − 〈hi〉2

Q(i)

− 1

�
(i)
ii

)−1

, (31)

ai = 〈hi〉Q(i) + di

�
(i)
ii

(〈hi〉Q(i) − h̄(i)
i

)
, (32)

for all i = 1, . . . , N + M. Following [39,42], the cavity vari-
ances �

(i)
ii and means h̄(i)

i appearing in Eqs. (31) and (32) can
be computed in terms of the variances �ii and means h̄i using
a low rank update rule:

�
(i)
ii = �ii

1 − 1
di

�ii
, (33)

h̄(i)
i = h̄i − �ii

ai
di

1 − �ii
di

, (34)

which allows us to perform only one matrix inversion per
iteration.

EP repeatedly estimates the vectors a and d until a fixed
point is eventually reached. From a practical point of view, the
algorithm returns the means and the variances of the marginal
tilted distributions as soon as the convergence criterion

εt := max
i

{∣∣〈hi〉Q(i)
t

− 〈hi〉Q(i)
t−1

∣∣ + ∣∣〈h2
i

〉
Q(i)

t
− 〈h2

i 〉Q(i)
t−1

∣∣} < εstop

(35)
is fulfilled, where t denotes the current iteration and εstop

is a convergence threshold. In particular, the posterior mean
value of weights learned by the student perceptron is esti-
mated as given by 〈wi〉Q(i) , with a standard deviation equal to√

〈w2
i 〉Q(i) − 〈wi〉2

Q(i) .

The zero temperature formulation of EP presented in this
section is computationally advantageous compared to the
finite temperature one presented in Appendix A, as its com-
plexity is dominated by the computation of the N2 scalar
products between vectors of length M that appear in the
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second term of the right-hand side of Eq. (17) and by the
inversion of the N × N matrix given by the same equation,
resulting in a cost O(MN2 + N3), rather than O[(N + M )3].
In general, in order to reduce the computational burden related
to the inversion of the covariance matrix (17), we perform a
Cholesky decomposition before inverting. For more details
about the finite temperature formulation of EP, we refer to
Appendix A.

C. Moments of the tilted distributions

1. Moments of the spike-and-slab prior

In this section, we shall compute the first and second
moments of the leave-one-out distributions when the prior is
of the spike-and-slab type. We recall the expression of the
spike-and-slab prior already introduced in Eq. (7) for the sake
of convenience:

�(hk ) = (1 − ρ)δ(hk ) + ρ

√
λ

2π
e− 1

2 λh2
k , k = 1, . . . , N.

(36)
The marginal tilted distribution of each weight of the student
perceptron reads

Q(k)(hk ) = 1

ZQ(k)

Q̃k (hk )�(hk ), (37)

where we have introduced the marginalized cavity Gaussian
distribution Q̃k:

Q̃k (hk; μk, �k ) = 1√
2π�k

e− (hk −μk )2

2�k . (38)

From Eq. (37), computing the partition function of the tilted
distribution Q(k) yields

ZQ(k) = (1 − ρ)
1√

2π�k
e− μ2

k
2�k + ρ√

2π

√
λ

1 + λ�k
e− 1

2

λμ2
k

1+λ�k .

(39)
Finally, the first moment and the second moment of the same
distribution are given by

〈hk〉Q(k) = 1

ZQ(k)

ρ√
2π

e− 1
2

λμ2
k

1+λ�k

√
λ

1 + λ�k

μk

1 + λ�k
, (40)

and by

〈
h2

k

〉
Q(k) = 1

ZQ(k)

ρ√
2π

e− 1
2

λμ2
k

1+λ�k

√
λ

1 + λ�k

(
�k + λ�2

k + μ2
k

(1 + λ�k )2

)
,

(41)
respectively.

2. Moments of the theta pseudoprior

We now repeat the same reasoning for the case of the theta
pseudoprior, which was defined as

�(hk ) = �(hk ), k = N + 1, . . . , N + M. (42)

The associated tilted distribution of the kth variable is given
by

Q(k)(hk ) = 1

ZQ(k)

Q̃k (hk )�(hk ), k = N + 1, . . . , N + M,

(43)
where the expression for Q̃k is the same as in Eq. (38). The
normalization of (43) is the partition function of the tilted
distribution and reads

ZQ(k) = 1

2

[
1 + erf

(
μk√
2�k

)]
, (44)

where erf denotes the error function, defined as

erf(x) = 2√
π

∫ x

0
e−z2

dz. (45)

Computing the first moment of the marginal tilted distribution
leads to the expression

〈hk〉 = μk +
√

�k

2π

e− μ2
k

2�k

�
(

μk√
�k

) = μk

(
1 + R(αk )

αk

)
, (46)

where �(x) = 1
2 [1 + erf( x√

2
)] is the cumulative density func-

tion of the standard normal distribution, R(x) = 1√
2π

e−x2/2

�(x) ,

and αk = μk√
�k

. Finally, concerning the second moment of the
marginal tilted distribution, one obtains〈

h2
k

〉 = μ2
k + �k + μk

√
�kR(αk ), (47)

implying that the variance of hk with respect to the kth
marginal tilted distribution can be expressed in a compact way
by

Var(hk ) = �k[1 − αkR(αk ) − R2(αk )]. (48)

3. Moments of the theta mixture pseudoprior

When the pseudoprior � is of the theta mixture type,

�(hk ) = η�(hk ) + (1 − η)�(−hk ), 0 � η � 1,

k = N + 1, . . . , N + M, (49)

we have for the partition function ZQ(k) of the tilted distribu-
tions (43)

ZQ(k) = η

[
1

2
erfc

(
− μk√

2�k

)]
+ (1 − η)

[
1

2
erfc

(
μk√
2�k

)]
=
√

π�k

2

[
1

2
+
(

η − 1

2

)
erf

(
μk√
2�k

)]
. (50)

For the first moment, one obtains

〈hk〉Q(k) = 1

ZQ(k)

{
η√

2π�k

[
�ke− μ2

k
2�k + μk

√
π�k

2
erfc

(
− μk√

2�k

)]
+ 1 − η√

2π�k

[
−e− μ2

k
2�k + μk

√
π�k

2
erfc

(
μk√
2�k

)]}

= μk +
√

2�k

π

(2η − 1)e− μ2
k

2�k

ηerfc
(− μk√

2�k

) + (1 − η)erfc
(

μk√
2�k

) ,
(51)
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and the second moment with respect to the marginal tilted distribution (43) reads

〈
h2

k

〉
Q(k) = 1

ZQ(k)

{
η√

2π�k

[
μk�ke− μ2

k
2�k +

√
π�k

2

(
μ2

k + �k
)
erfc

(
− μk√

2�k

)]

+ 1 − η√
2π�k

[
−μk�ke− μ2

k
2�k +

√
π�k

2

(
μ2

k + �k
)
erfc

(
μk√
2�k

)]}

= μ2
k + �k + μk

√
2�k

π

(2η − 1)e− μ2
k

2�k

ηerfc
(− μk√

2�k

) + (1 − η)erfc
(

μk√
2�k

) . (52)

III. RESULTS

A. Sparse perceptron learning from noiseless examples

In this section, we will present some results obtained from
numerical simulations in the presence of noiseless examples,
both in the case where patterns are i.i.d. and in a simple
case of correlated patterns. For the sake of simplicity, in all
the situations described in the following, we have chosen a
Bayes-optimal setting, where the prior information provided
by the spike-and-slab prior mirrors the actual distribution of
the weights to be retrieved.

First, we performed numerical experiments with i.i.d. pat-
terns drawn from a Gaussian distribution having zero mean
and unit variance. As a performance measure, we consider the
mean squared error between the normalized weights of the
student perceptron at the end of the learning process and those
of the teacher perceptron:

MSE(w̃, B̃) = 1

N

N∑
k=1

(w̃k − B̃k )2, (53)

where w̃ = w/‖w‖ are the rescaled weights of the student
and B̃ = B/‖B‖ denote those of the teacher. In our results,
this metric is expressed in decibel (dB) and used to compare
expectation propagation to the 1-bit approximate message
passing (1bitAMP) algorithm introduced in [27] and to the
generalized vector approximate message passing (grVAMP)
algorithm proposed within the unified Bayesian framework
of general linear models published in [30], which the au-
thors show to yield equivalent results to the VAMP algorithm
for the generalized linear model described in [29]. We refer
to Figs. 1(b) and 1(c) for the factor graphs related to the
1bitAMP and to the grVAMP approximations, respectively.
The computational cost of 1bitAMP is O(N2), while the cost
of grVAMP is O(N3), as it involves a one-time initial singular
value decomposition of X. However, since this computation is
not needed again in the following part of the algorithm, its cost
can be neglected for small enough values of N . The remaining
part of the grVAMP scheme shares the same per iteration
computational cost of 1bitAMP, as both are dominated by a
matrix-vector product.

We considered the average of the MSE (53) over Nsamples =
100 simulations. The simulations correspond to sparse per-
ceptron learning of different instances of the weights of the
teacher perceptron, each from a different set of i.i.d. Gaussian
patterns fed to the student perceptron. We considered the case
in which the total number of weights is N = 128 and their

density level is fixed to ρ = 0.25. The Gaussian part of the
spike-and-slab prior was set to a standard Gaussian distri-
bution in 1bitAMP, EP and grVAMP. The EP convergence
threshold was set to εstop = 10−4 and the value of the damping
parameter of the EP algorithm was set equal to 0.9995 (al-
though good results can be obtained using a lower damping
too, e.g., 0.99). The results of the simulations for different
values of α are reported in Fig.2 and show that EP, 1bitAMP,
and grVAMP based learning from i.i.d. Gaussian patterns have
roughly the same performance regardless of the specific value
of α. The convergence criterion was 10−4 in the 1bitAMP
simulations and 10−8 in the grVAMP simulations. All the
simulations performed using EP, 1bitAMP, and grVAMP con-
verged within the thresholds we considered. The error bars in
Fig. 2 were estimated as σ/

√
Nsamples, where σ denotes the

sample standard deviation of the MSE.
We also considered the problem of sparse perceptron learn-

ing from correlated patterns drawn from a multivariate normal
distribution, in the simple case where the mean is m = 0 and

FIG. 2. MSE resulting from sparse weight learning from i.i.d.
patterns using EP, 1bitAMP, and grVAMP based estimation as a
function of α. The parameters considered for the perceptron are
N = 128 and ρ = 0.25 and the number of instances is Nsamples = 100.
All simulations converged and the MSE shown is averaged over all
the considered instances. The error bars are estimated as σ/

√
Nsamples,

where σ is the sample standard deviation of the MSE computed over
all the instances.
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TABLE I. Fraction of converged trials over a set of 100 different instances of the weights of the teacher perceptron and of the training set
of examples. The patterns were sampled from the multivariate Gaussian distribution with covariance matrix (54). The number of variables is
N = 128 and the density of the weights of the teacher is ρ = 0.25.

(a) N = 128 (b) N = 256

α fEP σ fEP fgrVAMP σgrVAMP α fEP σ fEP fgrVAMP σgrVAMP

0.5 1 0 1 0 0.5 0.99 0.01 1 0
1.0 1 0 0.96 0.02 1.0 0.73 0.04 0.99 0.01
1.5 1 0 0.89 0.03 1.5 0.92 0.03 0.94 0.02
2.0 1 0 0.83 0.04 2.0 0.96 0.02 0.88 0.03
2.5 1 0 0.87 0.03 2.5 0.88 0.03 0.83 0.04
3.0 1 0 0.87 0.03 3.0 0.88 0.03 0.73 0.04
4.0 1 0 0.85 0.04 4.0 0.92 0.03 0.80 0.04
5.0 1 0 0.82 0.04 5.0 0.94 0.02 0.76 0.04
6.0 1 0 0.80 0.04 6.0 0.96 0.02 0.70 0.05

the covariance matrix is constructed according to

S = YT Y + �, (54)

where Y ∈ Ru×N is an i.i.d. matrix with entries drawn from a
standard univariate Gaussian distribution and � is a diagonal
matrix the eigenvalues of which are given by the absolute
value of i.i.d. random entries drawn from the same distribu-
tion. By construction, this matrix is symmetric and positive
definite and, therefore, is a proper covariance matrix. The
diagonal matrix � is added in order to ensure that S has full
rank. As an extreme case, we choose u = 1 for the matrix Y.

We find that even in this case the student perceptron is able
to estimate the weights of the teacher, although, under the
same values of the parameters N , ρ, and α of the model and
under the same values of the EP parameters (i.e., damping,
εstop, and maximum number of iterations), the accuracy of
the estimation is lower than the one achieved by learning
from i.i.d. Gaussian patterns, as one might expect. Still, in the
presence of the correlated patterns considered here, expecta-
tion propagation based learning proves to be advantageous as
compared with other algorithms for 1-bit compressed sensing
such as 1bitAMP, the estimates of which of the means and
variances of the weights to be retrieved diverge. In addition,
in the same situation, EP outperforms grVAMP based learn-
ing, as shown in Fig. 6 for the set of parameters N = 128
and ρ = 0.25. The convergence thresholds of the grVAMP
and of the EP algorithms were set to the same values as in
the case of learning from i.i.d. Gaussian patterns and further
lowering the value of the threshold parameter of grVAMP
did not result in a noticeable improvement of the grVAMP
results. In the case of EP, the damping factor was set to 0.999
and the maximum number of iterations for convergence was
50 000. The fraction of converged trials is shown in Table I
for both algorithms in the case where N = 128 and ρ = 0.25.
The EP led student perceptron is more accurate at determining
the nonzero weights than the grVAMP led counterpart, as
shown by the receiver operating characteristic curves (ROC
curves) in Fig. 3(a) and by the sensitivity plots of Fig. 3(b).
In order to construct these curves, each weight of the teacher
was assigned a score given by its probability of being nonzero
as estimated by EP and grVAMP. The weights of the teacher
were sorted in decreasing order according to these probabili-

ties, which are given by

P �=0
k =

[
1 +

(
1

ρ
− 1

)√
1 + λ�k

λ�k
e− μ2

k
2�k (1+λ�k )

]−1

. (55)

In the case of EP, μk and �k , for k = 1, . . . , N , are the EP
cavity means and variances, whereas, in the case of grVAMP,
μ corresponds to the VAMP quantity r1k and �k = γ −1

1k ,
where γ1k is the quantity that parametrizes the denoiser in
VAMP [28] and we used the standard VAMP notation for r1k

and γ1k , for which the index k refers to the number of the
current iteration. In both cases, ρ denotes the density param-
eter of the spike-and-slab prior. Interestingly, the discrepancy
between the accuracy of the two algorithms becomes larger
as the number of patterns increases and, as a consequence,
the difference between the mean squared errors of the two
algorithms increases, as shown in Fig. 3(c), implying that the
EP and the grVAMP approximations are very different in this
Gaussian correlated pattern regime. This fact is confirmed
by the heterogeneity of the variances dk, k = 1, . . . , N of
the approximating univariate Gaussian factors φk when one
considers the EP solution for instances where both EP and
grVAMP converge. More precisely, it can be seen that the
parameters dk span several orders of magnitude, contrary to
VAMP where these variances are constrained to be equal.
In each plot in Fig. 3, we have shown the average of the
quantities considered over the set of the Nconv instances for
which each algorithm achieved convergence. Accordingly, the
error bars were estimated as σ/

√
Nconv, where σ denotes the

standard deviation over the same set of instances.
A useful additional feature of the EP-based learning ap-

proach is the possibility to learn iteratively the value of ρ

during the estimation of the weights of the teacher, as, unlike
EP, many algorithms for 1-bit compressed sensing assume the
density of the signal to be given a priori. The estimation of
the density parameter is achieved by minimizing the EP free
energy with respect to ρ and yields good results as long as
the number of the patterns presented to the student is large
enough. We refer to the Appendices for details concerning
the EP free energy, its expression for the sparse perceptron
learning problem, and free energy optimization based learning
of the parameters of the prior. We mention here that a similar
expectation maximization based strategy can be implemented
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FIG. 3. Sparse perceptron learning from correlated patterns sampled from a multivariate Gaussian distribution. The values of the parameters
are specified in each panel and we set u = 1. Comparison between grVAMP and EP based learning. (a) ROC curves. (b) Sensitivity plots. For
reference, in (a) and (b) the case of ideal variable selection by the teacher perceptron that provided the examples is also shown. (c) Mean
squared error in dB. In each plot, the mean values and the standard deviations are computed over the set of all Nconv instances for which
convergence was achieved. The error bars are estimated as σ/

√
Nconv, where σ is the sample standard deviation over the same set of instances.

also in the case of 1bitAMP and grVAMP in order to estimate
the density parameter ρ.

In order to show that our approach allows one to estimate
the dilution level of the teacher perceptron, we performed a set
of Nsamples = 100 EP simulations on a system with N = 128
and ρ = 0.25, where the density parameter ρ0 of the spike-
and-slab prior assigned to each weight variable was randomly
initialized by sampling its value from a uniform distribution
over the interval 0.05 � ρ0 � 0.95 and where the learning
rate was chosen to be δρ = 10−5. We show our results in
Table II. For each value of α, we show the average value ρL of
the density estimate over all samples and its associated statisti-
cal uncertainty, which was computed as δρL = σρL /

√
Nsamples,

as for these values of the parameters all simulations con-
verged. We also show the relative difference �ρ/ρ between
the true value of the density and the estimated one. Since

�ρ � δρL, we omit the statistical uncertainty associated with
�ρ. Finally, we notice that, even when learning from corre-
lated patterns constructed as described above, the student is
able to estimate the density level of the weights of the teacher
perceptron quite accurately, provided that a sufficient number
of patterns is provided to the student perceptron. In Table II,
we give an example of this fact when the teacher perceptron
has N = 128 weights and density ρ = 0.25.

B. Sparse perceptron learning from a noisy teacher

We analyzed the performance of EP based sparse per-
ceptron learning when a small fraction of the examples is
mislabeled. The student perceptron is given the a priori
information that a certain fraction of the labels is wrongly as-
signed. As in the noiseless case, we consider a Bayes-optimal
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TABLE II. Learning of the density ρ of the weights of the teacher for a perceptron with parameters N = 128 and ρ = 0.25. The average
and the standard deviation of the learned value of ρ at convergence over all the trials for which convergence was achieved during the training
process are denoted by ρL and δρL , respectively. In each trial, the initial condition ρ0 was drawn uniformly from the interval 0.05 � ρ0 � 0.95.

α i.i.d. patterns: ρL ± δρL i.i.d. patterns: �ρ/ρ Patterns from MVN: ρL ± δρL Patterns from MVN: �ρ/ρ

2 0.191 ± 0.003 0.236 0.161 ± 0.004 0.341
3 0.220 ± 0.002 0.121 0.196 ± 0.004 0.206
4 0.234 ± 0.002 0.066 0.207 ± 0.003 0.182
5 0.240 ± 0.002 0.042 0.214 ± 0.003 0.144
6 0.242 ± 0.001 0.031 0.223 ± 0.003 0.115

setting and therefore we provide the student with such a priori
knowledge using the theta mixture pseudoprior introduced in
Eq. (49).

In order to test and evaluate the performance of EP-guided
learning in this situation, we compared EP with grVAMP, in
which we introduced a theta mixture measure as done in EP,
and with the R1BCS algorithm for 1-bit compressed sensing
with sign-flip errors proposed by Li et al. [35], which is based
on an expectation maximization scheme involving both the
signal to be retrieved and the noise. In grVAMP, the slab part
of the spike-and-slab prior was set to a standard Gaussian
distribution. When using R1BCS, we rescaled the pattern
matrix so that each column had unit norm and we included
a convergence threshold εR1BCS = 10−4. Thus, the R1BCS
iterations stop when the estimate wR1BCS of the weights of
the teacher is such that ‖wR1BCS − wold

R1BCS‖ < εR1BCS. In each
experiment, a given number Klabel = (1 − η)M of labels were
flipped, where η is the fraction of unchanged labels. In the EP
simulations a damping factor equal to 0.99 and a convergence
threshold εstop = 10−4 were used. The parameter λ of the
spike-and-slab prior was set equal to 104.

We first considered the case of i.i.d. Gaussian patterns
drawn from a Gaussian distribution with zero mean and unit
variance and, subsequently, the case of correlated patterns
drawn from the zero mean multivariate Gaussian distribu-
tion with the covariance matrix expressed in (54), which we
already introduced in the noiseless case. For both kinds of
patterns, we conducted numerical experiments on a set of 100
different instances. In the case of i.i.d. patterns, convergence
over all instances was achieved for all three algorithms within
the convergence thresholds specified. The same was true in
the case of correlated patterns for R1BCS and for EP, whereas
grVAMP exhibited a failure rate up to 15% in terms of con-
vergence in the correlated case.

In order to assess the variable selection capabilities of EP
when attempting to learn the weights of the teacher from these
kinds of patterns in the presence of mislabeled examples, we
computed the ROC curves and the sensitivity plots related
to both the former [Figs. 4(a) and 4(b), respectively] and
to the latter kind of patterns [Figs. 4(c) and 4(d), respec-
tively]. Such ROC curves and sensitivity plots are associated
with the weights of the student after the training phase was
completed and were obtained in the case where the number
of weights was N = 128, the density of the weights B of
the teacher was ρ = 0.25, and the fraction of uncorrupted
labels was η = 0.95. The ordering criterion for the weights
B adopted in the ROC curves in Figs. 4(a) and 4(c) and in
the sensitivity plots in Figs. 4(b) and 4(d) was based on the

absolute value of the weights w of the student. In the case
of EP and grVAMP, we also plotted the ROC and sensitivity
curves according to the sorting criterion based on the score
expressed in Eq. (55), but the results did not exhibit noticeable
differences with respect to those obtained using the previous
sorting criterion, as the curves in Fig. 4 mostly overlap. The
ROC curves and sensitivity plots associated with EP and
grVAMP mostly exhibit similar values for the true positive
ratio—except for large α, where the EP values are slightly
smaller—and outperform significatively the ones related to
R1BCS in the case of i.i.d. patterns, especially at low values
of α. This is confirmed by the values of the areas under the
curves, as shown in Table III, where the maximum relative
discrepancy between the areas under the ROC curve (AUC)
is 0.008 when considering EP and grVAMP and 0.03 when
considering EP and R1BCS. However, in the case of corre-
lated patterns, the ROC curves and sensitivity plots related to
EP are mostly comparable to those associated with R1BCS
and yield values of the true positive rate that are systematically
larger than the ones of grVAMP, implying that the variable
selection properties of EP tend to be affected to a far lesser
extent than those of grVAMP in this regime, as confirmed by
the AUC reported in Table III and analogously to what was
observed in the noiseless case. In this case, the maximum
relative discrepancy between the AUC of EP and of R1BCS is
0.05 and is attained at the lowest value of α, namely, α = 0.5,
whereas, when considering EP and grVAMP, the relative dis-
crepancy is largest at large values of α, its maximum being
0.06 at α = 6. The mean squared error values associated with
the normalized student and teacher are plotted in Fig. 5 for
both η = 0.95 and 0.9 and their values are shown both in dB
(main plots) and using a linear scale (insets). In particular,
the MSE values reported in Fig. 5(a) correspond to the ROC
curves in Fig. 4(a). While the MSE of EP is definitely larger
than that of grVAMP at large α in the presence of i.i.d. patterns
[Figs. 5(a) and 5(b)], it should be noted that the differences of
the values involved are very small and are not noticeable on
a linear scale. Since the EP approximation is richer than the
VAMP one, which, in turn, is due to the fact that EP reduces
to VAMP when the approximate univariate prior factors are
constrained to have the same variance, and because of the very
small errors and differences observed, we believe that such
observed discrepancy between grVAMP and EP in the i.i.d.
pattern regime at large α is due to numerical effects rather
than to intrinsic limitations of the EP scheme. Instead, this is
not the case for the differences displayed by the MSE related
to EP and grVAMP in Fig. 5(c) for η = 0.95, which are clearly
noticeable on a linear scale as well. The discrepancy involved
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FIG. 4. Sparse perceptron learning from i.i.d. patterns sampled from a standard Gaussian distribution and from correlated patterns
sampled from a multivariate Gaussian distribution, with N = 128, ρ = 0.25, u = 1, η = 0.95. A fraction (1 − η) of the labels are mislabeled.
Comparison between R1BCS, grVAMP, and EP in terms of their ROC curves (a, c) and of their sensitivity plots (b, d). For reference, the case
of ideal variable selection by the teacher perceptron that provided the examples is shown. The plotted quantities are the mean values computed
over the set of all Nsamples instances and the error bars are estimated as σ/

√
Nsamples where σ denotes the sample standard deviation over all the

instances considered.

TABLE III. (a) AUC scores associated with the ROC curves shown in Fig. 4(a), which correspond to EP, grVAMP, and R1BCS based
classification from i.i.d. Gaussian patterns in the presence of label noise, with η = 0.95. (b) AUC scores associated with the ROC curves
shown in Fig. 4(c), which correspond to EP, grVAMP, and R1BCS based classification from multivariate Gaussian patterns in the presence of
label noise, with η = 0.95.

(a) AUC (i.i.d. patterns) (b) AUC (patterns from MVN)

α AUCEP AUCgrVAMP AUCR1BCS α AUCEP AUCgrVAMP AUCR1BCS

0.5 0.621 ± 0.005 0.627 ± 0.005 0.595 ± 0.005 0.5 0.588 ± 0.006 0.579 ± 0.006 0.559 ± 0.005
1.0 0.706 ± 0.005 0.710 ± 0.005 0.682 ± 0.004 1.0 0.661 ± 0.005 0.628 ± 0.006 0.641 ± 0.006
1.5 0.770 ± 0.005 0.777 ± 0.005 0.746 ± 0.005 1.5 0.727 ± 0.006 0.685 ± 0.006 0.694 ± 0.006
2.0 0.806 ± 0.005 0.809 ± 0.005 0.792 ± 0.004 2.0 0.732 ± 0.007 0.696 ± 0.006 0.734 ± 0.006
2.5 0.835 ± 0.004 0.840 ± 0.004 0.824 ± 0.005 2.5 0.775 ± 0.007 0.719 ± 0.006 0.775 ± 0.006
3.0 0.860 ± 0.004 0.865 ± 0.005 0.854 ± 0.004 3.0 0.788 ± 0.007 0.742 ± 0.007 0.793 ± 0.006
4.0 0.893 ± 0.004 0.899 ± 0.004 0.887 ± 0.004 4.0 0.834 ± 0.007 0.788 ± 0.006 0.828 ± 0.005
5.0 0.913 ± 0.004 0.920 ± 0.004 0.91 ± 0.004 5.0 0.856 ± 0.006 0.807 ± 0.006 0.851 ± 0.006
6.0 0.927 ± 0.003 0.936 ± 0.003 0.923 ± 0.003 6.0 0.882 ± 0.005 0.825 ± 0.007 0.885 ± 0.005
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FIG. 5. Sparse perceptron learning from (1 − η)M mislabeled examples: comparison between EP, grVAMP, and R1BCS in terms of their
mean squared errors in the case of (a) i.i.d. Gaussian patterns, η = 0.95; (b) i.i.d. Gaussian patterns, η = 0.9; (c) Gaussian correlated patterns,
η = 0.95; and (d) Gaussian correlated patterns, η = 0.9. In all figures, N = 128 and ρ = 0.25. The mean squared errors plotted are averaged
over the set of all Nsamples instances and the error bars are estimated as σ/

√
Nsamples where σ denotes the sample standard deviation over all the

instances considered.

reflects that observed at the level of the ROC curves shown in
Fig. 4(c). Finally, in the Gaussian correlated scenario, as soon
as the noise level affecting the labels becomes large enough,
we see that EP and grVAMP yield similar results at all values
of α, as shown in Fig. 5(d).

Similarly to R1BCS, EP was able to correctly estimate the
noise level affecting the labels. This was achieved by sampling
the initial condition η0 for the parameter η of the theta mix-
ture pseudoprior uniformly from the interval 0.5 < η < 1 and
performing one step of gradient descent on the EP free energy
at each EP iteration as described in Appendix C. In addition,
analogously to the noiseless case, it is possible to learn the
ρ parameter and we verified that the two parameters can be
learned simultaneously. We show the estimated values of the
density of the weights and of the consistency level η of the
labels in the case of i.i.d. patterns in Table IV and in the case

of Gaussian correlated patterns in Table IV. We notice that,
analogously to EP, an expectation maximization scheme can
be implemented in the case of grVAMP in order to iteratively
learn the density parameter ρ of the spike-and-slab prior and
the η parameter of the theta mixture measure.

One important limitation of the R1BCS algorithm as com-
pared with EP (and grVAMP) is that it involves the inversion
both of a N × N matrix and of a M × M matrix at each
iteration. As a consequence, the computational complexity of
R1BCS is dominated by O[(1 + α3)N3] operations. There-
fore, from a computational point of view, EP is especially
advantageous as compared to R1BCS when the number of
patterns in the training set is large, as, in the EP formulation
proposed in this paper, the computational cost is of order
O[(1 + α)N3]. However, in the large N regime, grVAMP will
be faster than EP (and R1BCS) as the only operation that
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TABLE IV. Values of the η parameter of the theta mixture pseudoprior estimated by the student perceptron during the training phase when
using EP to learn the weights of the teacher (a) from i.i.d. Gaussian patterns and (b) from multivariate Gaussian patterns in the case N = 128.
The estimated value of η is denoted as ηL , the true value being η = 0.95, whereas the true value of the density parameter of the spike-and-slab
prior was given by ρ = 0.25.

(a) i.i.d. patterns (b) Patterns from MVN

α ρL �ρ/ρ ηL �η/η α ρL �ρ/ρ ηL �η/η

2.5 0.229 ± 0.004 0.08 0.964 ± 0.001 0.02 2.5 0.206 ± 0.006 0.2 0.951 ± 0.002 0.0006
3.0 0.234 ± 0.003 0.07 0.957 ± 0.003 0.007 3.0 0.208 ± 0.006 0.2 0.953 ± 0.001 0.003
4.0 0.247 ± 0.004 0.01 0.9584 ± 0.0005 0.009 4.0 0.228 ± 0.005 0.09 0.953 ± 0.001 0.003
5.0 0.249 ± 0.003 0.003 0.9561 ± 0.0007 0.006 5.0 0.23 ± 0.005 0.08 0.9526 ± 0.0005 0.003
6.0 0.252 ± 0.003 0.007 0.9544 ± 0.0004 0.005 6.0 0.236 ± 0.004 0.05 0.9529 ± 0.0004 0.003

is O(N3) needs to be performed only once, whereas in EP
the operations with cubic cost must be performed at each
iteration. In fact, while the VAMP part in grVAMP is faster
than EP for the sizes simulated in this paper, we recall that
the grVAMP algorithm is composed of two modules [see also
Fig. 1(c)] implemented as two nested loops: the external loop
corresponds to a minimum mean squared error estimation of
the linear projection vector z = Xw, where X denotes the
matrix of the patterns, under a Gaussian prior and a likelihood
having the same functional form of the � pseudoprior used
in EP, whereas the inner loop consists of a VAMP module
running on a standard linear model, the measurement vector
of which is given by the current estimate of z, for a predefined
number of iterations. We show the running times of R1BCS,
EP, and grVAMP in Table V for the simulated size N = 128.
All the simulations were performed in parallel on a HP Pro-
liant server with 64 cores clocked at 2.1 GHz. In grVAMP, the
maximum number of iterations of the outer MMSE module
loop was set to 1000, while the number of iterations of the
inner VAMP module was set to 2000. The comparisons shown
in Table V are only meant to give an idea of the running times
observed for the implementations that we used, which can
be found in [43]. In particular, grVAMP was adapted by in-
troducing the theta mixture measure and parameters were set
in each algorithm as explained in this section. As the VAMP
estimation is repeated for every iteration of the external loop,

the running times related to grVAMP appear to be larger than
those related to EP.

C. Correlated patterns generated by a recurrent neural network

As an example of a diluted network with correlated inputs,
we consider a network of N randomly diluted perceptrons
without self-loops. We will denote the ith row of the weight
matrix W ∈ RN×(N−1) as wi. Each entry of wi is the weight
of an incoming link of the ith perceptron. Each perceptron
receives binary inputs x generated according to a Glauber
dynamics at zero temperature. We considered both the case
of synchronous update of the patterns at each time step and
the case where the binary inputs are updated asynchronously.

In the case of synchronous update, starting from an ini-
tial random vector x0 = sgn(ξ0), where ξ0 ∼ N (ξ; 0, I) at
discrete time t = 0 and given a pattern xt at time t , each
perceptron computes its output at time t + 1 according to

zt
i = wT

i xt
\i, (56)

and to

xt+1
i = sgn

(
zt

i

)
, (57)

where xt
\i denotes the vector of outputs produced by all per-

ceptrons except the ith one at time t . The patterns at time t + 1
are given by the set of outputs resulting from Eqs. (56) and

TABLE V. Running time related to the EP and R1BCS based sparse perceptron learning from (a) i.i.d. Gaussian patterns and from (b)
Gaussian patterns from multivariate normal distribution with covariance matrix given by Eq. (54) (u = 1) in the presence of label noise, with
η = 0.95 and damping factor equal to 0.99 in the case of EP. The uncertainty on these values was estimated as σ/

√
Nconv, where σ is the

sample standard deviation over the set of converged trials and Nconv is the number of converged simulations.

(a) i.i.d. patterns (b) Patterns from MVN

α tEP (s) tgrVAMP (s) tR1BCS (s) α tEP (s) tgrVAMP (s) tR1BCS (s)

0.5 2.7 ± 0.2 126.7 ± 0.8 6.5 ± 0.2 0.5 2.7 ± 0.2 139.2 ± 2.0 6.7 ± 0.2
1.0 2.6 ± 0.03 134.6 ± 0.9 12.0 ± 0.3 1.0 3.7 ± 0.1 155.7 ± 2.0 14.4 ± 0.4
1.5 3.74 ± 0.04 147.0 ± 1.0 22.2 ± 0.5 1.5 4.8 ± 0.1 206.8 ± 20.0 27.0 ± 0.7
2.0 5.65 ± 0.08 159.0 ± 1.0 47.6 ± 1.0 2.0 6.2 ± 0.2 289.0 ± 40.0 53.6 ± 1.0
2.5 6.97 ± 0.09 175.7 ± 1.0 94.9 ± 2.0 2.5 7.7 ± 0.2 236.3 ± 20.0 105.8 ± 3.0
3.0 8.3 ± 0.1 212.9 ± 20.0 150.9 ± 3.0 3.0 9.5 ± 0.3 294.3 ± 30.0 158.5 ± 4.0
4.0 10.2 ± 0.1 258.3 ± 10.0 373.4 ± 7.0 4.0 11.4 ± 0.3 366.9 ± 40.0 379.4 ± 8.0
5.0 12.2 ± 0.1 311.6 ± 10.0 628.0 ± 10.0 5.0 14.1 ± 0.4 423.5 ± 40.0 592.7 ± 10.0
6.0 15.6 ± 0.2 353.9 ± 10.0 1052.9 ± 20.0 6.0 15.9 ± 0.4 498.5 ± 50.0 1057.2 ± 20.0
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FIG. 6. Comparison between grVAMP and EP based sparse perceptron learning from correlated patterns generated by a recurrent network
according to a Glauber dynamics. The case of weakly correlated patterns and that of strongly correlated patterns are shown in panels (a) and
(b) and in panels (c) and (d), respectively. The number of perceptrons in the network is N = 128 and the density of the weights of each
perceptron is ρ = 0.25. In each plot, the mean values and the uncertainties were evaluated over the whole set of N perceptrons. The error
bars were estimated as σ/

√
N , where σ is the sample standard deviation computed over the set of N trained student perceptrons. (a) ROC

curves related to the estimated topology of the learned weights of each perceptron for several values of α when patterns are synchronously
updated. All N perceptrons achieved convergence during the training task. (b) MSE (in dB) associated with the synchronously updated patterns
of (a) and with the asynchronous one in which patterns are included in the training set only after each perceptron was selected to yield the
corresponding update (“full sweep”). (c) ROC curves related to the estimated topology of the weights learned from asynchronously updated
patterns for several values of α. The Hamming distance between sets of patterns at consecutive times was chosen equal to 10. (d) MSE (in dB)
corresponding to the case of the patterns considered in (c). The fraction of perceptrons of the recurrent network the training tasks of which
achieved convergence is shown in the inset.

(57). While in principle such a recurrent network dynamics
could become trapped in a limit cycle when coupled to a
synchronous update rule for the patterns, in practice this never
happened when generating such patterns from a recurrent net-
work of N = 128 diluted perceptrons, each of which having
dilution level ρ = 0.25.

In the case of asynchronous updates, at each time step one
perceptron i is selected at random and, given a pattern xt at
time t , the ith component of the pattern vector at time t + 1
is computed according to Eqs. (56) and (57), while all other
components are left unchanged. In order to tune the degree
of correlation of the patterns, we generated them in such a
way that two sets of patterns at consecutive times have a given

Hamming distance. In order to do so, we ran the Glauber dy-
namics of the recurrent network as described and updated the
patterns asynchronously, but only stored their configuration
when the desired Hamming distance between the candidate
set of patterns at time t + 1 and the set of patterns at time t
was achieved.

We consider the noiseless case and analyze the perfor-
mance of training all the perceptrons of a student network
of the same type of the network that generated the patterns
using both EP and grVAMP. We tested the two methods on a
network with N = 128 perceptrons and density parameter of
each perceptron given by ρ = 0.25. We considered both the
case where the patterns are generated with the synchronous
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TABLE VI. (a) Estimate of the parameter η of the theta mixture pseudoprior resulting from perceptron learning from the same patterns
with label noise. The true unknown value of η is 0.9. (b) Estimated value of the density of the weights of single perceptrons in the network at
large alphas, both in the case of synchronously updated patterns and in the case of asynchronous update with fixed Hamming distance dH = 10
between patterns at consecutive time steps, without label noise. In both (a) and (b), N = 128 and ρ = 0.25.

(a)
α ηL , synchr. update �η/η, synchr. update ηL , asynchr. update (dH = 10) �η/η, asynchr. update

0.5 0.86 ± 0.02 0.05 0.979 ± 0.004 0.09
1.0 0.96 ± 0.01 0.06 0.9945 ± 0.0009 0.1
1.5 0.927 ± 0.007 0.03 0.991 ± 0.001 0.1
2.0 0.899 ± 0.008 0.001 0.983 ± 0.001 0.09
2.5 0.893 ± 0.007 0.008 0.975 ± 0.001 0.08
3.0 0.901 ± 0.001 0.001 0.967 ± 0.001 0.07
4.0 0.9036 ± 0.0008 0.004 0.950 ± 0.001 0.06
5.0 0.9087 ± 0.0008 0.01 0.946 ± 0.001 0.05
6.0 0.9108 ± 0.0006 0.01 0.9389 ± 0.0008 0.04
(b)
Value of α Estimated ρsynchr Estimated ρasynchr, dH = 10

4.0 0.224 ± 0.002 0.208 ± 0.002
5.0 0.233 ± 0.002 0.223 ± 0.002
6.0 0.237 ± 0.001 0.231 ± 0.001

update rule presented above and the case of asynchronous
update. In both cases, the damping parameter of EP was set
to 0.999 and the convergence threshold was set to 10−4 for
both EP and grVAMP. In addition, the Gaussian part of the
spike-and-slab prior was set to a standard normal distribution
in both EP and grVAMP.

When considering patterns generated with a synchronous
update, both algorithms achieved convergence during the
training task for all perceptrons of the recurrent network. We
evaluated the ROC curves and the reconstruction error asso-
ciated with the correct or incorrect selection of the nonzero
weights at the level of a single perceptron by considering the
whole network and computing the average and the standard
deviation of the relevant quantities (i.e., the MSE, the fraction
of false positives, and the fraction of true positives) over
all the perceptrons of the student network. Both algorithms
were able to select the same fraction of relevant weights,
as shown by the vertical portion of the corresponding ROC
curves in Fig. 6(a), which were constructed by sorting the
weights according to their absolute value, in decreasing order.
As a consequence, both grVAMP and EP showed compara-
ble values for the MSE between the weights estimated by
the student perceptrons and the ones of the corresponding
teachers as a function of α. In addition, similar values of the
MSE were obtained for both algorithms by generating weakly
correlated patterns according to an asynchronous generative
process and including the generated vector of patterns in the
training set only after a full sweep of N updates, i.e., one
for each perceptron of the teacher recurrent network. In this
situation, the convergence rate of grVAMP was still very large
(�95%) at all values of α. We show the values of the MSE
obtained from these two kinds of weakly correlated patterns
in Fig. 6(b).

We repeated the same numerical experiments with patterns
generated performing an asynchronous update of the percep-
tron outputs and fixing dH (xt+1, xt ) = 10, corresponding to

a Pearson correlation coefficient rPearson = 0.84 between pat-
tern vectors at consecutive times. In this case, the observed
convergence rate within the student network was significantly
lower for grVAMP than for EP. Although the performances
of EP and grVAMP were comparable when considering the
subset of perceptrons the grVAMP guided learning tasks of
which converged (not shown), the ROC curves [Fig. 6(c)]
and MSE values [Fig. 6(d)] obtained from these experiments,
as evaluated over the N perceptrons of the student network
regardless of their convergence status at the end of the training
task, show that grVAMP is not able to accurately estimate
the weights of the teacher when it fails to converge. The
fraction of perceptrons of the recurrent network the training
task of which successfully converged is plotted in the inset
of Fig. 6(d) for both EP and grVAMP. These results strongly
suggest that the observed convergence failure of grVAMP is
related to the degree of correlation of the patterns presented to
the student.

We verified that the student perceptrons were able to es-
timate the density of the weights of the teacher perceptrons
quite accurately while learning the classification rule of the
teacher from this kind of patterns using EP and we checked
that it is still possible to estimate the parameter η of the theta
mixture pseudoprior during the training phase if a fraction of
the labels are corrupted by noise, provided that the noise level
1 − η is not too large, similarly to what we observed in the
noisy case with i.i.d. patterns and with the correlated patterns
drawn from a multivariate normal distribution analyzed in
Sec. III B of the paper. We provide the estimated noise level
in the noisy scenario where η = 0.9 as well as some examples
of the estimated values of the density at large values of α in
Table VI. The estimate of the parameter η proves to be fairly
accurate in the case of patterns generated with a synchronous
update rule, but is overestimated in the case where the patterns
are generated using an asynchronous update rule, as shown in
Table VI.
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IV. CONCLUSIONS

In this paper we have proposed an expectation propa-
gation based strategy for efficient 1-bit compressed sensing
reconstruction, the computational complexity of which is
dominated by O[(1 + α)N3] elementary operations. We ana-
lyzed the behavior in the zero temperature case and assuming
that the patterns are generated by a teacher having the same
structure as the student.

The performance of the algorithm has been extensively
tested under several conditions. For i.i.d. patterns generated
by a Gaussian distribution of zero mean and unit variance, the
algorithm performance is on par with two other state-of-the
art algorithms: 1bitAMP [27] and grVAMP [30]. However, in
the correlated Gaussian pattern case, where 1bitAMP fails to
converge, EP outperforms grVAMP both in terms of accuracy
and specificity. Moreover, both in the i.i.d. and correlated
Gaussian case, EP is able to learn with remarkable accuracy
the density ρ of the weights of the teacher during the retrieval
task. This feature of variational method (EP, 1bitAMP, gr-
VAMP, etc.) puts them at an advantage over other algorithms
for 1-bit compressed sensing which require that the dilution
level is known and provided among their inputs.

We then tested the robustness of EP reconstruction against
noise. To do so, we mislabeled a fraction (1 − η) of the ex-
amples and compared EP with grVAMP and with the R1BCS
algorithm [35] for 1-bit compressed sensing with sign flip.
Again, as in the noiseless case discussed above, we first con-
sidered the i.i.d. pattern case and then the correlated Gaussian
pattern case. The ROC curves and the sensitivity plots asso-
ciated with EP, grVAMP, and R1BCS allow us to conclude
that the variable selection properties displayed by the three
algorithms are not very different in the case of i.i.d. patterns.
However, in the case of correlated Gaussian patterns and as
long as the noise level affecting the labels is small enough,
while on the one hand EP appears to be mostly comparable
to R1BCS, on the other hand it systematically and consis-
tently outperforms grVAMP regardless of the specific value
of α. In addition to the estimation of the density parameter,
which we mentioned above in the case of sparse perceptron
learning from noiseless examples, EP was able to successfully
retrieve the noise level affecting the labels by including in
the algorithm an analogous optimization strategy consisting
in one step of gradient descent on the EP free energy at
each iteration. One important limitation of R1BCS in com-
parison with EP is the computational complexity: while the
computational complexity of EP is O[(1 + α)N3] (at least in
the zero temperature case), R1BCS scales as O[(1 + α3)N3].
Therefore, from a computational point of view, EP turns out to
be especially advantageous in the large α regime as compared
to R1BCS, but does not scale as well as grVAMP (and of
course 1bitAMP) in terms of simulation time as a function
of N .

Finally, we explored a more realistic scenario for “tempo-
rally” correlated patterns generated by a recurrent network
of N randomly diluted perceptrons both in the case of
synchronous and asynchronous update schemes. First, we
compared the performance of EP and grVAMP in the noiseless
case. The first striking observation is the poor performance
of grVAMP in terms of percentage of patterns for which the

iterative strategy converges. While EP converges basically on
all the presented sets of patterns, the convergence rate drops
to less than 20% for a large interval of α values for grVAMP.
EP in this regime shows a remarkable performance both in
terms of accuracy and sensitivity and is still able to learn the
parameters of the priors fairly well.

Taken together, these results show that EP is a compet-
itive algorithmic scheme with very good variable selection
properties, particularly when one cannot rely on the statis-
tical independence of the entries of the pattern matrix. An
important point of strength of the algorithm is the possibility
to infer online the optimal dilution of the problem using a
maximum likelihood data-driven iterative strategy, whereas,
for other competitive strategies, the dilution is a fixed param-
eter to set on the basis of some prior knowledge about the
problem. In addition, we have shown that the same maximum
likelihood online strategy can be used to learn the consistency
level of the labels when they are affected by noise. As for
the limitations of EP, the main disadvantage is given by its
cubic computational complexity, which makes it slower as
compared with algorithms such as 1bitAMP and implemen-
tations of generalized VAMP. Furthermore, we found that,
while EP was able to deal with the task of learning from
noisy examples, a not too large level of noise was needed in
order for the algorithm to learn the target classification rule
with an acceptable accuracy. Finally, although in this paper
convergence was generally achieved within the thresholds we
specified, it is well known that EP can suffer from numerical
instabilities that prevent it from converging to its true fixed
points. As a consequence, we expect that the results presented
in this paper may not be the best results obtainable by means
of the EP approximation. Attempting to better understand the
convergence properties of EP in the settings presented in this
paper as well as in other scenarios will be the object of future
work.
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APPENDIX A: FINITE TEMPERATURE FORMULATION
OF EXPECTATION PROPAGATION

We here recall the finite temperature EP scheme used in
[39] and state the update equations for the sparse perceptron
learning problem.

In this case, the posterior distribution is given by

P(h) = 1

ZP
e− β

2 hT E−1h
N∏

i=1

�i(hi )
N+M∏

τ=N+1

�τ (hτ ), (A1)

where we recall that

E−1 =
(

XT
σ Xσ −XT

σ

−Xσ I

)
. (A2)
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As in Sec. II, we introduce Gaussian approximating factors
(14) and write a fully Gaussian approximation of the posterior
distribution (A1):

Q(h) = 1

ZQ
e− β

2 hT E−1h
∏
i∈W

φ(hi; ai, di )
∏
τ∈Y

φ(hτ ; aτ , dτ )

= 1

ZQ
exp

(
−1

2
(h − h̄)T �−1(h − h̄)

)
.

(A3)

The covariance matrix � and the mean h̄ in Eq. (A3) are given,
respectively, by

�−1 = βE−1 + D, (A4)

and by

h̄ = �Da. (A5)

Moreover, we define the tilted distributions Q(i) for all i =
1, . . . , N + M as

Q(i)(h) = 1

ZQ
e− β

2 hT E−1hψi(hi )
∏
k �=i

φ(hk; ak, dk )

= 1

ZQ(i)
ψi(hi ) exp

(
−1

2
(h − h̄

(i)
)T
(
�(i))−1

(h − h̄
(i)

)

)
,

(A6)

where ψi = � if i ∈ W and ψi = � if i ∈ Y .

As explained in Sec. II, the EP update equations for the
means ai and for the variances d i are obtained by imposing
the matching of the first and second moments of each variable
hi with respect to the tilted marginal distributions Q(i)(hi ) and
the fully approximated marginal distributions Q(hi ):

〈hi〉Q = 〈hi〉Q(i) ,
〈
h2

i

〉
Q = 〈

h2
i

〉
Q(i) , (A7)

which leads, again, to Eqs. (31) and (32).

APPENDIX B: EP FREE ENERGY FOR THE DILUTED
PERCEPTRON PROBLEM

Let us recall the definition of the EP free energy for a
system with N + M variables:

FEP = (N + M − 1) log ZQ −
N+M∑
k=1

log ZQ(k) , (B1)

where

log ZQ = N + M

2
log (2π ) + 1

2
log(det �), (B2)

and the expression of log ZQ(k) depends on the type of prior
considered. If k = 1, . . . , N , the prior is a spike-and-slab and
one has

log ZQ(k) = log

(
(1 − ρ)

1√
2π�k

e− μ2
k

2�k + ρ√
2π

√
λ

1 + λ�k
e− 1

2

λμ2
k

1+λ�k

)
, k = 1, . . . , N. (B3)

For the remaining variables, the expression of ZQ(k) either reads

ZQ(k) =
√

π�k

2

[
1 + erf

(
μk√
2�k

)]
, k = N + 1, . . . , N + M (B4)

if �(hk ) = �(hk ), or it reads

ZQ(k) =
√

π�k

2

[
η

2
erfc

(
− μk√

2�k

)
+ 1 − η

2
erfc

(
μk√
2�k

)]

=
√

π�k

2

[
1

2
+
(

η − 1

2

)
erf

(
μk√
2�k

)]
, k = N + 1, . . . , N + M,

(B5)

if �(hk ) = η�(hk ) + (1 − η)�(−hk ).
As a consequence, when �(hk ) = �(hk ), the EP free energy of the problem is given by

FEP = (N + M − 1)

(
N + M

2
log (2π ) + 1

2
log(det �)

)

−
N∑

k=1

log

(
(1 − ρ)

1√
2π�k

e− μ2
k

2�k + ρ√
2π

√
λ

1 + λ�k
e− 1

2

λμ2
k

1+λ�k

)

− M

2
log (π/2) − 1

2

N+M∑
k=N+1

log �k −
N+M∑

k=N+1

log

[
1 + erf

(
μk√
2�k

)]
,

(B6)
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whereas, when �(hk ) = η�(hk ) + (1 − η)�(−hk ), it is given by

FEP = (N + M − 1)

(
N + M

2
log (2π ) + 1

2
log(det �)

)

−
N∑

k=1

log

(
(1 − ρ)

1√
2π�k

e− μ2
k

2�k + ρ√
2π

√
λ

1 + λ�k
e− 1

2

λμ2
k

1+λ�k

)

− M

2
log (π/2) − 1

2

N+M∑
k=N+1

log �k −
N+M∑

k=N+1

log

[
1

2
+
(

η − 1

2

)
erf

(
μk√
2�k

)]
.

(B7)

As a practical remark, an efficient way to compute FEP

numerically involves using the Cholesky decomposition of the
covariance matrix in log(det �), that is � = LLT , where L
is a lower triangular matrix with real positive diagonal en-
tries Lkk for all k = 1, . . . , N + M. Then, the log determinant
contribution to the EP free energy is efficiently computed as
log(det �) = 2

∑N+M
k=1 log(Lkk ).

APPENDIX C: LEARNING THE DENSITY LEVEL OF THE
WEIGHTS OF THE TEACHER AND THE NOISE

ON THE LABELS

The parameters of the prior distributions, such as the
density ρ of the weights of the teacher signal and the

fraction η of labels fulfilling the consistency constraints,
can be iteratively learned by the student perceptron by
minimizing the free energy associated with the EP algo-
rithm. We follow the reasoning laid out in [42], which
we here recall and adapt to the sparse perceptron learning
problem.

Let θ denote the set of parameters of the prior distribu-
tion Pθ (h). For example, the density ρ appears in the prior
distribution in the factors �(wi ), for i = 1, . . . , N , whereas
the consistency level η of the labels appears in the factors �

in the noisy case. Such parameters can be estimated by the
student perceptron by maximizing the following likelihood
function:

P(σ1, . . . , σM |θ, x1, . . . , xM ) =
∫

dhP(σ1, . . . , σM , h|θ, x1, . . . , xM ) =
∫

dhP(Xσ |h, x1, . . . , xM )P(h|θ)

=
∫

dhP(Xσ |h, x1, . . . , xM )P(h1, . . . , hN |ρ, λ)P(hN+1, . . . , hN+M |η) = Z (θ),

(C1)

which is nothing but the normalization of the posterior distri-
bution in Eq. (11).

It is possible to associate a free energy to the partition
function (C1) by using the definition F = − log Z (θ). When
EP reaches its fixed point, F is approximated by the EP
free energy (B1) and the student perceptron can attempt to
minimize the latter via gradient descent:

θ
(t+1)
j = θ

(t )
j − δθ j

∂FEP

∂θ j
, (C2)

where t denotes the current iteration, θ j denotes the jth com-
ponent of the parameter vector θ, and δθ j is its corresponding
learning rate, which was taken equal to 10−5 in our numerical
experiments both when learning ρ and when learning η.

Notice that, while the only contributions to FEP depending
explicitly on the parameters θ of the prior are given by the
terms FQ(k) , k = 1, . . . , N + M, the components of the gradi-
ent include other terms as well. However, these terms depend
on the derivatives of the free energy with respect to the cavity
parameters, which vanish at the EP fixed point. The opti-
mization strategy we employ consists in iteratively alternating
an EP update step at fixed prior parameters and an update
of θ performed via gradient descent at fixed EP parameters,
similarly to an EM scheme, where the optimization over the
EP parameters corresponds to the expectation step and the
minimization of the free energy with respect to θ corresponds

to the maximization step. A “proper” EM procedure would
also be possible and would involve alternating a complete
EP estimation of the approximating posterior distributions at
fixed prior parameters until convergence is reached (E-step)
and a maximum likelihood update of the prior parameters
(M-step). The fact that we employ an alternating minimization
procedure of this kind allows us to only consider the explicit
dependence of the free energy on the prior parameters. In
particular, we have that ∂FEP/∂ρ in Eq. (C2) reads

∂FEP

∂ρ
=

N∑
k=1

1√
2π�k

e− μ2
k

2�k − 1√
2π (λ+�k )

e− 1
2

μ2
k

λ+�k

(1 − ρ) 1√
2π�k

e− μ2
k

2�k + ρ√
2π (λ+�k )

e− 1
2

μ2
k

λ+�k

. (C3)

Moreover, as highlighted in [42], the second derivative with
respect to ρ is strictly positive if λ > 0, which guarantees the
uniqueness of the value of the density value that minimizes
FEP, provided that the EP parameters μk and �k are fixed for
all k = 1, . . . , N .

The same line of reasoning applies to the estimation of the
parameter η. In this case, the only contributions to FEP where
η appears are the terms FQ(k) , k = N + 1, . . . , N + M, and by
taking the derivative with respect to η one obtains

∂FEP

∂η
=

N+M∑
k=N+1

−2erf
(

μk√
2�k

)
1 + (2η − 1)erf

(
μk√
2�k

) . (C4)
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